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A B S T R A C T

This research presented a novel framework of fuzzy-backward/forward sweep (F-BFS) power flow to address 
uncertainties in radial distribution networks with photovoltaic generation. The F-BFS framework integrated 
fuzzified values to model uncertainty parameters in radial distribution network power flow analysis, whereas the 
Grey Wolf Optimizer (GWO) was employed to optimize photovoltaic distributed generation (PVDG) placement 
and sizing, aiming to minimize power losses and improve voltage deviations. Load uncertainties in the resi
dential, commercial, and industrial sectors were modeled using triangular fuzzy membership functions derived 
from real-world data representing Malaysian urban loads. Simulations on the 33-bus distribution network 
validated the approach and demonstrated its effectiveness in handling fuzzy uncertainties across three load 
sectors. The findings showed that the proposed F-BFS-GWO method significantly reduced the total power losses 
and improved the voltage profiles. Under high load conditions, active power losses were reduced by approxi
mately 28.04% in residential, 46.06% in commercial, and 46.24% in industrial sectors at the highest membership 
degree in the fuzzy set, compared to the scenario without photovoltaic generation. The critical voltage magni
tudes at the weakest bus under high-load conditions in the fuzzy set also improve significantly, reaching nearly 
1.0 p.u. The main contributions of this work are the integration of fuzzy-logic within a BFS framework to manage 
multi-sector load uncertainties, coupled with a hybrid F-BFS–GWO algorithm that enhances system planning and 
optimization under the risk of uncertainty of photovoltaic generation and load demand.

1. Introduction

Electricity providers are focusing on how to address rising environ
mental concerns and energy needs. Considering sustainability and 
increasing energy demands, solar power plants, especially photovoltaic 
distributed generation (PVDG) plants, have been of immense signifi
cance. Unlike traditional centralized power systems, PVDG decentralizes 
power generation and disperses it over numerous areas rather than just 
one centralized system. By improving the voltage profiles and opti
mizing the utilization of system equipment, small generators are con
nected to distribution systems to meet load demands while profitably 
benefiting from reduced power losses [1,2]. The location of PVDGs has a 
substantial influence on voltage profiles, power losses, and system 
reliability; hence, it is an important component that needs to be 
considered in power system planning [3,4]. It is easier to site smaller 

generators, they have lower capital costs and are closer to heavy loads 
which reduces transmission costs [5,6]. The installation of PVDG in the 
network provides a few advantages, including a reduction in power loss 
and reduced energy undelivered cost. This also results in other benefits, 
such as lower peak load operating costs, improved voltage profiles, and 
higher load factors [7,8].

Despite these advantages, PVDG can cause negative impacts such as 
increases in power losses and frequency and voltage deviations. Ac
cording to the study by Saad et al. [9], when the size of the PVDG is 
increased beyond the statutory limits, it results in higher losses. Thus, 
the PVDG size must be capped and optimized to efficiently manage the 
network within a distribution substation area. Additionally, it is neces
sary to minimize losses by placing PVDGs in appropriate areas in the 
distribution network [10]. Because the problem is nonlinear, it is chal
lenging to solve it using conventional mathematical methods [11]. The 
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placement of PVDG in distribution systems is a multi-objective optimi
zation problem. As per previous studies [12–14], the metaheuristics 
optimization-based method can help determine the optimal location and 
size of PVDG.

One promising approach is the use of machine learning models such 
as neural networks [15,16] and Gaussian-based methods [17,18]. Neu
ral networks have been applied to forecast the solar power output and 
optimize the scheduling of photovoltaic (PV) systems in hybrid energy 
setups, significantly improving the performance of smart grids. In 
addition, Gaussian- and probability-based methods have been widely 
used to deal with uncertainties in renewable energy generation [19], 
particularly for solar irradiance prediction, which employs a probabi
listic approach for modeling the uncertainty in solar radiation and its 
impact on PV generation.

Optimization algorithms for determining the lowest or highest 
objective functions have been widely explored in the application of 
electrical power systems by many researchers. For instance, the opti
mization method based on electric eel foraging [20] aims to determine 

the locations of distributed generation (DG) units in distribution net
works while accounting for several technical conditions, such as circuit 
reconfigurations and power factor limits. Kadir et al. [21] developed an 
improved gravitational search algorithm to determine the appropriate 
placement and sizing for DG units considering load growth. A study by 
Fu et al. [22] presented a method using a genetic algorithm (GA) to 
determine the appropriate allocation and size of DG in a distribution 
network, considering voltage and harmonic limitations, with the 
objective of minimizing network losses. Jaalam et al. [23] explored the 
metaheuristic approach, emphasizing the role of the Grey Wolf Opti
mizer (GWO) in enhancing low-voltage ride-through in grid-connected 
PV systems.

Previous studies have examined numerous methods for evaluating 
renewable generation integration in power systems. According to the 
study by Chibani et al. [24], the inclination angle (β) of the PV system, 
along with the presence of fins, also affects the efficiency of solar power 
generation. However, owing to the risk of uncertain behavior, such as 
the geographical spread and complexity of power systems, including 
load demand and renewable generation, accurate system identification 
remains a challenge. Power system operators rarely have access to exact 
specifications for loads or generation during power flow studies. Thus, 
evaluating uncertainty-related input parameters, such as the load and 
renewable generation, is crucial. There are two main sources of uncer
tainty parameters: (1) randomness, which pertains to the variability 
characteristic, and (2) incompleteness of parameter values, owing to the 
full factors affecting the system being unknown. Uncertainty due to 
randomness can be mitigated through statistical analysis. These uncer
tain parameters are often represented by probabilistic descriptions such 
as the probability density function (PDF) [25].

Saad et al. [26] developed a Monte Carlo-embedded hybrid variant 
mean-variance mapping optimization for PVDG allocation in a distri
bution network considering uncertainties in solar irradiance and load 
demand. Some studies [27,28] demonstrated the allocation of DG based 
on the reliability performance in the distribution network. A Monte 
Carlo simulation methodology was employed to evaluate system reli
ability performance. Yin et al. [29] suggested a chance-constrained 
operation model based on probabilistic power balance that accounts 
for PV and load uncertainty. Li et al. [30] developed a principal 
component analysis and high-dimensional model for probabilistic power 
flow and highlighted its advantages over the traditional point-estimate 
method approach.

Previous research has effectively employed probability power flow 
analysis to enhance the power flow calculations that incorporate un
certainties. However, inadequate statistical data can result in biased 
estimates and inaccurate models [31]. Thus, making assumptions based 
on human expertise might provide insight into parameter values that 
represent cognitive uncertainties, as opposed to statistical uncertainties. 
Fuzzy logic offers a way to model uncertainty by allowing for degrees of 
truth rather than classical true or false. Several literature reviews have 
successfully utilized fuzzy-logic to improve power-flow calculations, 
reflecting its growing applications in power systems.

Fig. 1. The radial system with photovoltaic distributed generation (PVDG).

Table 1 
Fuzzy-logic rules for fuzzy–backward/forward sweep (F-BFS).

Rule No. Condition (inputs) Output (response)

Rule 1 if ΔFPL , fuzzy andΔFQL , fuzzy is L then ΔXPLoss , fuzzy is L
Rule 2 if ΔFPL , fuzzy andΔFQL , fuzzy is M then ΔXPLoss , fuzzy is M
Rule 3 if ΔFPL , fuzzy andΔFQL , fuzzy is H then ΔXPLoss , fuzzy is H
Rule 4 if ΔFPL , fuzzy andΔFQL , fuzzy is L then ΔXQLoss , fuzzy is L
Rule 5 if ΔFPL , fuzzy andΔFQL , fuzzy is M then ΔXQLoss , fuzzy is M
Rule 6 if ΔFPL , fuzzy andΔFQL , fuzzy is H then ΔXQLoss , fuzzy is H
Rule 7 if ΔFPL , fuzzy andΔFQL , fuzzy is L then ΔXVpu , fuzzy is H
Rule 8 if ΔFPL , fuzzy andΔFQL , fuzzy is M then ΔXVpu , fuzzy is M
Rule 9 if ΔFPL , fuzzy andΔFQL , fuzzy is H then ΔXVpu , fuzzy is L

Note: ΔF is the power parameters in fuzzy number and ΔX is the state vector.

Algorithm 1 
Fuzzy-backward/forward sweep (F-BFS) incorporated Grey Wolf Optimizer 
(GWO) pseudo-code.

START 
Load profile data 
Generate fuzzy load model 
Set k = number of generated fuzzy data 
FOR each number of generated fuzzy data 

Load radial distribution data 
IF F-BFS power flow not converge 

Calculate PL = PLold × fuzzy data in p.u. 
Calculate QL = QLold × fuzzy data in p.u. 
Run F-BFS power flow for each membership values 

END IF 
END FOR 
Compute bus voltage and power losses in fuzzy membership 
RETURN bus voltage and power losses 

END
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Wu et al. [32] demonstrated the effectiveness of random fuzzy theory 
in addressing wind turbines, PV generation, and the load uncertainty of 
distribution networks. A study by Zaki et al. [33] discussed a fuzzy 
approach for fault identification in an active distribution network with 
both grid-connected and off-grid PV systems. In another study, Sedaghat 
et al. [34] explored fuzzy load uncertainty for optimal DG allocation 
based on Biogeography-based Optimization (BBO). The work in Samala 
and Kotapuri [35] further adopted fuzzy methodologies by presenting a 
hybrid approach that combines a fuzzy logic controller for the fitness 
function. In addition, Alkayyali and Tutunji [36] adopted Particle 
Swarm Optimization (PSO), and Maher et al. [37] implemented Ant-lion 
Optimization (ALO) for optimal DG planning.

However, while these studies have laid the groundwork for optimi
zation applications in power systems, they often do not integrate fuzzy 
logic with advanced load flow analysis to create a hybrid algorithm 
capable of effectively managing uncertainties in load flow with renew
able energy integration. This gap has inspired the development of new 
methods: fuzzy-backward/forward sweep (F-BFS) power flow, which 
effectively applies fuzzy logic to represent power system uncertainties in 
radial distribution networks. By incorporating fuzzy parameters, these 
approaches enhance power flow analysis by accounting for un
certainties, enabling improved decision-making in the management of 
DG systems.

This presents a significant gap that the current research aims to 
address by developing a novel framework that combines the F-BFS 
power flow with GWO, thereby providing a more comprehensive solu
tion for PVDG allocation considering uncertainty. The contributions of 
this study are as follows. 

(1) A possibility approach based on human expertise was employed 
in this study to effectively manage the risks of uncertainty in PV 
generation and load demands.
(2) This study leveraged the strengths of fuzzy logic and the BFS 
power flow method to develop a hybrid F-BFS algorithm. By utilizing 
fuzzified values within the F-BFS framework, this approach accom
modates a wider range of uncertainty parameters in power flows and 
losses within distribution networks.
(3) Furthermore, the integration of GWO enhanced the optimization 
process, enabling the identification of optimal PVDG locations that 
maximize system performance while minimizing losses. This com
bination not only addresses a gap in the existing literature, but also 
contributes significantly to ongoing efforts toward sustainable en
ergy management. The hybrid approach considers fuzzy un
certainties and simultaneously optimizes the placement and sizing of 
PV systems in distribution networks.

Research focused on radial distribution systems has highlighted the 
benefits of the hybrid F-BFS method that incorporates GWO in identi
fying critical components affected by both PV generation and load un
certainties. This leads to improved decision-making for network 
operators. This study examined three types of fuzzified load uncertainty 
models, including residential, commercial and industrial load.

The remainder of this paper is organized as follows. Section 2 ad
dresses the problem formulation of F-BFS and GWO, covering the 
mathematical models, membership functions, objective function, and 
constraints, as well as the flowchart of the proposed algorithm. Section 3
details the findings obtained using 33-bus radial distribution systems 
and discusses the results. Section 4 provides a summary of the findings.

2. Problem formulation

2.1. BFS power flow

The BFS power flow method was developed by Shirmohammadi et al. 
[38], which utilizes fundamental Kirchhoff's laws to solve radial or 
weakly meshed power system structures. The problem formulation for 
the radial distribution network with PVDG was derived based on Fig. 1.

The BFS power flow was used to analyze the convergence of the 
iterative process. In Fig. 1, a branch is connected between buses i and k 
(or i + 1). The effective active and reactive powers flowing through the 
link from bus i to bus k (or i + 1) can be calculated in the backward 
direction from the last bus, as given by: 

Pi = Pi+1 + PLk + Ploss, i (1) 

Qi = Qi+1 + QLk + Qloss, i (2) 

where Pi and Qi represent the active and reactive power flowing out of 

Fig. 2. Flowchart for fuzzy-backward/forward sweep (F-BFS) power flow.
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the bus, respectively. Pi+1 and Qi+1 are the active and reactive powers at 
bus k (or i + 1), Ri and Xi denote the line resistance and reactance 
connecting bus i and bus k (or i + 1), PLk and QLk represent the active 
and reactive load powers at bus k (or i + 1), respectively.

The power loss in the line between buses i and k (or i + 1) is calcu
lated as follows: 

Ploss (i, i+1) =
(Pi)

2
+ (Qi)

2

|Vi|
2 Ri (3) 

Qloss (i, i+1) =
(Pi)

2
+ (Qi)

2

|Vi|
2 Xi (4) 

The total apparent power loss ST, loss (i, i+1) can be written as: 

ST, loss (i, i+1) =
∑Nbuses

bus=1
Ploss (i, i+1) + j

∑Nbuses

bus=1
Qloss (i, i+1) (5) 

The magnitude and angle of the voltage at each bus are computed in 
the forward direction. The current flowing through the branch with the 
branch impedance linked between buses i and k (or i + 1) is calculated 
as: 

Ii =
(Vi∡δi) − (Vi+1∡δi+1)

Z(i, i+1)
(6) 

The PVDG unit on bus k acts as a negative load. As a result, the active 
and reactive powers associated with PVDG penetration can be calculated 
as: 

Pi = Pi+1 + PLk + Ploss, i − PPV (7) 

Qi = Qi+1 + QLk + Qloss, i − QPV (8) 

The active and reactive power losses in the line between buses i and k 
(or i + 1) associated with PVDG penetration can be calculated as: 

Ploss (i, i+1), PV =

(
Pi − PPV, k

)2
+
(
Qi − QPV, k

)2

|Vi|
2 Ri (9) 

Qloss (i, i+1), PV =

(
Pi − PPV, k

)2
+
(
Qi − QPV, k

)2

|Vi|
2 Xi (10) 

A deterministic power flow analysis was used to evaluate the oper
ation of the power system. It calculates the power flow and system states 
based on the specified power generation and load demand within a 
given network configuration. This analysis involves solving the equa
tions to determine the power balance of the system. The equations below 

define the network power balance that the power flow distribution must 
satisfy: 

∑Nbuses

bus=1

Pgeneration −

[
∑Nbuses

bus=1

Pload + Ploss

]

= 0 (11) 

Algorithm 2 
F-BFS incorporated GWO pseudo-code.

START 
Initialize fuzzy data 
Generate GWO population 
Set k = 1 (iteration counter) 
Set N_iter = 100 (maximum number of iterations) 
WHILE k ≤ N_iter DO 

Check for convergence criteria satisfaction 
IF convergence criteria are satisfied THEN 

Display results (voltage profiles, power losses) 
STOP 

ELSE 
Run fuzzy backward/forward sweep (F-BFS) power flow 
Update positions and wolves based on the optimization technique 
Calculate distance to prey 
Update positions and ensure diversity for optimal location and size of PVDG 
k = k + 1 (increment iteration counter) 

END IF 
END WHILE 
Generate results in fuzzy membership bus voltage and power losses. 
RETURN bus voltage and power losses 

END

Fig. 3. Searching process for photovoltaic distributed generation (PVDG) 
allocation in the radial distribution network using fuzzy – backward/forward 
sweep (F-BFS) incorporated Grey Wolf Optimizer (GWO).
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∑Nbuses

bus=1
Qgeneration −

[
∑Nbuses

bus=1
Qload + Qloss

]

= 0 (12) 

2.2. F-BFS power flow

Modern power networks with renewable energy sources, in this case 
with PVDG penetrations and fluctuating load demands, require further 
consideration because deterministic load flow analysis fails to account 
for power system uncertainties. The power flow equations are nonlinear 
owing to the power-voltage relationship. Analytical solutions for power 
flow analysis are difficult to obtain; therefore, numerical methods are 
recommended. Eq. (13) represents a set of nonlinear algebraic equations 
in a steady state, where g denotes the set of nonlinear algebraic equa
tions representing the power balance of the network, x is the state vector 
comprising state variables xi, and u is a vector comprising the input 
variables. The power flow problem involves determining the solution 
(zero) of a set of nonlinear equations, known as power-balance equa
tions, based on an initial guess (x0). 

g(x, u) = 0 (13) 

The fuzzy power flow analysis begins with the nonlinear algebraic 
Eq. (13) and incorporates power system uncertainty into the input 
vector (u). The input vector (u) is divided into two components that 
contain deterministic variables and another containing uncertain vari
ables, labeled as ΔX which can be defined using a membership function. 
The adjustment of ΔX at each node of the system is proportional to ΔF. 

ΔX = fuz (ΔF) (14) 

fuz denotes the fuzzy logic function. The fuzzy power flow method is 
based on the BFS equation, and the update of the system state is 
repeatedly performed via fuzzy logic control, rather than using deter
ministic load flow approaches. The fuzzy power flow equations can be 
derived based on the corrected state of the vector comprising the state 
and input variables at each bus in the system.

In this study, loads were categorized into three types: residential, 
commercial, and industrial. These loads are represented as fuzzy 
numbers. The dataset encompassed urban load data, with the assump
tion that only weekday daily loads were considered, excluding week
ends. The collected data included a range from low to maximum load 
occurrences, which were used to design the fuzzy-logic membership 
functions. These functions are essential for analyzing the load demand 
uncertainty and its impact on the power distribution network.

To fuzzify these loads, a fuzzy-logic approach was employed, with 
the load values represented by triangular membership functions. The 
triangular membership function of a fuzzy set is defined using three 
parameters: Pmin, Php, and Pmax. Pmin represents the lowest value in 
the dataset. Pmax is the maximum value in the dataset and Php is the 
highest possibility of occurrence. The membership function μ(x) of a 
triangular fuzzy number is determined as follows: 

μ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
x − Pmin

Php − Pmin
Pmax − x

Pmax − Php
0

If x < Pmin

IfPmin ≤ x ≤ Php

If Php < x ≤ Pmax

If x > Pmax

(15) 

Membership functions for each type of load were employed to 
determine the degree of membership for any given load within the 
defined range. This fuzzification method aids in the management of 
uncertainty and fluctuation in load estimates, enabling a more robust 
analysis and optimization in the context of DG and load management. 
The load data were fuzzified into a corresponding fuzzy signal ΔFPL , fuzzy 

and ΔFQL , fuzzy, using three linguistic variables: low (L), medium (M), and 
high (H). In fuzzy logic, rules are applied to perform analysis. In this 
analysis, nine fuzzy rules were developed. The rules are conditional 
statements that use fuzzy logic to support decision making. The com
plete rule base is outlined as follows (Table 1).

Running the F-BFS algorithm on the distribution network yields 
fuzzy values for the power flow through branches and substations. 
Consequently, active and reactive power losses are expressed as fuzzy 
numbers. The pseudocode for the F-BFS power flow is presented in Al
gorithm 1, and the corresponding flowchart is shown in Fig. 2.

Fig. 4. 33-bus radial configuration.

Fig. 5. Fuzzy membership function for residential, commercial and industrial 
loads demands.
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2.3. Objective function and constraints

Instead of using a crisp value, the variables were specified as fuzzy 
variables. For instance, the active power Pi at bus i can be expressed 
using a fuzzy set P̃i, with a membership function μPi, where μ denotes the 
degree of membership of Pi in the fuzzy set.

2.3.1. Objective function
Under equality and inequality constraints, objective functions were 

formulated to minimize the total losses of active and reactive power as 
well as the voltage deviations at all buses: 

Minimize F =
[
f1, f2, f3

]

f1 =
∑

Nbuses
bus no=1

P̃T,loss

f2 =
∑Nbuses

bus no=1
Q̃T, loss

f3 =
∑Nbuses

bus no=1

⃒
⃒Ṽi − Ṽref

⃒
⃒

(16) 

where P̃T, loss, Q̃T, loss, Ṽi, and Ṽref represent the fuzzy variables corre
sponding to the total active and reactive power losses, voltage at bus i, 
and the reference nominal voltage, respectively.

2.3.2. Network power balance
The optimization must satisfy the active and reactive power balance 

equations, incorporating fuzzy-logic, as follows: 

Fig. 6. Fuzzy membership function for active power losses in residential, 
commercial and industrial loads.

Fig. 7. Fuzzy membership function for reactive power losses in residential, 
commercial and industrial loads.

Fig. 8. Fuzzy membership function for critical voltage in residential, com
mercial and industrial loads at bus 18.
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P̃i + P̃pv, i+1 = P̃i+1 + P̃Lk +
(P̃i)

2
+ (Q̃i)

2

|Ṽi|
2 Ri (17) 

Q̃i + Q̃pv, i+1 = Q̃i+1 + Q̃Lk +
(P̃i)

2
+ (Q̃i)

2

|Ṽi|
2 Xi (18) 

where P̃i, Q̃i, and Ṽi denote the fuzzy variables representing the active 
power, reactive power, and voltage, respectively, at bus i.

2.3.3. Bus voltage boundaries
The voltage boundaries must be maintained within safe operating 

limits. Eq. (19) ensures that the voltage magnitude at each bus remains 
within an acceptable range. 

Ṽmin ≤ |Ṽi| ≤ Ṽmax i = 1, 2,…, n bus (19) 

2.3.4. PVDG operating capacity
The PVDG capacity limit is governed by the inequality constraints 

given below. P̃
min
PVDG capacity was set to zero, and the P̃

max
PVDG capacity was 

determined based on the total active load demand. The value of P̃
max
PVDG 

varied for each client, depending on the total active power load. 

P̃
min
PVDG ≤ P̃PVDG ≤ P̃

max
PVDG (20) 

The maximum penetration of PVDG in the distribution system must 
satisfy the following condition: 

∑n

i=1
P̃PVDG, i ≤

∑n

i=1
P̃Load, i, i = 1, 2,⋯, n bus (21) 

2.3.5. PVDG location
Except for the slack bus, the PVDG site can be connected to any bus in 

the network. 

2 ≤ PVDGsite ≤ max No. of buses (22) 

2.4. F-BFS incorporated GWO

GWO was proposed by Mirjalili et al. [39]. The algorithm is based on 
the social hierarchy of grey wolves. In a wolf pack, members respond to 
a dominant social order with search agents adjusting their positions 
based on the best performance. Alpha (α) is the leader of the gry wolves. 
It determines all decisions. All the other pack members must obey these 
commands. Beta (β) is the second-highest rank, assisting Alpha in de
cision making and enforcing its commands. Delta (δ) provides a feed
back channel for wolf reporting. Finally, omega (ω) is the follower and 
has the lowest ranking in the hierarchy.

In this study, the GWO was initialized with 10 numbers of search 
agents and a maximum iteration of 100. The pseudocode for the search 
process used for PVDG allocation in the radial distribution network is 
provided in Algorithm 2. A flowchart representing the optimization 
process for PVDG placement is shown in Fig. 3.

2.5. Test case: 33-bus radial distribution network (RDN)

Fig. 4 illustrates the topology of a standard 33-bus RDN. The peak 
load demands for this test case were 3,715 and 2,300 kVar. The system 
data for the 33-bus radial configuration are provided by Baran and Wu 

Fig. 9. Fuzzy membership function of active power losses in residential, com
mercial and industrial loads in 33-bus radial distribution network (RDN) with 
photovoltaic distributed generation (PVDG) integration at bus 6.

Fig. 10. Fuzzy membership function of reactive power losses in residential, 
commercial and industrial loads in 33-bus radial distribution network (RDN) 
with photovoltaic distributed generation (PVDG) integration at bus 6.
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[40]. The network was selected because of its high relevance to 
real-world distribution systems with radial configurations. Load profiles 
were modeled using one-year data from Tenaga Nasional Berhad (TNB) 
and recorded at 15-minute intervals for urban residential, commercial, 
and industrial consumers. The data were segmented by sector minimum 
(Lmin), highest possibility (Lhp), and maximum (Lmax) values, and were 
extracted to construct triangular fuzzy membership functions repre
senting low, medium, and high load conditions. For each load type, the 
PVDG capacity was capped based on the total active power load of the 
bus, according to the constraints described in Section 2.3. The PV gen
eration uncertainty is represented using triangular membership func
tions, which are discussed in Section 3.

3. Results and discussion

3.1. Fuzzy load membership functions

Fig. 5 shows the fuzzy membership functions for residential, com
mercial, and industrial load demands categorized as low (L), medium 
(M), and high (H). These functions were derived from the urban load 
profile data collected in Malaysia. Triangular membership functions 
were used, defined by three key values: minimum (Pmin), highest pos
sibility (Php), and maximum (Pmax) load levels. These fuzzy member
ships were generated by capturing the range from the minimum to 
maximum load occurrences. Random data points from the dataset were 
then used to calculate new fuzzy load data for each bus in the 33-bus 
radial network. These fuzzified load values were applied to each bus 
in the 33-bus radial network, where the F-BFS power flow algorithm was 
used to compute the branch flows, voltage profiles, and total power 
losses.

3.2. F-BFS for the case without PVDG

Three cases were examined: residential, commercial, and industrial 
load profiles for the case without the PVDG allocation. The backward 
and forward propagation iterative equations performed the distribution 
of the power flow. The power in each branch was calculated using 

Fig. 11. Fuzzy membership function of critical voltage in residential, com
mercial and industrial loads in 33-bus radial distribution network (RDN) with 
photovoltaic distributed generation (PVDG) integration at bus 6.

Fig. 12. Fuzzy membership function of PV power generation in residential, 
commercial and industrial loads in 33 bus radial distribution network (RDN) 
with photovoltaic distributed generation (PVDG) at bus 6.

Fig. 13. Convergence rate for the case in residential at high (H) 
load conditions.
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backward propagation. Forward propagation is then used to determine 
the voltage magnitude at each bus.

The fuzzy membership functions for the power loss and voltage 
profiles were derived based on the applied fuzzy rules. Among the load 
types, the residential scenarios exhibited the highest total power losses 
and critical bus voltage magnitudes compared to the other load cate
gories. These membership functions capture the uncertainty in system 
losses and voltage behavior under each load category.

Referring to Figs. 6 and 7, the analysis of total power losses across 
different load sectors reveals distinct patterns and magnitudes, as shown 
by the fuzzy membership functions. Among the sectors, residential loads 
exhibited the highest power losses, with active power losses ranging 

from approximately 20 kW to 530 kW and the corresponding reactive 
power losses ranging from 15 kVar to 356 kVar, corresponding to higher 
degrees of membership and greater uncertainty. The highest member
ship values for active power losses in residential loads were 43.8 kW (L), 
100.1 kW (M), and 143.4 kW (H). Whereas the highest membership 
values for reactive power losses were 29.6 kVar (L), 67.8 kVar (M), and 
97.1 kVar (H). This variability reflects the diverse consumption patterns 
in residential areas and the absence of PVDG support.

In comparison, commercial loads experienced active power losses 
between 2 kW and 600 kW with corresponding reactive power losses 
between 1.4 kVar and 425 kVar. The highest membership values 
occurred at 19.1 kW (L), 42.3 kW (M), and 80.4 kW (H), reflecting 
increased losses during peak business hours. Whereas the highest 
membership values for reactive power losses were 12.9 kVar (L), 28.6 
kVar (M), and 54.5 kVar (H). Effective peak demand management in this 
sector could help reduce losses and improve network stability.

Industrial loads showed active power losses ranging from 6.4 kW to 
430 kW and reactive power losses ranging from 4.3 kVar to 295 kVar. 
Despite the narrower loss range, significant power losses were observed 
during periods of high industrial activity. The highest membership 
values for industrial loads were 21.4 kW (L), 52.3 kW (M), and 94.3 kW 
(H). Whereas the highest membership values for reactive power losses 
were 14.5 kVar (L), 35.4 kVar (M), and 63.9 kVar (H). These findings 
emphasize the distinct contribution of each load sector to overall system 
performance and highlight the importance of implementing sector- 
specific strategies for minimizing losses and enhancing network 
reliability.

Fig. 8 presents the fuzzy representation of the critical voltage mag
nitudes at bus 18, identified as the weakest bus across all load types. The 
voltage range varied by sector, with residential loads showing the 
highest variability owing to diverse consumption behaviors. The critical 
voltage range for residential loads ranged from 0.85 to 0.97 p.u., with 
the highest membership values at 0.96 p.u. (L), 0.93 p.u. (M), and 0.91 
p.u. (H). Commercial loads had a wider range between 0.83 to 0.99 p.u., 
with peak membership values at 0.97 p.u. (L), 0.96 p.u. (M), and 0.94 p. 
u. (H), respectively. Industrial loads showed a slightly narrower range of 
0.86 to 0.98 pu, with corresponding peak values at 0.97 p.u. (L), 0.95 p. 
u. (M), and 0.94 p.u. (H). These voltage uncertainties reflect the char
acteristic consumption patterns and the operating conditions of each 
sector. In the absence of PVDG integration, voltage magnitudes under 
high load conditions fell below the International Electrotechnical 
Commision (IEC)-recommended threshold of 0.95 p.u., indicating po
tential reliability concerns. The membership function analysis 
confirmed that voltage violations were more likely to occur during peak 
load periods, particularly in residential and commercial sectors.

3.3. Results of F-BFS incorporated GWO for the case with PVDG

Three load cases (residential, commercial, and industrial) were 
examined using PVDG allocation. The proposed F-BFS method, inte
grated with the GWO, was used to perform the power flow distribution 
using backward and forward sweep iterations. The GWO assisted in 
optimizing the placement and sizing of PVDG units within the radial 
distribution network. When combined with fuzzy logic, GWO effectively 
addressed uncertainties in both load profiles and PV generation, 
enabling robust decision making under uncertain operating conditions. 
Figs. 9− 11 illustrate the resulting fuzzy membership functions for the 
total system losses and critical bus voltages with PVDG integration at 
bus 6.

Referring to Figs. 9 and 10, the power loss graphs illustrate the 
variations and uncertainty across the residential, commercial, and in
dustrial load sectors, represented by fuzzy membership levels: low (L), 
medium (M), and high (H). A higher membership degree indicates a 
greater likelihood of power loss, reflecting fluctuating consumption 
patterns. The integration of PVDG significantly reduced power losses 
across all sectors, improved voltage profiles, and enhanced system 

Fig. 14. Convergence rate for the case in commercial at high (H) 
load conditions.

Fig. 15. Convergence rate for the case in industrial at high (H) load conditions.

Table 2 
Optimal photovoltaic distributed generation (PVDG) location and size.

Load uncertainty PVDG location (Bus No.) PVDG size (MW)

Residential 6 2.2786
Commercial 6 2.0078
Industrial 6 1.9787
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reliability compared with the base case without PVDG.
In the residential sector, the active and reactive power losses without 

PVDG were 20− 530 kW and 15− 356 kVar (Figs. 6 and 7). After inte
grating PVDG at bus 6, losses were reduced to 11.7− 266.1 kW and 
8.6− 196.0 kVar (Figs. 9 and 10). The highest membership values under 
L, M, and H loads were 23.9 kW + j17.6 kVar, 54.7 kW + j39.9 kVar, and 
103.2 kW + j75.9 kVar, indicating a 20%− 50% reduction in losses at the 
highest membership degree in the fuzzy set.

For the commercial sector, losses without PVDG dropped from 
2− 600 kW and 1.4− 425 kVar (Figs. 6 and 7) to 1.2− 310.7 kW and 
0.8− 229.6 kVar (with PVDG, Figs. 9 and 10). Peak membership values 
at L, M, and H were 10.5 kW + j7.7 kVar, 23 kW + j16.9 kVar, and 43.4 
kW + j31.9 kVar, reflecting about 40%− 46% loss reduction at the 
highest membership degree in the fuzzy set.

The industrial sector experienced the most consistent improvement. 
Without PVDG, losses ranged from 6.4− 433.5 kW and 4.3− 294.2 kVar 
(Figs. 6 and 7). With PVDG losses were reduced to 3.5− 224.4 kW and 
2.6− 164 kVar (Figs. 9 and 10). Maximum membership values under L, 
M, and H loads were 11.7 kW + j8.6 kVar, 28.4 kW + j20.9 kVar, and 
50.7 kW + j37.3 kVar showing about 40%− 46% reductions at the 
highest membership degree in the fuzzy set.

This analysis highlights the value of sector-based uncertainty 
modeling and demonstrates that PVDG integration is highly effective in 
reducing power losses and improving the reliability of distribution sys
tems under uncertain load conditions.

Fig. 11 illustrates the fuzzified critical voltage magnitudes after 
PVDG installation at bus 6 with bus 18, which was identified as the 
weakest node in the network. To highlight the improvement achieved 
through PVDG integration, comparative voltage ranges from the case 
without PVDG (Fig. 8) are also referenced. The voltage range for resi
dential loads improved from 0.85 to 0.97 p.u. (without PVDG) to 0.91 to 

Table 3 
Comparison of active power loss in 33–bus radial distribution network.

Load case Pmin (kW) Php (kW) Pmax (kW)

F-BFS 
(without PV)

F-BFS 
(with PV)

F-BFS 
(without PV)

F-BFS 
(with PV)

F-BFS 
(without PV)

F-BFS 
(with PV)

Residential load
Low 21.429 11.741 43.803 23.926 113.498 60.782
Medium 48.696 26.514 100.107 54.709 271.666 144.042
High 88.877 47.777 143.360 103.165 523.979 266.098
Commercial load
Low 2.049 1.141 19.097 10.482 132.721 72.074
Medium 4.533 2.522 42.269 22.989 324.123 167.352
High 7.928 4.401 80.404 43.371 625.275 310.726
Industrial load
Low 6.408 3.531 21.430 11.741 94.334 50.718
Medium 14.259 7.886 52.277 28.391 227.562 119.308
High 25.693 14.044 94.334 50.718 433.532 224.405

Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep.

Table 4 
Comparison of reactive power loss in 33–bus radial distribution network.

Load 
case

Qmin (kVar) Qhp (kVar) Qmax (kVar)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

Residential load
Low 14.495 8.632 29.638 17.581 76.881 44.709
Medium 32.963 19.495 67.791 39.943 184.201 105.203
High 60.185 35.147 97.117 75.908 355.785 195.551
Commercial load
Low 1.384 0.838 12.918 7.706 89.904 53.769
Medium 3.064 1.852 28.607 16.910 219.859 123.146
High 5.360 3.232 54.435 31.889 424.773 229.613
Industrial load
Low 4.333 2.598 14.495 8.633 63.883 37.302
Medium 9.640 5.791 35.384 20.876 154.257 87.774
High 17.381 10.328 63.883 37.302 294.249 163.973

Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep.

Table 5 
Comparison of critical voltage in 33–bus radial distribution network.

Load 
case

Vmin (p.u.) Vhp (p.u.) Vmax (p.u.)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

F-BFS 
(without 
PV)

F-BFS 
(with 
PV)

Residential load
Low 0.930 0.957 0.956 0.973 0.970 0.981
Medium 0.891 0.933 0.930 0.952 0.954 0.973
High 0.848 0.909 0.907 0.950 0.938 0.963
Commercial load
Low 0.924 0.953 0.971 0.982 0.991 0.995
Medium 0.881 0.928 0.957 0.974 0.986 0.992
High 0.833 0.902 0.941 0.964 0.982 0.989
Industrial load
Low 0.936 0.961 0.969 0.981 0.984 0.990
Medium 0.900 0.939 0.953 0.971 0.975 0.985
High 0.862 0.917 0.936 0.961 0.967 0.980

Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep.

Table 6 
Results of F-BFS-GWO and F-BFS-GA for residential load uncertainty in 33-bus 
radial distribution network.

Output 
(response)

Parameter PV 
configuration

Load case

Low Medium High

Active power 
loss

Pmin (kW) F-BFS-GWO 11.741 26.514 47.777
F-BFS-GA 11.471 26.514 47.777

Php (kW) F-BFS-GWO 23.926 54.709 103.165
F-BFS-GA 23.926 55.578 103.165

Pmax (kW) F-BFS-GWO 60.782 144.042 266.098
F-BFS-GA 60.782 144.595 268.309

Reactive 
power loss

Qmin 
(kVar)

F-BFS-GWO 8.632 19.495 35.147
F-BFS-GA 8.633 19.495 35.147

Qhp 
(kVar)

F-BFS-GWO 17.581 39.943 75.908
F-BFS-GA 17.581 40.876 75.910

Qmax 
(kVar)

F-BFS-GWO 44.709 105.203 195.551
F-BFS-GA 44.709 105.203 196.04

Voltage Vmin (p. 
u.)

F-BFS-GWO 0.957 0.933 0.909
F-BFS-GA 0.957 0.933 0.909

Vhp (p.u.) F-BFS-GWO 0.973 0.959 0.950
F-BFS-GA 0.973 0.959 0.945

Vmax (p. 
u.)

F-BFS-GWO 0.981 0.973 0.963
F-BFS-GA 0.981 0.973 0.963

Note: PV: photovoltaic; F-BFS-GWO: fuzzy-backward/forward sweep-Grey Wolf 
Optimizer; F-BFS-GA: fuzzy-backward/forward sweep-genetic algorithm.

N.M. Saad et al.                                                                                                                                                                                                                                Energy Storage and Saving 4 (2025) 485–499 

494 



0.98 p.u. (with PVDG). For commercial loads, the range improved at 
0.90 to 1.0 p.u. (with PVDG) from 0.83 to 0.99 p.u. (without PVDG). 
Industrial loads, while less sensitive to voltage drops, showed an 
improved range from 0.86 to 0.98 p.u. (without PVDG) to 0.92 to 0.99 p. 
u. (with PVDG).

In terms of highest membership values, residential loads showed 
improvements from 0.96 p.u., 0.93 p.u., and 0.90 p.u. (without PVDG) 
to 0.97 p.u., 0.95 p.u., 0.95 p.u. (with PVDG). For commercial loads, 
critical voltage levels increased slightly from 0.97 p.u., 0.96 p.u., and 
0.94 p.u. to 0.98 p.u., 0.97 p.u., and 0.96 p.u. Industrial loads also 
experienced improvements, with values rising from 0.97 p.u., 0.95 p.u., 
and 0.93 p.u. to 0.98 p.u., 0.97 p.u., and 0.96 p.u.

Overall, the membership function analysis confirmed that PVDG 
integration leads to better voltage regulation across all load sectors. 
These improvements help maintain the voltage within the IEC- 
recommended limits, thereby enhancing the reliability and safety of 
the distribution system under varying load conditions.

Fig. 12 shows the fuzzified value for PV power generation in resi
dential, commercial, and industrial loads with PVDG installed at bus 6. 

The output membership functions reflect the uncertainty of the PV 
output across the radial distribution system. Based on these fuzzy values, 
the optimization algorithm identifies the optimal size and placement of 
PVDG units.

Figs. 13–15 show the convergence rates of the fuzzy GWO algorithm 
under high (H) load conditions for each load sector. The F-BFS method, 
integrated with GWO, effectively optimized PVDG allocation in the 
presence of fuzzy uncertainties. The final optimal PVDG locations and 
sizes are presented in Table 2.

3.4. Comparative analysis

Case studies with and without PV generation were analyzed to 
compare the performance of active and reactive power loss reduction, 
voltage profile improvement, and load uncertainty handling. The loads 
were considered triangular fuzzy numbers. The results indicate that F- 
BFS incorporating GWO is an efficient way to allocate PVDG to decrease 
losses and improve critical voltage magnitudes while considering un
certainty. When handling load uncertainty, the GWO algorithm 

Fig. 16. Boxplots of fuzzy backward/forward sweep-Grey Wolf Optimizer (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for active 
power loss (Ploss) considering fuzzy load uncertainty. (a) Low, (b) medium, (c) high.
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combined with fuzzy logic effectively optimized the PV location and 
improved performance. Fuzzy membership functions allow for adaptive 
responses to varying loads under fuzzy uncertainty.

Owing to the fuzzy load flow considerations in the F-BFS, the active 
and reactive power losses and critical voltages at the critical bus were 
assumed to be three distinct values, as determined by the triangular 
fuzzy membership function described in Section 2. These values repre
sent the lower and upper limits, indicated by the minimum and 
maximum indices, and the highest membership value, indicated by the 
highest probability (hp).

Tables 3 and 4 present a comprehensive comparison between the 
load configurations with (F-BFS-GWO) and without (F-BFS) PVDG sys
tems. The active and reactive power losses in all load sectors decreased 
by adding PVDG to the network. The integration of photovoltaic systems 
has resulted in substantial improvements across multiple performance 
metrics. Moreover, the implementation of PVDG effectively reduced the 
active and reactive power losses, as shown in Tables 2 and 3, thereby 
enhancing energy efficiency. These results underscore the significant 
benefits of PVDG, not only in improving energy reliability, but also in 
promoting sustainable energy practices. Furthermore, the PVDG effec
tively minimized active power losses and reactive power losses, 

demonstrating its role in enhancing operational efficiency and reducing 
energy wastage.

Table 5 presents a comparison of the performance for the critical 
voltage with (F-BFS-GWO) and without PVDG systems (F-BFS).

The incorporation of PVDG systems yielded substantial improve
ments in voltage regulation within the distribution networks. Specif
ically, the integration of PVDG enhances voltage stability, which is 
crucial for maintaining consistent power quality in commercial estab
lishments. These findings highlight the suitability of PVDG, where reli
ability, cost-effectiveness, and environmental sustainability are critical 
considerations. In terms of voltage profile improvement, the case with 
PVDG shows improved voltage profiles with fewer deviations from the 
desired range, thereby enhancing the stability and reliability of the 
network. Without PVDG, voltage profile fluctuations and deviations lead 
to reduced stability, particularly during peak demand periods. The 
voltage profiles in Table 5 show a notable enhancement, ensuring a 
more stable and reliable power supply to the distribution areas.

For further benchmarking of the proposed formulation, the results 
were compared with those obtained using the fuzzy backward/forward 
sweep-genetic algorithm (F-BFS-GA) method to validate the findings of 
the proposed F-BFS-GWO approach. Table 6 presents the results of F- 

Fig. 17. Boxplots of fuzzy backward/forward sweep-Grey Wolf Optimizer (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for 
reactive power loss (Qloss) considering fuzzy load uncertainty (a) Low, (b) Medium, (c) High.
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Fig. 18. Boxplots of fuzzy backward/forward sweep-genetic algorithm (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for voltage 
profiles considering fuzzy load uncertainty. (a) Low, (b) medium, (c) high.
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BFS-GWO and F-BFS-GA for residential load uncertainty in the 33-bus 
radial distribution network. Additionally, Figs. 16–18 illustrate the 
comparative performance of F-BFS-GWO and F-BFS-GA in terms of Ploss, 
Qloss, and voltage profile possibilities under fuzzy load uncertainty sce
narios at low, medium, and high loads. The benchmarking results be
tween F-BFS-GWO and F-BFS-GA focused on the residential urban load 
sector under fuzzy load uncertainty.

The results in Table 6 demonstrate that F-BFS-GWO consistently 
yielded results similar to F-BFS-GA across all evaluated metrics.

Although the overall performance of F-BFS-GWO and GA appeared 
similar, F-BFS-GWO demonstrated notable advantages in terms of active 
power loss (Ploss), reactive power loss (Qloss), and critical voltage regu
lation across all fuzzy load scenarios (low, medium, high). For example, 
F-BFS-GWO yielded slightly lower Pmax values under Medium and High 
load conditions, with Pmax reduced to 144.042 kW and 266.098 kW, 
respectively, compared to 144.595 kW and 268.309 kW obtained by GA. 
In terms of Qloss, Qmin and Qhp remained identical for both methods, 
but F-BFS–GWO produced slightly lower Qmax values under Medium 
and High load conditions. For example, in the medium-load case, Qhp 
was recorded at 39.943 kVar with GWO, compared to 40.876 kVar with 
GA, whereas in the high-load case, Qmax was recorded at 195.551 kVar 
with GWO, compared to 196.04 kVar. Regarding the voltage profiles, 
both optimizers resulted in comparable performance across all fuzzy 
scenarios. However, F-BFS-GWO maintained a slightly tighter voltage 
range under high load conditions, contributing to improved voltage 
regulation and enhanced system stability.

Sensitivity analysis helped to identify the optimal parameter ranges 
that maintained the solution quality under fuzzy uncertainty and 
confirmed the robustness of the GWO in practical applications. To 
further validate the robustness of the proposed F-BFS-GWO method, 
boxplots comparing the performance of F-BFS-GWO and F-BFS-GA in 
terms of Ploss, Qloss, and voltage profiles under fuzzy load uncertainty at 
low, medium, and high loads were developed to visualize the effects of 
parameter variations on the output. In terms of robustness in uncertainty 
modeling, the GWO embedded within the fuzzy framework demon
strated greater flexibility and robustness across fuzzy load scenarios 
owing to its dynamic search behavior. This is evident in Figs. 16–18, 
which focus on the residential urban load for the benchmarking analysis.

Figs. 16 and 17 show the boxplots for the comparison of F-BFS-GA 
and F-BFS-GWO for the results of active and reactive power loss possi
bility considering fuzzy L, M, and H load uncertainties. In the compar
ative analysis between the methods, notable outliers were observed in 
the fuzzy active and reactive power loss results, particularly under high 
(H) and medium (M) load scenarios. These outliers represent suboptimal 
candidate solutions that are generated during the search process. In the 
active power loss (Ploss) and reactive power loss (Qloss) graphs, F-BFS-GA 
exhibited wider variance and more pronounced outliers, especially in 
medium and high fuzzy load conditions. For example, under fuzzy L, M, 
and H load conditions, the GA produced 51, 84, and 131 outliers, 
respectively, with Ploss values that deviated significantly from the cen
tral cluster, indicating a tendency toward premature convergence or 
entrapment in local optima. In contrast, F-BFS-GWO demonstrated 
tighter clustering around the optimal region, with 13, 74, and 124 
outliers for the L, M, and H load conditions, respectively, highlighting its 
consistency in navigating fuzzified solution spaces.

A similar trend was observed for reactive power loss. GA produced 
51, 82, and 130 outliers under the L, M, and H load scenarios, respec
tively, whereas GWO resulted in 13, 76, and 121 fewer outliers, indi
cating more stable convergence and improved robustness in reactive 
power optimization under uncertainty.

In terms of critical voltage profile comparison, as depicted in Fig. 18, 
the outliers in the GA-based results occurred at weaker buses, particu
larly under high load conditions, where some voltage values dropped 
near or below 0.90 p.u., thus violating IEC recommended limits. In 
contrast, GWO produced voltage profiles with smoother transitions and 
fewer deviations, even under peak-load fuzziness, resulting in 

significantly fewer outlier data points.
Overall, the presence of more frequent outliers in the F-BFS-GA re

sults suggested lower robustness to randomness and greater sensitivity 
to parameter tuning. In contrast, F-BFS-GWO demonstrated improved 
flexibility, greater robustness under uncertainty, and more consistent 
convergence behavior across all scenarios. These findings further justify 
the selection of GWO for optimal PVDG planning in fuzzy load envi
ronments. GWO demonstrated faster convergence, fewer outliers, and 
more consistent optimization performance across all fuzzy load sce
narios. It maintained tighter voltage regulation and yielded slightly 
lower active and reactive power losses under medium- and high-load 
conditions. These strengths make the GWO more robust, efficient, and 
suitable for optimal PVDG allocation in uncertain distribution networks. 
The advantages observed make GWO a more suitable optimization 
method for fuzzy power flow applications in uncertain, multi-scenario 
distribution networks.

Although GWO demonstrated strong performance in simulation, its 
implementation in real distribution networks offers promising oppor
tunities for further development and integration. The effectiveness of 
GWO can be enhanced by using real-time data from advanced metering 
infrastructure, supporting dynamic load and photovoltaic generation 
monitoring in operational settings. Its computational efficiency makes it 
suitable for near real-time applications, particularly when supported by 
high-performance computing infrastructure. Furthermore, integrating 
GWO into existing energy management systems can be facilitated 
through software interfacing that complies with regulatory standards 
and safety requirements for grid modernization initiatives.

4. Conclusion

A new hybrid F-BFS framework incorporating the GWO was devel
oped for optimal PVDG allocation in a radial distribution system. The 
proposed method was validated on a 33-bus radial distribution network 
using real urban load profiles for residential, commercial, and industrial 
sectors in Malaysia. By modeling load uncertainties with triangular 
fuzzy membership functions, the approach effectively handled the un
certainties in both loads and PV generation. Uncertainty modeling suc
cessfully captured the typical consumption patterns of different load 
sectors based on usage behaviors. GWO was employed to optimize the 
placement and sizing of the PVDG units, minimize power losses, and 
improve voltage profiles. Under high (H) load conditions, the method 
achieved a total active power loss reduction of approximately 28.04% 
for residential, 46.06% for commercial, and 46.24% for industrial sec
tors with the highest membership degree in the fuzzy set. The voltage 
regulation also improved significantly approaching 1.0 p.u., particularly 
at critical buses. The membership function analysis further revealed that 
the range of power losses and critical voltage magnitudes varies across 
different load types, with residential areas suffering higher losses and 
voltage drops, followed by commercial and industrial loads, especially 
during high-demand periods. The novelty lies in combining fuzzified 
sector-based load modeling with a metaheuristic optimizer, which offers 
enhanced robustness compared to conventional deterministic or prob
abilistic methods. These results highlight the practical potential of this 
method for utilities aiming to improve distribution system efficiency 
under uncertainty. In the future, this framework can be extended to 
more complex networks, with further consideration of system failures, 
operational variations, and equipment-level uncertainties within the 
optimization process.
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