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This research presented a novel framework of fuzzy-backward/forward sweep (F-BFS) power flow to address
uncertainties in radial distribution networks with photovoltaic generation. The F-BFS framework integrated
fuzzified values to model uncertainty parameters in radial distribution network power flow analysis, whereas the
Grey Wolf Optimizer (GWO) was employed to optimize photovoltaic distributed generation (PVDG) placement
and sizing, aiming to minimize power losses and improve voltage deviations. Load uncertainties in the resi-
dential, commercial, and industrial sectors were modeled using triangular fuzzy membership functions derived
from real-world data representing Malaysian urban loads. Simulations on the 33-bus distribution network
validated the approach and demonstrated its effectiveness in handling fuzzy uncertainties across three load
sectors. The findings showed that the proposed F-BFS-GWO method significantly reduced the total power losses
and improved the voltage profiles. Under high load conditions, active power losses were reduced by approxi-
mately 28.04% in residential, 46.06% in commercial, and 46.24% in industrial sectors at the highest membership
degree in the fuzzy set, compared to the scenario without photovoltaic generation. The critical voltage magni-
tudes at the weakest bus under high-load conditions in the fuzzy set also improve significantly, reaching nearly
1.0 p.u. The main contributions of this work are the integration of fuzzy-logic within a BFS framework to manage
multi-sector load uncertainties, coupled with a hybrid F-BFS-GWO algorithm that enhances system planning and
optimization under the risk of uncertainty of photovoltaic generation and load demand.

1. Introduction

Electricity providers are focusing on how to address rising environ-
mental concerns and energy needs. Considering sustainability and
increasing energy demands, solar power plants, especially photovoltaic
distributed generation (PVDG) plants, have been of immense signifi-
cance. Unlike traditional centralized power systems, PVDG decentralizes
power generation and disperses it over numerous areas rather than just
one centralized system. By improving the voltage profiles and opti-
mizing the utilization of system equipment, small generators are con-
nected to distribution systems to meet load demands while profitably
benefiting from reduced power losses [1,2]. The location of PVDGs has a
substantial influence on voltage profiles, power losses, and system
reliability; hence, it is an important component that needs to be
considered in power system planning [3,4]. It is easier to site smaller
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generators, they have lower capital costs and are closer to heavy loads
which reduces transmission costs [5,6]. The installation of PVDG in the
network provides a few advantages, including a reduction in power loss
and reduced energy undelivered cost. This also results in other benefits,
such as lower peak load operating costs, improved voltage profiles, and
higher load factors [7,8].

Despite these advantages, PVDG can cause negative impacts such as
increases in power losses and frequency and voltage deviations. Ac-
cording to the study by Saad et al. [9], when the size of the PVDG is
increased beyond the statutory limits, it results in higher losses. Thus,
the PVDG size must be capped and optimized to efficiently manage the
network within a distribution substation area. Additionally, it is neces-
sary to minimize losses by placing PVDGs in appropriate areas in the
distribution network [10]. Because the problem is nonlinear, it is chal-
lenging to solve it using conventional mathematical methods [11]. The
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Fig. 1. The radial system with photovoltaic distributed generation (PVDG).

Table 1
Fuzzy-logic rules for fuzzy-backward/forward sweep (F-BFS).

Rule No. Condition (inputs) Output (response)

Rule 1 if AFp, . fuzy andAFq, | fuzzy is L then AXp,,... fuszy isL
Rule 2 if AFp,, fuzzy andAFq, | fuzzy is M then AXp,,, fuzzy isM
Rule 3 if AFp,, fuzzy andAFQ, | fuzy is H then AXp,,... fuzzy isH
Rule 4 if AFp, | fuzzy andAFq, | fuzy is L then AXQy ., fuzzy isL
Rule 5 if AFp,, fuzzy andAFq, | fuzy is M then AXqy,, fuzzy is M
Rule 6 if AFp, fuzgy andAFq, | fuzy is H then AXo,,., fuzzy isH
Rule 7 if AFp, . fuzsy andAFq, | fuzzy is L then AXy,, fuzzy isH
Rule 8 if AFp, fuzzy andAFq, | fuzy is M then AXy,, fuzzy is M
Rule 9 if AFp,, fuzzy andAFq, | fuzy is H then AXy,,. fuzy isL

Note: AF is the power parameters in fuzzy number and AX is the state vector.

placement of PVDG in distribution systems is a multi-objective optimi-
zation problem. As per previous studies [12-14], the metaheuristics
optimization-based method can help determine the optimal location and
size of PVDG.

One promising approach is the use of machine learning models such
as neural networks [15,16] and Gaussian-based methods [17,18]. Neu-
ral networks have been applied to forecast the solar power output and
optimize the scheduling of photovoltaic (PV) systems in hybrid energy
setups, significantly improving the performance of smart grids. In
addition, Gaussian- and probability-based methods have been widely
used to deal with uncertainties in renewable energy generation [19],
particularly for solar irradiance prediction, which employs a probabi-
listic approach for modeling the uncertainty in solar radiation and its
impact on PV generation.

Optimization algorithms for determining the lowest or highest
objective functions have been widely explored in the application of
electrical power systems by many researchers. For instance, the opti-
mization method based on electric eel foraging [20] aims to determine

Algorithm 1
Fuzzy-backward/forward sweep (F-BFS) incorporated Grey Wolf Optimizer
(GWO) pseudo-code.

START
Load profile data
Generate fuzzy load model
Set k = number of generated fuzzy data
FOR each number of generated fuzzy data
Load radial distribution data
IF F-BFS power flow not converge
Calculate P;, = Pj,q x fuzzy data in p.u.
Calculate Q, = Qo x fuzzy data in p.u.
Run F-BFS power flow for each membership values
END IF
END FOR
Compute bus voltage and power losses in fuzzy membership
RETURN bus voltage and power losses
END
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the locations of distributed generation (DG) units in distribution net-
works while accounting for several technical conditions, such as circuit
reconfigurations and power factor limits. Kadir et al. [21] developed an
improved gravitational search algorithm to determine the appropriate
placement and sizing for DG units considering load growth. A study by
Fu et al. [22] presented a method using a genetic algorithm (GA) to
determine the appropriate allocation and size of DG in a distribution
network, considering voltage and harmonic limitations, with the
objective of minimizing network losses. Jaalam et al. [23] explored the
metaheuristic approach, emphasizing the role of the Grey Wolf Opti-
mizer (GWO) in enhancing low-voltage ride-through in grid-connected
PV systems.

Previous studies have examined numerous methods for evaluating
renewable generation integration in power systems. According to the
study by Chibani et al. [24], the inclination angle () of the PV system,
along with the presence of fins, also affects the efficiency of solar power
generation. However, owing to the risk of uncertain behavior, such as
the geographical spread and complexity of power systems, including
load demand and renewable generation, accurate system identification
remains a challenge. Power system operators rarely have access to exact
specifications for loads or generation during power flow studies. Thus,
evaluating uncertainty-related input parameters, such as the load and
renewable generation, is crucial. There are two main sources of uncer-
tainty parameters: (1) randomness, which pertains to the variability
characteristic, and (2) incompleteness of parameter values, owing to the
full factors affecting the system being unknown. Uncertainty due to
randomness can be mitigated through statistical analysis. These uncer-
tain parameters are often represented by probabilistic descriptions such
as the probability density function (PDF) [25].

Saad et al. [26] developed a Monte Carlo-embedded hybrid variant
mean-variance mapping optimization for PVDG allocation in a distri-
bution network considering uncertainties in solar irradiance and load
demand. Some studies [27,28] demonstrated the allocation of DG based
on the reliability performance in the distribution network. A Monte
Carlo simulation methodology was employed to evaluate system reli-
ability performance. Yin et al. [29] suggested a chance-constrained
operation model based on probabilistic power balance that accounts
for PV and load uncertainty. Li et al. [30] developed a principal
component analysis and high-dimensional model for probabilistic power
flow and highlighted its advantages over the traditional point-estimate
method approach.

Previous research has effectively employed probability power flow
analysis to enhance the power flow calculations that incorporate un-
certainties. However, inadequate statistical data can result in biased
estimates and inaccurate models [31]. Thus, making assumptions based
on human expertise might provide insight into parameter values that
represent cognitive uncertainties, as opposed to statistical uncertainties.
Fuzzy logic offers a way to model uncertainty by allowing for degrees of
truth rather than classical true or false. Several literature reviews have
successfully utilized fuzzy-logic to improve power-flow calculations,
reflecting its growing applications in power systems.
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Fig. 2. Flowchart for fuzzy-backward/forward sweep (F-BFS) power flow.

Wu et al. [32] demonstrated the effectiveness of random fuzzy theory
in addressing wind turbines, PV generation, and the load uncertainty of
distribution networks. A study by Zaki et al. [33] discussed a fuzzy
approach for fault identification in an active distribution network with
both grid-connected and off-grid PV systems. In another study, Sedaghat
et al. [34] explored fuzzy load uncertainty for optimal DG allocation
based on Biogeography-based Optimization (BBO). The work in Samala
and Kotapuri [35] further adopted fuzzy methodologies by presenting a
hybrid approach that combines a fuzzy logic controller for the fitness
function. In addition, Alkayyali and Tutunji [36] adopted Particle
Swarm Optimization (PSO), and Maher et al. [37] implemented Ant-lion
Optimization (ALO) for optimal DG planning.
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However, while these studies have laid the groundwork for optimi-
zation applications in power systems, they often do not integrate fuzzy
logic with advanced load flow analysis to create a hybrid algorithm
capable of effectively managing uncertainties in load flow with renew-
able energy integration. This gap has inspired the development of new
methods: fuzzy-backward/forward sweep (F-BFS) power flow, which
effectively applies fuzzy logic to represent power system uncertainties in
radial distribution networks. By incorporating fuzzy parameters, these
approaches enhance power flow analysis by accounting for un-
certainties, enabling improved decision-making in the management of
DG systems.

This presents a significant gap that the current research aims to
address by developing a novel framework that combines the F-BFS
power flow with GWO, thereby providing a more comprehensive solu-
tion for PVDG allocation considering uncertainty. The contributions of
this study are as follows.

(1) A possibility approach based on human expertise was employed
in this study to effectively manage the risks of uncertainty in PV
generation and load demands.

(2) This study leveraged the strengths of fuzzy logic and the BFS
power flow method to develop a hybrid F-BFS algorithm. By utilizing
fuzzified values within the F-BFS framework, this approach accom-
modates a wider range of uncertainty parameters in power flows and
losses within distribution networks.

(3) Furthermore, the integration of GWO enhanced the optimization
process, enabling the identification of optimal PVDG locations that
maximize system performance while minimizing losses. This com-
bination not only addresses a gap in the existing literature, but also
contributes significantly to ongoing efforts toward sustainable en-
ergy management. The hybrid approach considers fuzzy un-
certainties and simultaneously optimizes the placement and sizing of
PV systems in distribution networks.

Research focused on radial distribution systems has highlighted the
benefits of the hybrid F-BFS method that incorporates GWO in identi-
fying critical components affected by both PV generation and load un-
certainties. This leads to improved decision-making for network
operators. This study examined three types of fuzzified load uncertainty
models, including residential, commercial and industrial load.

The remainder of this paper is organized as follows. Section 2 ad-
dresses the problem formulation of F-BFS and GWO, covering the
mathematical models, membership functions, objective function, and
constraints, as well as the flowchart of the proposed algorithm. Section 3
details the findings obtained using 33-bus radial distribution systems
and discusses the results. Section 4 provides a summary of the findings.

2. Problem formulation
2.1. BFS power flow

The BFS power flow method was developed by Shirmohammadi et al.
[38], which utilizes fundamental Kirchhoff's laws to solve radial or
weakly meshed power system structures. The problem formulation for
the radial distribution network with PVDG was derived based on Fig. 1.

The BFS power flow was used to analyze the convergence of the
iterative process. In Fig. 1, a branch is connected between buses i and k
(ori+ 1). The effective active and reactive powers flowing through the
link from bus i to bus k (or i + 1) can be calculated in the backward
direction from the last bus, as given by:

P; =Py +Pp + P, i 1)

Q= Qj+1 + QL;< + Quoss, i (2)

where P; and Q; represent the active and reactive power flowing out of
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Algorithm 2
F-BFS incorporated GWO pseudo-code.

START
Initialize fuzzy data
Generate GWO population
Set k = 1 (iteration counter)
Set N_iter = 100 (maximum number of iterations)
WHILE k < N_iter DO
Check for convergence criteria satisfaction
IF convergence criteria are satisfied THEN
Display results (voltage profiles, power losses)
STOP
ELSE
Run fuzzy backward/forward sweep (F-BFS) power flow
Update positions and wolves based on the optimization technique
Calculate distance to prey
Update positions and ensure diversity for optimal location and size of PVDG
k = k + 1 (increment iteration counter)
END IF
END WHILE
Generate results in fuzzy membership bus voltage and power losses.
RETURN bus voltage and power losses
END

the bus, respectively. P;;; and Q;;; are the active and reactive powers at
bus k (or i + 1), R; and X; denote the line resistance and reactance
connecting bus i and bus k (or i + 1), P;, and Q;, represent the active
and reactive load powers at bus k (or i + 1), respectively.

The power loss in the line between buses i and k (or i + 1) is calcu-
lated as follows:

P> \2

Pioss (i, i+1) = ()‘V%Ri 3
p; s i 2

Qloss @i, i+1) = %Xi (4)

The total apparent power 10ss St o (i, i+1) Can be written as:

Nhuses Nbuses
ST, loss (i, i+1) = Z Pioss (i, i+1) +J Z Quoss (i, i+1) 5
bus=1 bus=1

The magnitude and angle of the voltage at each bus are computed in
the forward direction. The current flowing through the branch with the
branch impedance linked between buses i and k (or i + 1) is calculated
as:

(Vigd;) — (Vig1 £6141)

L=
' Zi i1

(6)

The PVDG unit on bus k acts as a negative load. As a result, the active
and reactive powers associated with PVDG penetration can be calculated
as:

Pi:Pi+l+PLk +Plass,i_PPV (7)

Qi = Qi1 + Q. + Quoss, i — Qov 8

The active and reactive power losses in the line between buses i and k
(or i + 1) associated with PVDG penetration can be calculated as:

2 2
P —Ppy k)" + (Qi — Qpv,
Pioss (i, iv1), PV = (P: = Prv. &) \V|2( - v k) R; )
f

(P; — Ppy, k)2 + (Qi — Qpy, k)2
|Vif?

Quoss (i, i+1), Pv = X; 10$)

A deterministic power flow analysis was used to evaluate the oper-
ation of the power system. It calculates the power flow and system states
based on the specified power generation and load demand within a
given network configuration. This analysis involves solving the equa-
tions to determine the power balance of the system. The equations below

Energy Storage and Saving 4 (2025) 485-499

define the network power balance that the power flow distribution must
satisfy:

Npuses Npuses
Z P, generation — |: Z P, load + P, loss | — 0 (11)
bus=1 bus=1

Generate fuzzy data

Initialization of GWO population

N, =100

Fitness evaluation
(objective function and constraints)

l

Run fuzzy-backward/forward sweep load flow

Identify a, B and & wolves

Update positions

l k=k+1_1

iter ¥ Viter

Calculate distance to prey

l

Update positions to encircle prey for optimal location and
size of PVDG

Ensure new positions respect constraints

Display value of best score

l

No. of iteration,
N, =07

Yes

Create the results in fuzzy membership
(voltage profiles, power losess)

End

Fig. 3. Searching process for photovoltaic distributed generation (PVDG)
allocation in the radial distribution network using fuzzy — backward/forward
sweep (F-BFS) incorporated Grey Wolf Optimizer (GWO).
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Npuses Nbuses
Z Qgeneration - |: Z Qioad + Quoss | =0 12)
bus=1 bus=1

2.2. F-BFS power flow

Modern power networks with renewable energy sources, in this case
with PVDG penetrations and fluctuating load demands, require further
consideration because deterministic load flow analysis fails to account
for power system uncertainties. The power flow equations are nonlinear
owing to the power-voltage relationship. Analytical solutions for power
flow analysis are difficult to obtain; therefore, numerical methods are
recommended. Eq. (13) represents a set of nonlinear algebraic equations
in a steady state, where g denotes the set of nonlinear algebraic equa-
tions representing the power balance of the network, x is the state vector
comprising state variables x;, and u is a vector comprising the input
variables. The power flow problem involves determining the solution
(zero) of a set of nonlinear equations, known as power-balance equa-
tions, based on an initial guess (xo).

glx,u)=0 13)

The fuzzy power flow analysis begins with the nonlinear algebraic
Eq. (13) and incorporates power system uncertainty into the input
vector (u). The input vector (u) is divided into two components that
contain deterministic variables and another containing uncertain vari-
ables, labeled as AX which can be defined using a membership function.
The adjustment of AX at each node of the system is proportional to AF.

AX = fuz (AF) (14)

fuz denotes the fuzzy logic function. The fuzzy power flow method is
based on the BFS equation, and the update of the system state is
repeatedly performed via fuzzy logic control, rather than using deter-
ministic load flow approaches. The fuzzy power flow equations can be
derived based on the corrected state of the vector comprising the state
and input variables at each bus in the system.

In this study, loads were categorized into three types: residential,
commercial, and industrial. These loads are represented as fuzzy
numbers. The dataset encompassed urban load data, with the assump-
tion that only weekday daily loads were considered, excluding week-
ends. The collected data included a range from low to maximum load
occurrences, which were used to design the fuzzy-logic membership
functions. These functions are essential for analyzing the load demand
uncertainty and its impact on the power distribution network.

To fuzzify these loads, a fuzzy-logic approach was employed, with
the load values represented by triangular membership functions. The
triangular membership function of a fuzzy set is defined using three
parameters: Pmin, Php, and Pmax. Pmin represents the lowest value in
the dataset. Pmax is the maximum value in the dataset and Php is the
highest possibility of occurrence. The membership function u(x) of a
triangular fuzzy number is determined as follows:

0
X — Pmin If x < Pmin
Php — Pmin IfPmin < x < Pi
PO i JPmin = x < Plp (15)
Pmax — x If Php < x < Pmax
Pmax — Php If x > Pmax
0

Membership functions for each type of load were employed to
determine the degree of membership for any given load within the
defined range. This fuzzification method aids in the management of
uncertainty and fluctuation in load estimates, enabling a more robust
analysis and optimization in the context of DG and load management.
The load data were fuzzified into a corresponding fuzzy signal AFp, fu.,
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and AFg, | fuzy, using three linguistic variables: low (L), medium (M), and
high (H). In fuzzy logic, rules are applied to perform analysis. In this
analysis, nine fuzzy rules were developed. The rules are conditional
statements that use fuzzy logic to support decision making. The com-
plete rule base is outlined as follows (Table 1).

Running the F-BFS algorithm on the distribution network yields
fuzzy values for the power flow through branches and substations.
Consequently, active and reactive power losses are expressed as fuzzy
numbers. The pseudocode for the F-BFS power flow is presented in Al-
gorithm 1, and the corresponding flowchart is shown in Fig. 2.
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2.3. Objective function and constraints

Instead of using a crisp value, the variables were specified as fuzzy
variables. For instance, the active power P; at bus i can be expressed
using a fuzzy set P;, witha membership function pP;, where u denotes the
degree of membership of P; in the fuzzy set.

2.3.1. Objective function

Under equality and inequality constraints, objective functions were
formulated to minimize the total losses of active and reactive power as
well as the voltage deviations at all buses:

Minimize F = [f1, f2, f3]

fl = Z IN)T,loss

buses
bus no=1

Nouses 16
f 2 = Z QT. loss ( )

bus no=1

Nbuses -
f 3 = Z |V1 - Vref }

bus no=1

where ﬁr, losss QT, loss» Vi, and V,ef represent the fuzzy variables corre-
sponding to the total active and reactive power losses, voltage at bus i,
and the reference nominal voltage, respectively.

2.3.2. Network power balance
The optimization must satisfy the active and reactive power balance
equations, incorporating fuzzy-logic, as follows:
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where 131-, (~2i, and V; denote the fuzzy variables representing the active
power, reactive power, and voltage, respectively, at bus i.

2.3.3. Bus voltage boundaries

The voltage boundaries must be maintained within safe operating
limits. Eq. (19) ensures that the voltage magnitude at each bus remains
within an acceptable range.

Vinin < Vil < Vinax i =1, 2,..., n bus

(19)

2.3.4. PVDG operating capacity
The PVDG capacity limit is governed by the inequality constraints

given below. ﬁ;ﬂ,c capacity was set to zero, and the ﬁ’,f';”‘DG capacity was
determined based on the total active load demand. The value of F;%G
varied for each client, depending on the total active power load.

~min ~ ~max
P pvpG < Ppypg < P PVDG (20)
The maximum penetration of PVDG in the distribution system must

satisfy the following condition:

n n
ZPPVDG. i < ZPLoad. pi=1, 2, nbus 21
o1 -1
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Fig. 10. Fuzzy membership function of reactive power losses in residential,
commercial and industrial loads in 33-bus radial distribution network (RDN)
with photovoltaic distributed generation (PVDG) integration at bus 6.

2.3.5. PVDG location
Except for the slack bus, the PVDG site can be connected to any bus in
the network.

2 < PVDGy, < max No. of buses (22)

2.4. F-BFS incorporated GWO

GWO was proposed by Mirjalili et al. [39]. The algorithm is based on
the social hierarchy of grey wolves. In a wolf pack, members respond to
a dominant social order with search agents adjusting their positions
based on the best performance. Alpha (o) is the leader of the gry wolves.
It determines all decisions. All the other pack members must obey these
commands. Beta (f) is the second-highest rank, assisting Alpha in de-
cision making and enforcing its commands. Delta (5) provides a feed-
back channel for wolf reporting. Finally, omega () is the follower and
has the lowest ranking in the hierarchy.

In this study, the GWO was initialized with 10 numbers of search
agents and a maximum iteration of 100. The pseudocode for the search
process used for PVDG allocation in the radial distribution network is
provided in Algorithm 2. A flowchart representing the optimization
process for PVDG placement is shown in Fig. 3.

2.5. Test case: 33-bus radial distribution network (RDN)

Fig. 4 illustrates the topology of a standard 33-bus RDN. The peak
load demands for this test case were 3,715 and 2,300 kVar. The system
data for the 33-bus radial configuration are provided by Baran and Wu
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Fig. 11. Fuzzy membership function of critical voltage in residential, com-
mercial and industrial loads in 33-bus radial distribution network (RDN) with
photovoltaic distributed generation (PVDG) integration at bus 6.

[40]. The network was selected because of its high relevance to
real-world distribution systems with radial configurations. Load profiles
were modeled using one-year data from Tenaga Nasional Berhad (TNB)
and recorded at 15-minute intervals for urban residential, commercial,
and industrial consumers. The data were segmented by sector minimum
(Lmin), highest possibility (Lyp), and maximum (Lmax) values, and were
extracted to construct triangular fuzzy membership functions repre-
senting low, medium, and high load conditions. For each load type, the
PVDG capacity was capped based on the total active power load of the
bus, according to the constraints described in Section 2.3. The PV gen-
eration uncertainty is represented using triangular membership func-
tions, which are discussed in Section 3.

3. Results and discussion
3.1. Fuzzy load membership functions

Fig. 5 shows the fuzzy membership functions for residential, com-
mercial, and industrial load demands categorized as low (L), medium
(M), and high (H). These functions were derived from the urban load
profile data collected in Malaysia. Triangular membership functions
were used, defined by three key values: minimum (Pmin), highest pos-
sibility (Php), and maximum (Pmax) load levels. These fuzzy member-
ships were generated by capturing the range from the minimum to
maximum load occurrences. Random data points from the dataset were
then used to calculate new fuzzy load data for each bus in the 33-bus
radial network. These fuzzified load values were applied to each bus
in the 33-bus radial network, where the F-BFS power flow algorithm was
used to compute the branch flows, voltage profiles, and total power
losses.
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Fig. 13. Convergence rate for the case in residential at high (H)

load conditions.

3.2. F-BFS for the case without PVDG

Three cases were examined: residential, commercial, and industrial
load profiles for the case without the PVDG allocation. The backward
and forward propagation iterative equations performed the distribution
of the power flow. The power in each branch was calculated using
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Table 2
Optimal photovoltaic distributed generation (PVDG) location and size.

Load uncertainty PVDG location (Bus No.) PVDG size (MW)

Residential 6 2.2786
Commercial 6 2.0078
Industrial 6 1.9787

backward propagation. Forward propagation is then used to determine
the voltage magnitude at each bus.

The fuzzy membership functions for the power loss and voltage
profiles were derived based on the applied fuzzy rules. Among the load
types, the residential scenarios exhibited the highest total power losses
and critical bus voltage magnitudes compared to the other load cate-
gories. These membership functions capture the uncertainty in system
losses and voltage behavior under each load category.

Referring to Figs. 6 and 7, the analysis of total power losses across
different load sectors reveals distinct patterns and magnitudes, as shown
by the fuzzy membership functions. Among the sectors, residential loads
exhibited the highest power losses, with active power losses ranging
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from approximately 20 kW to 530 kW and the corresponding reactive
power losses ranging from 15 kVar to 356 kVar, corresponding to higher
degrees of membership and greater uncertainty. The highest member-
ship values for active power losses in residential loads were 43.8 kW (L),
100.1 kW (M), and 143.4 kW (H). Whereas the highest membership
values for reactive power losses were 29.6 kVar (L), 67.8 kVar (M), and
97.1 kVar (H). This variability reflects the diverse consumption patterns
in residential areas and the absence of PVDG support.

In comparison, commercial loads experienced active power losses
between 2 kW and 600 kW with corresponding reactive power losses
between 1.4 kVar and 425 kVar. The highest membership values
occurred at 19.1 kW (L), 42.3 kW (M), and 80.4 kW (H), reflecting
increased losses during peak business hours. Whereas the highest
membership values for reactive power losses were 12.9 kVar (L), 28.6
kVar (M), and 54.5 kVar (H). Effective peak demand management in this
sector could help reduce losses and improve network stability.

Industrial loads showed active power losses ranging from 6.4 kW to
430 kW and reactive power losses ranging from 4.3 kVar to 295 kVar.
Despite the narrower loss range, significant power losses were observed
during periods of high industrial activity. The highest membership
values for industrial loads were 21.4 kW (L), 52.3 kW (M), and 94.3 kW
(H). Whereas the highest membership values for reactive power losses
were 14.5 kVar (L), 35.4 kVar (M), and 63.9 kVar (H). These findings
emphasize the distinct contribution of each load sector to overall system
performance and highlight the importance of implementing sector-
specific strategies for minimizing losses and enhancing network
reliability.

Fig. 8 presents the fuzzy representation of the critical voltage mag-
nitudes at bus 18, identified as the weakest bus across all load types. The
voltage range varied by sector, with residential loads showing the
highest variability owing to diverse consumption behaviors. The critical
voltage range for residential loads ranged from 0.85 to 0.97 p.u., with
the highest membership values at 0.96 p.u. (L), 0.93 p.u. (M), and 0.91
p-u. (H). Commercial loads had a wider range between 0.83 to 0.99 p.u.,
with peak membership values at 0.97 p.u. (L), 0.96 p.u. (M), and 0.94 p.
u. (H), respectively. Industrial loads showed a slightly narrower range of
0.86 to 0.98 pu, with corresponding peak values at 0.97 p.u. (L), 0.95 p.
u. (M), and 0.94 p.u. (H). These voltage uncertainties reflect the char-
acteristic consumption patterns and the operating conditions of each
sector. In the absence of PVDG integration, voltage magnitudes under
high load conditions fell below the International Electrotechnical
Commision (IEC)-recommended threshold of 0.95 p.u., indicating po-
tential reliability concerns. The membership function analysis
confirmed that voltage violations were more likely to occur during peak
load periods, particularly in residential and commercial sectors.

3.3. Results of F-BFS incorporated GWO for the case with PVDG

Three load cases (residential, commercial, and industrial) were
examined using PVDG allocation. The proposed F-BFS method, inte-
grated with the GWO, was used to perform the power flow distribution
using backward and forward sweep iterations. The GWO assisted in
optimizing the placement and sizing of PVDG units within the radial
distribution network. When combined with fuzzy logic, GWO effectively
addressed uncertainties in both load profiles and PV generation,
enabling robust decision making under uncertain operating conditions.
Figs. 9—11 illustrate the resulting fuzzy membership functions for the
total system losses and critical bus voltages with PVDG integration at
bus 6.

Referring to Figs. 9 and 10, the power loss graphs illustrate the
variations and uncertainty across the residential, commercial, and in-
dustrial load sectors, represented by fuzzy membership levels: low (L),
medium (M), and high (H). A higher membership degree indicates a
greater likelihood of power loss, reflecting fluctuating consumption
patterns. The integration of PVDG significantly reduced power losses
across all sectors, improved voltage profiles, and enhanced system
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Table 3
Comparison of active power loss in 33-bus radial distribution network.
Load case Pmin (kW) Php (kW) Pmax (kW)
F-BFS F-BFS F-BFS F-BFS F-BFS F-BFS
(without PV) (with PV) (without PV) (with PV) (without PV) (with PV)
Residential load
Low 21.429 11.741 43.803 23.926 113.498 60.782
Medium 48.696 26.514 100.107 54.709 271.666 144.042
High 88.877 47.777 143.360 103.165 523.979 266.098
Commercial load
Low 2.049 1.141 19.097 10.482 132.721 72.074
Medium 4.533 2.522 42.269 22.989 324.123 167.352
High 7.928 4.401 80.404 43.371 625.275 310.726
Industrial load
Low 6.408 3.531 21.430 11.741 94.334 50.718
Medium 14.259 7.886 52.277 28.391 227.562 119.308
High 25.693 14.044 94.334 50.718 433.532 224.405
Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep.
Table 4 Table 6
Comparison of reactive power loss in 33-bus radial distribution network. Results of F-BFS-GWO and F-BFS-GA for residential load uncertainty in 33-bus
Load Qmin (kVar) Qhp (kvar) Omax (kVar) radial distribution network.
case F-BFS F-BFS  F-BFS F-BFS  F-BFS F-BFS Output Parameter PV i Load case
(without (with (without (with (without (with (response) configuration Low Medium  High
PV) PV) PV) PV) PV) PV) N
Active power Pmin (kW) F-BFS-GWO 11.741 26.514 47.777
Residential load loss F-BFS-GA 11.471 26.514 47.777
Low 14.495 8.632 29.638 17.581 76.881 44.709 Php (kW) F-BFS-GWO 23.926 54.709 103.165
Medium 32.963 19.495 67.791 39.943 184.201 105.203 F-BFS-GA 23.926 55.578 103.165
High 60.185 35.147 97.117 75.908 355.785 195.551 Pmax (kW) F-BFS-GWO 60.782 144.042 266.098
Commercial load F-BFS-GA 60.782  144.595  268.309
Low 1.384 0.838 12.918 7.706 89.904 53.769 Reactive Qmin F-BFS-GWO 8.632 19.495 35.147
Medium 3.064 1.852 28.607 16.910 219.859 123.146 power loss (kVar) F-BFS-GA 8.633 19.495 35.147
High 5.360 3.232 54.435 31.889 424.773 229.613 Qhp F-BFS-GWO 17.581 39.943 75.908
Industrial load (kVar) F-BFS-GA 17.581 40.876 75.910
Low 4.333 2.598 14.495 8.633 63.883 37.302 Qmax F-BFS-GWO 44.709 105.203 195.551
Medium 9.640 5.791 35.384 20.876 154.257 87.774 (kVar) F-BFS-GA 44.709 105.203 196.04
High 17.381 10.328 63.883 37.302 294.249 163.973 Voltage Vmin (p. F-BFS-GWO 0.957 0.933 0.909
- — : u.) F-BFS-GA 0.957  0.933 0.909
Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep. Vhp (p.u.) F-BFS-GWO 0.973 0.959 0.950
F-BFS-GA 0.973 0.959 0.945
Vmax (p. F-BFS-GWO 0.981 0.973 0.963
Table 5 u.) F-BFS-GA 0.981 0.973 0.963
C i f critical voltage in 33-b dial distributi twork. .
omparison of crifica’ votage i us radial distribution networ Note: PV: photovoltaic; F-BFS-GWO: fuzzy-backward/forward sweep-Grey Wolf
Load Vmin (p.u.) Vhp (p.u.) Vmax (p.u.) Optimizer; F-BFS-GA: fuzzy-backward/forward sweep-genetic algorithm.
case F-BFS FBFS  FBFS FBFS  FBFS F-BFS
(without (with (without (with (without (with For the commercial sector, losses without PVDG dropped from
) ) ) g V) g 2-600 kW and 1.4—425 kVar (Figs. 6 and 7) to 1.2—310.7 kW and
Residential load 0.8—229.6 kVar (with PVDG, Figs. 9 and 10). Peak membership values
LMOV; gzgg ggg; 3223 gg;g gg;g ggg; atL, M, and H were 10.5 kW + j7.7 kVar, 23 kW + j16.9 kVar, and 43.4
edium R . . . 3 A . . 0/ 0 .
High 0.848 0.909 0.907 0.950 0.938 0.963 kW + j31.9 kVarz reﬂectmg about 40%—46% loss reduction at the
Commercial load highest membership degree in the fuzzy set.
Low 0.924 0.953 0.971 0.982 0.991 0.995 The industrial sector experienced the most consistent improvement.
Medium  0.881 0.928  0.957 0.974  0.986 0.992 Without PVDG, losses ranged from 6.4—433.5 kW and 4.3—294.2 kVar
F‘gh il 1 0:333 0902 0.941 0.964  0.982 0.989 (Figs. 6 and 7). With PVDG losses were reduced to 3.5—224.4 kW and
ndustrial loat . . .
Low 0.936 0.961 0.969 0.981 0.984 0.990 2.6—164 kVar (Figs. 9 and 10). Maleum membership Yalues under L,
Medium  0.900 0.939 0.953 0.971 0.975 0.985 M, and H loads were 11.7 kW + j8.6 kVar, 28.4 kW + j20.9 kVar, and
High 0.862 0.917  0.936 0.961 0.967 0.980 50.7 kW + j37.3 kVar showing about 40%—46% reductions at the

Note: PV: photovoltaic; F-BFS: fuzzy-backward/forward sweep.

reliability compared with the base case without PVDG.

In the residential sector, the active and reactive power losses without
PVDG were 20—530 kW and 15—356 kVar (Figs. 6 and 7). After inte-
grating PVDG at bus 6, losses were reduced to 11.7—266.1 kW and
8.6—196.0 kVar (Figs. 9 and 10). The highest membership values under
L, M, and H loads were 23.9 kW + j17.6 kVar, 54.7 kW + j39.9 kVar, and
103.2kW + j75.9 kVar, indicating a 20%—50% reduction in losses at the
highest membership degree in the fuzzy set.
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highest membership degree in the fuzzy set.

This analysis highlights the value of sector-based uncertainty
modeling and demonstrates that PVDG integration is highly effective in
reducing power losses and improving the reliability of distribution sys-
tems under uncertain load conditions.

Fig. 11 illustrates the fuzzified critical voltage magnitudes after
PVDG installation at bus 6 with bus 18, which was identified as the
weakest node in the network. To highlight the improvement achieved
through PVDG integration, comparative voltage ranges from the case
without PVDG (Fig. 8) are also referenced. The voltage range for resi-
dential loads improved from 0.85 to 0.97 p.u. (without PVDG) to 0.91 to
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Fig. 16. Boxplots of fuzzy backward/forward sweep-Grey Wolf Optimizer (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for active
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0.98 p.u. (with PVDG). For commercial loads, the range improved at
0.90 to 1.0 p.u. (with PVDG) from 0.83 to 0.99 p.u. (without PVDG).
Industrial loads, while less sensitive to voltage drops, showed an
improved range from 0.86 to 0.98 p.u. (without PVDG) to 0.92 to 0.99 p.
u. (with PVDG).

In terms of highest membership values, residential loads showed
improvements from 0.96 p.u., 0.93 p.u., and 0.90 p.u. (without PVDG)
to 0.97 p.u., 0.95 p.u., 0.95 p.u. (with PVDG). For commercial loads,
critical voltage levels increased slightly from 0.97 p.u., 0.96 p.u., and
0.94 p.u. to 0.98 p.u., 0.97 p.u., and 0.96 p.u. Industrial loads also
experienced improvements, with values rising from 0.97 p.u., 0.95 p.u.,
and 0.93 p.u. to 0.98 p.u., 0.97 p.u., and 0.96 p.u.

Overall, the membership function analysis confirmed that PVDG
integration leads to better voltage regulation across all load sectors.
These improvements help maintain the voltage within the IEC-
recommended limits, thereby enhancing the reliability and safety of
the distribution system under varying load conditions.

Fig. 12 shows the fuzzified value for PV power generation in resi-
dential, commercial, and industrial loads with PVDG installed at bus 6.
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The output membership functions reflect the uncertainty of the PV
output across the radial distribution system. Based on these fuzzy values,
the optimization algorithm identifies the optimal size and placement of
PVDG units.

Figs. 13-15 show the convergence rates of the fuzzy GWO algorithm
under high (H) load conditions for each load sector. The F-BFS method,
integrated with GWO, effectively optimized PVDG allocation in the
presence of fuzzy uncertainties. The final optimal PVDG locations and
sizes are presented in Table 2.

3.4. Comparative analysis

Case studies with and without PV generation were analyzed to
compare the performance of active and reactive power loss reduction,
voltage profile improvement, and load uncertainty handling. The loads
were considered triangular fuzzy numbers. The results indicate that F-
BFS incorporating GWO is an efficient way to allocate PVDG to decrease
losses and improve critical voltage magnitudes while considering un-
certainty. When handling load uncertainty, the GWO algorithm



N.M. Saad et al.

Energy Storage and Saving 4 (2025) 485-499

45 i
40t T
i
i
35+ |
[
=30r :
p [
X |
;25 !
c :
20 -
15
i
L !
10 L
1
L: GA
10 5
100 | i z
| |
90 I I
| 1
| |
80 I |
! !
s 70 ! !
g | |
X H
~ 60f ! !
o : ;
50
40
30+ : |
[ i
20| — —
| |
M: GA M: GWO

(@)

200

180

160

140

120

hoss (KVar)

60

40

Fig. 17. Boxplots of fuzzy backward/forward sweep-Grey Wolf Optimizer (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for
reactive power loss (Qjoss) considering fuzzy load uncertainty (a) Low, (b) Medium, (c) High.

combined with fuzzy logic effectively optimized the PV location and
improved performance. Fuzzy membership functions allow for adaptive
responses to varying loads under fuzzy uncertainty.

Owing to the fuzzy load flow considerations in the F-BFS, the active
and reactive power losses and critical voltages at the critical bus were
assumed to be three distinct values, as determined by the triangular
fuzzy membership function described in Section 2. These values repre-
sent the lower and upper limits, indicated by the minimum and
maximum indices, and the highest membership value, indicated by the
highest probability (hp).

Tables 3 and 4 present a comprehensive comparison between the
load configurations with (F-BFS-GWO) and without (F-BFS) PVDG sys-
tems. The active and reactive power losses in all load sectors decreased
by adding PVDG to the network. The integration of photovoltaic systems
has resulted in substantial improvements across multiple performance
metrics. Moreover, the implementation of PVDG effectively reduced the
active and reactive power losses, as shown in Tables 2 and 3, thereby
enhancing energy efficiency. These results underscore the significant
benefits of PVDG, not only in improving energy reliability, but also in
promoting sustainable energy practices. Furthermore, the PVDG effec-
tively minimized active power losses and reactive power losses,
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demonstrating its role in enhancing operational efficiency and reducing
energy wastage.

Table 5 presents a comparison of the performance for the critical
voltage with (F-BFS-GWO) and without PVDG systems (F-BES).

The incorporation of PVDG systems yielded substantial improve-
ments in voltage regulation within the distribution networks. Specif-
ically, the integration of PVDG enhances voltage stability, which is
crucial for maintaining consistent power quality in commercial estab-
lishments. These findings highlight the suitability of PVDG, where reli-
ability, cost-effectiveness, and environmental sustainability are critical
considerations. In terms of voltage profile improvement, the case with
PVDG shows improved voltage profiles with fewer deviations from the
desired range, thereby enhancing the stability and reliability of the
network. Without PVDG, voltage profile fluctuations and deviations lead
to reduced stability, particularly during peak demand periods. The
voltage profiles in Table 5 show a notable enhancement, ensuring a
more stable and reliable power supply to the distribution areas.

For further benchmarking of the proposed formulation, the results
were compared with those obtained using the fuzzy backward/forward
sweep-genetic algorithm (F-BFS-GA) method to validate the findings of
the proposed F-BFS-GWO approach. Table 6 presents the results of F-
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Fig. 18. Boxplots of fuzzy backward/forward sweep-genetic algorithm (F-BFS-GWO) and fuzzy backward/forward sweep-genetic algorithm (F-BFS-GA) for voltage
profiles considering fuzzy load uncertainty. (a) Low, (b) medium, (c) high.
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BFS-GWO and F-BFS-GA for residential load uncertainty in the 33-bus
radial distribution network. Additionally, Figs. 16-18 illustrate the
comparative performance of F-BFS-GWO and F-BFS-GA in terms of Pjygs,
Qloss, and voltage profile possibilities under fuzzy load uncertainty sce-
narios at low, medium, and high loads. The benchmarking results be-
tween F-BFS-GWO and F-BFS-GA focused on the residential urban load
sector under fuzzy load uncertainty.

The results in Table 6 demonstrate that F-BFS-GWO consistently
yielded results similar to F-BFS-GA across all evaluated metrics.

Although the overall performance of F-BFS-GWO and GA appeared
similar, F-BFS-GWO demonstrated notable advantages in terms of active
power loss (Pyoss), reactive power loss (Qjoss), and critical voltage regu-
lation across all fuzzy load scenarios (low, medium, high). For example,
F-BFS-GWO yielded slightly lower Pmax values under Medium and High
load conditions, with Pmax reduced to 144.042 kW and 266.098 kW,
respectively, compared to 144.595 kW and 268.309 kW obtained by GA.
In terms of Qjess, Qmin and Qhp remained identical for both methods,
but F-BFS-GWO produced slightly lower Qmax values under Medium
and High load conditions. For example, in the medium-load case, Qhp
was recorded at 39.943 kVar with GWO, compared to 40.876 kVar with
GA, whereas in the high-load case, Qmax was recorded at 195.551 kVar
with GWO, compared to 196.04 kVar. Regarding the voltage profiles,
both optimizers resulted in comparable performance across all fuzzy
scenarios. However, F-BFS-GWO maintained a slightly tighter voltage
range under high load conditions, contributing to improved voltage
regulation and enhanced system stability.

Sensitivity analysis helped to identify the optimal parameter ranges
that maintained the solution quality under fuzzy uncertainty and
confirmed the robustness of the GWO in practical applications. To
further validate the robustness of the proposed F-BFS-GWO method,
boxplots comparing the performance of F-BFS-GWO and F-BFS-GA in
terms of Pjogs, Qioss, and voltage profiles under fuzzy load uncertainty at
low, medium, and high loads were developed to visualize the effects of
parameter variations on the output. In terms of robustness in uncertainty
modeling, the GWO embedded within the fuzzy framework demon-
strated greater flexibility and robustness across fuzzy load scenarios
owing to its dynamic search behavior. This is evident in Figs. 16-18,
which focus on the residential urban load for the benchmarking analysis.

Figs. 16 and 17 show the boxplots for the comparison of F-BFS-GA
and F-BFS-GWO for the results of active and reactive power loss possi-
bility considering fuzzy L, M, and H load uncertainties. In the compar-
ative analysis between the methods, notable outliers were observed in
the fuzzy active and reactive power loss results, particularly under high
(H) and medium (M) load scenarios. These outliers represent suboptimal
candidate solutions that are generated during the search process. In the
active power loss (Pjoss) and reactive power loss (Qyoss) graphs, F-BFS-GA
exhibited wider variance and more pronounced outliers, especially in
medium and high fuzzy load conditions. For example, under fuzzy L, M,
and H load conditions, the GA produced 51, 84, and 131 outliers,
respectively, with P, values that deviated significantly from the cen-
tral cluster, indicating a tendency toward premature convergence or
entrapment in local optima. In contrast, F-BFS-GWO demonstrated
tighter clustering around the optimal region, with 13, 74, and 124
outliers for the L, M, and H load conditions, respectively, highlighting its
consistency in navigating fuzzified solution spaces.

A similar trend was observed for reactive power loss. GA produced
51, 82, and 130 outliers under the L, M, and H load scenarios, respec-
tively, whereas GWO resulted in 13, 76, and 121 fewer outliers, indi-
cating more stable convergence and improved robustness in reactive
power optimization under uncertainty.

In terms of critical voltage profile comparison, as depicted in Fig. 18,
the outliers in the GA-based results occurred at weaker buses, particu-
larly under high load conditions, where some voltage values dropped
near or below 0.90 p.u., thus violating IEC recommended limits. In
contrast, GWO produced voltage profiles with smoother transitions and
fewer deviations, even under peak-load fuzziness, resulting in
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significantly fewer outlier data points.

Overall, the presence of more frequent outliers in the F-BFS-GA re-
sults suggested lower robustness to randomness and greater sensitivity
to parameter tuning. In contrast, F-BFS-GWO demonstrated improved
flexibility, greater robustness under uncertainty, and more consistent
convergence behavior across all scenarios. These findings further justify
the selection of GWO for optimal PVDG planning in fuzzy load envi-
ronments. GWO demonstrated faster convergence, fewer outliers, and
more consistent optimization performance across all fuzzy load sce-
narios. It maintained tighter voltage regulation and yielded slightly
lower active and reactive power losses under medium- and high-load
conditions. These strengths make the GWO more robust, efficient, and
suitable for optimal PVDG allocation in uncertain distribution networks.
The advantages observed make GWO a more suitable optimization
method for fuzzy power flow applications in uncertain, multi-scenario
distribution networks.

Although GWO demonstrated strong performance in simulation, its
implementation in real distribution networks offers promising oppor-
tunities for further development and integration. The effectiveness of
GWO can be enhanced by using real-time data from advanced metering
infrastructure, supporting dynamic load and photovoltaic generation
monitoring in operational settings. Its computational efficiency makes it
suitable for near real-time applications, particularly when supported by
high-performance computing infrastructure. Furthermore, integrating
GWO into existing energy management systems can be facilitated
through software interfacing that complies with regulatory standards
and safety requirements for grid modernization initiatives.

4. Conclusion

A new hybrid F-BFS framework incorporating the GWO was devel-
oped for optimal PVDG allocation in a radial distribution system. The
proposed method was validated on a 33-bus radial distribution network
using real urban load profiles for residential, commercial, and industrial
sectors in Malaysia. By modeling load uncertainties with triangular
fuzzy membership functions, the approach effectively handled the un-
certainties in both loads and PV generation. Uncertainty modeling suc-
cessfully captured the typical consumption patterns of different load
sectors based on usage behaviors. GWO was employed to optimize the
placement and sizing of the PVDG units, minimize power losses, and
improve voltage profiles. Under high (H) load conditions, the method
achieved a total active power loss reduction of approximately 28.04%
for residential, 46.06% for commercial, and 46.24% for industrial sec-
tors with the highest membership degree in the fuzzy set. The voltage
regulation also improved significantly approaching 1.0 p.u., particularly
at critical buses. The membership function analysis further revealed that
the range of power losses and critical voltage magnitudes varies across
different load types, with residential areas suffering higher losses and
voltage drops, followed by commercial and industrial loads, especially
during high-demand periods. The novelty lies in combining fuzzified
sector-based load modeling with a metaheuristic optimizer, which offers
enhanced robustness compared to conventional deterministic or prob-
abilistic methods. These results highlight the practical potential of this
method for utilities aiming to improve distribution system efficiency
under uncertainty. In the future, this framework can be extended to
more complex networks, with further consideration of system failures,
operational variations, and equipment-level uncertainties within the
optimization process.
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