
International Journal of Advances in Intelligent Informatics ISSN 2442-6571 

Vol. 11, No. 2, May 2025, pp. 275-291  275 

       https://doi.org/10.26555/ijain.v11i2.1529     http://ijain.org         ijain@uad.ac.id  

Privacy-preserving U-Net variants with pseudo-labeling for 

radiolucent lesion segmentation in dental CBCT 

Amelia Ritahani Ismail 

a,1,*

, Faris Farhan Azlan 

a,2

, Khairul Akmal Noormaizan 

a,3

, Nurul Afiqa 

a,4

, 

Syed Qamrun Nisa 

b,5

, Ahmad Badaruddin Ghazali 

c,6

, Andri Pranolo 

d,7

, Shoffan Saifullah 

e,f,8

 

a Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia 

b Faculty of Computing and Informatics (FCI), Multimedia University (MMU), Cyberjaya campus, Selangor, Malaysia 

c Department of Oral Maxillofacial Surgery & Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, Pahang, Malaysia 

d Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia  

e Department of Informatics, Universtias Pembangunan Nasional Veteran Yogyakarta, Yogyakarta, Indonesia 
f Faculty of Computer Science, AGH University of Krakow, Krakow, Poland 
1 amelia@iium.edu.my; 2 farisfarhan01@gmail.com; 3 khairullakmall01@gmail.com; 4 n.afiqa@live.iium.edu.my; 5 qamrunnisa@mmu.edu.my;  
6 badruddinghazali@iium.edu.my; 7 andri.pranolo@tif.uad.ac.id; 8 shoffans@upnyk.ac.id 
* corresponding author 

 

1. Introduction 
Dental radiolucent lesions are pathological regions that appear dark or lucent on radiographic 

imaging, often signaling the presence of radicular cysts, dentigerous cysts, keratocysts, or other 

potentially aggressive conditions [1], [2]. Accurate identification and segmentation of these lesions are 

critical for diagnosis, treatment planning, and long-term patient outcomes. Misdiagnosis or incomplete 

detection can lead to recurrence, infection, or malignant progression. Traditionally, lesion localization 

has relied on manual segmentation a time consuming, expertise driven process susceptible to inter-
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 Accurate segmentation of radiolucent lesions in dental Cone Beam 

Computed Tomography (CBCT) is vital for enhancing diagnostic reliability 

and reducing the burden on clinicians. This study proposes a privacy 

preserving segmentation framework leveraging multiple U-Net variants U-

Net, DoubleU-Net, U2-Net, and Spatial Attention U-Net (SA-UNet) to 

address challenges posed by limited labeled data and patient confidentiality 

concerns. To safeguard sensitive information, Differential Privacy 

Stochastic Gradient Descent (DP-SGD) is integrated using TensorFlow-

Privacy, achieving a privacy budget of ε ≈ 1.5 with minimal performance 

degradation. Among the evaluated architectures, U2-Net demonstrates 

superior segmentation performance with a Dice coefficient of 0.833 and an 

Intersection over Union (IoU) of 0.881, showing less than 2% reduction 

under privacy constraints. To mitigate data annotation scarcity, a pseudo-

labeling approach is implemented within an MLOps pipeline, enabling 

semi-supervised learning from unlabeled CBCT images. Over three 

iterative refinements, the pseudo labeling strategy reduces validation loss 

by 14.4% and improves Dice score by 2.6%, demonstrating its 

effectiveness. Additionally, comparative evaluations reveal that SA-UNet 

offers competitive accuracy with faster inference time (22 ms per slice), 

making it suitable for low-resource deployments. The proposed approach 

presents a scalable and privacy-compliant framework for radiolucent lesion 

segmentation, supporting clinical decision-making in real-world dental 

imaging scenarios.  
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observer variability. Cone-Beam Computed Tomography (CBCT), while offering 3D imaging advantages 

in dental diagnostics, introduces additional complexities such as low contrast, overlapping anatomical 

structures, and motion-induced artifacts that further challenge accurate annotation [3]. 

In recent years, Artificial Intelligence (AI) and deep learning particularly Convolutional Neural 

Networks (CNNs) have achieved transformative results in medical imaging tasks, including retinal disease 

detection, pulmonary nodule identification, and brain tumor segmentation. Among segmentation 

models, U-Net and its architectural variants have emerged as leading approaches for biomedical image 

analysis due to their encoder decoder structure and ability to perform pixel-level prediction with high 

localization accuracy [4], [5]. However, the application of these architectures to dental CBCT especially 

for radiolucent lesion segmentation remains underexplored. Unique issues such as high inter slice 

variability, fine-grained lesion boundaries, and noise patterns in CBCT scans limit the generalizability of 

conventional segmentation models [6].  

A major barrier to training robust deep learning models in this domain is the scarcity of large scale 

annotated dental datasets. Privacy concerns around patient data sharing further constrain data 

accessibility and reproducibility. This highlights the urgent need for privacy preserving learning strategies 

that enable model development without compromising sensitive medical information. Differential 

Privacy (DP), and specifically Differential Privacy Stochastic Gradient Descent (DP-SGD), has gained 

traction as a formal method to limit individual data leakage while allowing model optimization [7]. 

In addition, the high cost and labor involved in manual annotation can be alleviated through semi-

supervised learning strategies. Pseudo labeling where confident model predictions on unlabeled data are 

used as additional training signals has shown promise in reducing the annotation burden and improving 

generalization when integrated into Machine Learning Operations (MLOps) pipelines. 

This study proposes a comprehensive, privacy-preserving framework for the segmentation of 

radiolucent lesions in dental CBCT. The primary contributions are:  

• Evaluation of four U-Net variants U-Net, DoubleU-Net, U2-Net, and Spatial Attention U-Net 

(SA-UNet) in segmenting radiolucent lesions with comparative analysis on accuracy and efficiency.  

• Integration of DP-SGD using TensorFlow-Privacy to protect sensitive patient data during model 

training, maintaining strong segmentation performance with a privacy budget of ε ≈ 1.5. 

• Deployment of pseudo-labeling in an MLOps loop, enabling semi-supervised model improvement 

using unlabeled CBCT slices and reducing reliance on expert annotations. 

The remainder of this paper is organized as follows: Section 2 presents related work on dental image 

segmentation, U-Net architectures, and privacy-preserving learning. Section 3 outlines the proposed 

methodology, which includes dataset preparation, model configuration, and MLOps integration. Section 

4 reports experimental results and quantitative evaluations. Section 5 discusses practical implications and 

limitations, and Section 6 concludes the study. 

2. Related Works 

2.1. Medical Image Segmentation in Dental CBCT Imaging 
Medical image segmentation is a cornerstone of modern diagnostic imaging, enabling automated 

identification of anatomical regions, lesions, and abnormalities with high precision [8]. In dentistry, 

radiolucent lesions such as periapical cysts, odontogenic keratocysts, and dentigerous cysts manifest as 

dark areas in radiographs and Cone-Beam Computed Tomography (CBCT) [9], [10]. Unlike 

conventional 2D panoramic radiography, CBCT offers detailed 3D visualization but introduces new 

complexities: high noise levels, metal artifacts, low contrast near bone interfaces, and limited 

standardized datasets. 

Early segmentation methods in dental radiology applied classical techniques such as Otsu 

thresholding, watershed transforms, and region growing, but these approaches fail in cases of ambiguous 
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boundaries or intensity inhomogeneities [11]–[14]. Clustering-based methods like K-means or Fuzzy 

C-means showed modest improvement, but generalization across patients and devices was poor. 

The advent of deep learning, particularly Convolutional Neural Networks (CNNs), revolutionized 

segmentation performance by enabling end-to-end learning of spatial and contextual features. Models 

such as U-Net, originally proposed for cell segmentation in biomedical microscopy [7], have been 

successfully adapted for dental tasks such as tooth instance segmentation [15], mandibular canal 

detection, and pulp chamber extraction. 

However, radiolucent lesion segmentation remains underexplored. A key limitation is the lack of 

large, annotated CBCT datasets due to privacy restrictions and the cost of expert annotations. 

Additionally, dental CBCT images suffer from significant anatomical variation and artifact noise, making 

generalization across patients difficult. This motivates the investigation of robust U-Net variants and 

privacy-compliant learning strategies. 

2.2. U-Net Architecture and Its Variants 
Convolutional Neural Networks (CNNs) have become foundational in biomedical image 

segmentation, especially for tasks requiring pixel-level precision [16]. Among these, U-Net and its 

architectural variants have gained prominence due to their encoder decoder symmetry, skip connections, 

and ability to learn multi scale contextual features from relatively small datasets. This study evaluates 

four U-Net-based models: the original U-Net, DoubleU-Net, U2-Net, and Spatial Attention U-Net 

(SA-UNet), whose architectures are illustrated in Fig. 1. 

  

(a) (b) 

 
 

(c) (d) 

Fig. 1. Architectural overview of U-Net variants used in this study: (a) Standard U-Net with symmetric 

encoder–decoder structure and skip connections; (b) DoubleU-Net with cascaded dual U-Net modules and 

VGG-19 encoder in the first stage; (c) U2-Net architecture leveraging Residual U-blocks (RSUs) to 

capture multi-scale features; (d) SA-UNet integrating spatial attention modules for focusing on salient 

regions in CBCT images 
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2.2.1. U-Net: The Foundational Architecture 
The U-Net architecture, originally introduced by Ronneberger et al. [7], employs a symmetric 

encoder decoder structure. The encoder path captures increasingly abstract features via 3×3 convolution 

and 2×2 max pooling layers, while the decoder reconstructs high resolution predictions using transposed 

convolutions. Crucially, skip connections concatenate encoder outputs with corresponding decoder 

layers to retain spatial context. As shown in Fig. 1(a), U-Net uses a four stage structure spans feature 

depths ranging from 64 to 1024, allowing it to segment structures with moderate complexity. However, 

the model’s limited receptive field may hinder its ability to segment lesions with varying scales and blurry 

boundaries typical in dental CBCT. 

2.2.2. DoubleU-Net: Two-Stage Refinement for Semantic Precision 
DoubleU-Net extends this design by cascading two U-Net modules in sequence. The first U-Net 

leverages a pretrained VGG-19 encoder for enhanced semantic extraction, producing an initial 

segmentation map. This coarse prediction is then refined by the second U-Net, which receives a 

concatenated input of the original image and the first U-Net’s output. This two-stage design improves 

boundary sharpness and class separation, as depicted in Fig. 1(b). In earlier studies such as Jha et al. [17], 

DoubleU-Net outperformed standard U-Net in polyp segmentation, raising the mIoU from 0.1759 to 

0.6255. For radiolucent lesion segmentation in CBCT, this architecture holds promise for better 

delineating fuzzy or irregular margins. 

2.2.3. U2-Net: Deep Context with Residual Nested Blocks 
U2-Net [18] introduces deep supervision and nested architecture via Residual U-blocks (RSUs), each 

containing its own encoder decoder structure. This hierarchical nesting enables multi scale contextual 

learning with reduced computational cost. The RSUs allow U2-Net to preserve both fine grained and 

global spatial features, making it well suited for segmenting lesions with subtle boundaries or high inter-

slice variability. Originally developed for saliency detection, U2-Net has demonstrated strong 

performance in liver and thyroid lesion segmentation. As visualized in Fig. 1(c), U2-Net’s layered RSUs 

provide flexible receptive fields, enhancing segmentation robustness across complex dental anatomy. 

2.2.4. SA-UNet: Attention-Driven Lightweight Segmentation 
SA-UNet [19] integrates spatial attention modules (SAMs) into the standard U-Net design to 

prioritize relevant spatial regions in the input feature maps. Located at the bottleneck of the network, 

the SAM learns attention weights that amplify salient areas while suppressing irrelevant background 

features. Additionally, DropBlock regularization is incorporated to prevent overfitting, particularly when 

training on small datasets like dental CBCT. As seen in Fig. 1(d), the attention module directs the 

decoder’s focus to lesion relevant zones, which improves segmentation accuracy in low contrast or artifact 

heavy scenarios. SA-UNet’s lightweight design also makes it favorable for real time applications in 

resource-constrained clinical settings. 

2.3. Privacy-Preserving Deep Learning via Differential Privacy 
One of the key challenges in training deep learning models on clinical data is maintaining patient 

confidentiality. Differential Privacy (DP) offers a mathematically rigorous solution by ensuring that the 

inclusion or exclusion of a single data point does not significantly affect the model’s output. A function 

𝑓𝑓 is said to satisfy 𝜀𝜀-differential privacy if for any two adjacent datasets 𝐷𝐷 and 𝐷𝐷′ differing by a single 

sample, and for all outputs 𝑆𝑆 (Eq. 1). 

Pr[𝑓𝑓(𝐷𝐷) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr[M(𝐷𝐷′) ∈ 𝑆𝑆]   (1) 

In practice, DP is often implemented via Differentially Private Stochastic Gradient Descent (DP-

SGD), which was introduced by Abadi et al. [17]. DP-SGD involves clipping the gradient norm of each 

sample and adding calibrated Gaussian noise to the aggregate gradient before model updates. The privacy 

guarantee is quantified by the privacy budget ε, where smaller values denote stronger privacy. 
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TensorFlow-Privacy, an open source library developed by Google, provides built-in support for DP-

SGD and facilitates its integration into standard training pipelines. In this study, DP-SGD is utilized to 

train U-Net variants on dental CBCT data while achieving an estimated privacy budget of 𝜀𝜀 ≈ 1.5. Prior 

studies have demonstrated that with careful hyperparameter tuning, models trained under DP 

constraints can maintain competitive accuracy with minimal degradation [20]. 

2.4. Semi-Supervised Learning and Pseudo-Labeling for Medical Segmentation 
Labeling medical images is expensive and time consuming, particularly in dental imaging where 

expert annotation is needed to mark subtle lesion boundaries [21], [22]. Semi supervised learning 

approaches, especially pseudo labeling, offer a pragmatic solution by using model predictions on 

unlabeled data as training targets [23]. This technique assumes that high confidence predictions are 

reliable and can be used to iteratively retrain the model, thereby expanding the effective training set 

without additional manual labeling. Given the scarcity of labeled CBCT data, semi-supervised learning 

(SSL) offers a practical solution. Pseudo-labeling where a model generates predicted labels for unlabeled 

data is a lightweight SSL approach often integrated into MLOps pipelines for iterative refinement. 

In this study, pseudo-labeling is embedded into a Machine Learning Operations (MLOps) loop, 

allowing automatic generation and curation of pseudo labeled CBCT slices across multiple training 

rounds. Empirical results from recent segmentation benchmarks indicate that pseudo labeling can 

improve Dice scores by 2–5% and reduce validation loss over time [24]. When applied to dental CBCT, 

pseudo-labeling is particularly beneficial due to the limited availability of expert-annotated datasets and 

the high anatomical variability between scans. These are filtered based on confidence thresholds and 

added to the training set for subsequent rounds. Over three iterations, validation loss was reduced by 

14.4% and Dice score increased by 2.6%, confirming SSL’s value in low-annotation scenarios. 

2.5. Hybrid Segmentation Models in Dental and Medical Applications 
Hybrid U-Net models integrate multiple architectural innovations, such as dense skip connections, 

residual blocks, multi branch feature extractors, and attention mechanisms. For example, Khallassi et al. 

[25] developed a hybrid U-Net for breast ultrasound segmentation incorporating residual convolution 

blocks and squeeze-and-excitation modules, yielding improved lesion detection robustness and boundary 

accuracy. In the dental domain, Alharbi et al. [26] demonstrated that nested U-Net variants like U-

Net++ significantly outperform classical U-Net in cavity and lesion detection tasks, achieving a Dice 

coefficient of 89.17%, IoU of 81.02%, and precision of 91.45%. 

Such hybrid models are increasingly favored for applications where data is scarce, image quality varies, 

or clinical interpretability is essential. In this work, we evaluate four U-Net variants each with hybrid 

features such as encoder fusion, spatial attention, and deep supervision in the context of privacy-

preserving segmentation under realistic dental CBCT constraints. 

3. Method 

3.1. Model Training Workflow 
The complete model training workflow is illustrated in Fig. 2, outlining the pipeline from raw CBCT 

images to the final segmentation predictions. The process begins with data ingestion and preprocessing 

steps, including image resizing, noise reduction, and intensity normalization to ensure consistent input 

quality. To increase dataset diversity and model robustness, various augmentation techniques such as 

horizontal flipping, padding, rotation, and adjustments in brightness, contrast, and hue were applied. 

These augmentations expanded the dataset from 280 original images to over 6,800 samples, simulating 

clinical variability and addressing the challenge of limited annotated dental data. 

Each model variant U-Net, DoubleU-Net, SA-UNet, and U2-Net was implemented using the 

TensorFlow framework due to its flexibility and integration support for privacy-preserving tools. All 

models were trained under a unified configuration to ensure fair comparison: 50 training epochs, batch 

size of 16, learning rate of 1×10^(-5), Dice loss function, and Adam optimizer. This configuration was 



280 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 11, No. 2, May 2025, pp. 275-291 

 

 

 Ismail et al. (Privacy-preserving U-Net variants with pseudo-labeling…) 

adapted from prior work [17], with epochs reduced after observing minimal improvement beyond the 

50-epoch threshold. 

To protect sensitive patient data during model training, we integrated Differential Privacy using 

TensorFlow-Privacy. This framework introduces privacy specific hyperparameters, including the L2 

norm clipping bound, noise multiplier, and micro batch size. The training procedure was identical across 

models to maintain experimental parity. Once trained, the best-performing model was deployed on a 

Linux-based server with a RESTful API interface for real-time inference. The resulting segmentations 

were evaluated using standard metrics including Intersection over Union (IoU) and Dice Coefficient. 

 

Fig. 2. Model training pipeline from CBCT image preprocessing, augmentation, and Differential Privacy-based 

training to final segmentation output 

3.2. Dataset Description and Augmentation Strategy 
The dataset was acquired from the dental radiology unit at IIUM, consisting of 28 CBCT scans and 

280 manually annotated axial slices representing radiolucent lesions. Each annotation was validated by 

dental radiologists and served as the ground truth. Given the limited number of labeled images, a 

comprehensive data augmentation strategy was employed. Spatial transformations (flipping, rotation, 

padding) and color space perturbations (brightness, contrast, hue) were applied to simulate clinical 

variation. This augmentation resulted in a total of 6,872 training images. Such expansion was necessary 

to prevent overfitting and enhance the generalization capability of deep learning models in low-resource 

medical imaging scenarios. 

3.3. Differential Privacy Implementation 
To ensure patient data confidentiality during training, Differential Privacy (DP) was implemented 

using the TensorFlow-Privacy library. DP-SGD (Differentially Private Stochastic Gradient Descent) was 

used to inject noise into the gradient updates, safeguarding individual data points from being inferred 

during or after training. Three core hyperparameters were tuned. 

• L2 Norm Clip: Controls the maximum gradient contribution per sample. 

• Noise Multiplier: Determines the standard deviation of Gaussian noise added to clipped gradients. 

• Micro-batch Size: Defines how many individual gradients are accumulated before averaging. 

Privacy guarantees were quantified using the (𝜖𝜖, 𝛿𝛿)-DP framework. For our training configuration, 

we achieved 𝜖𝜖 ≈ 1.5 and 𝛿𝛿 = 10−5, which represent a strong privacy guarantee suitable for medical 

applications [27]. 

Although DP introduces noise that may affect model accuracy, extensive tuning ensured minimal 

degradation in segmentation performance. This balance between privacy and utility is critical in clinical 

contexts where patient protection is legally and ethically mandated. Unlike most prior studies on U-Net 
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variants, our approach incorporates formal privacy preservation directly in the training loop, contributing 

to the novelty of this work. 

3.4. Dataset Description and Augmentation Strategy 
Machine Learning Operations (MLOps) is crucial for maintaining and deploying models in real-

world environments. The MLOps framework adopted in this study is adapted from DevOps practices, 

as discussed in [24] illustrated in Fig. 3 comprises model training, deployment, monitoring, and periodic 

retraining using semi-supervised learning. 

Following the supervised training on augmented labeled data, the best-performing model was 

deployed via API on a clinical Linux server. This enabled real-time segmentation of incoming unlabeled 

CBCT images. To continuously improve the model without requiring manual annotations for each new 

case, we implemented a pseudo-labeling mechanism: 

• The deployed model predicts lesion masks on new unlabeled images. 

• High confidence predictions (e.g., softmax > 0.90) are stored as pseudo-labels. 

• These pseudo-labeled samples are periodically added to the training dataset [28]. 

Expert in the loop validation corrects poor pseudo-labels in critical cases. 

This feedback loop enables incremental learning and domain adaptation, particularly important in 

dynamically evolving clinical data environments. Although IoU and Dice scores remained stable in 

retraining experiments, training loss decreased significantly, indicating improved convergence and model 

confidence. 

 

Fig. 3. MLOps cycle integrated with semi-supervised pseudo-labeling to continuously update model 

performance with unlabeled CBCT data 
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3.5. Evaluation Metrics 
Each U-Net variant is assessed using a comprehensive set of evaluation metrics that are essential for 

analyzing medical segmentation accuracy. These include Intersection over Union (IoU), also known as 

the Jaccard Index, Dice Similarity Coefficient (DSC), Accuracy, Precision, Recall, and F1-score. Among 

these, IoU and Dice are emphasized due to their ability to measure spatial overlap between the predicted 

segmentation and the expert-labeled ground truth. The following are the symbolic definitions of the 

two primary metrics (Eq. 2 and Eq. 3). 

• Intersection over Union (IoU) 

IoU = |𝐴𝐴⋂𝐵𝐵|
|𝐴𝐴|+|𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|

   (2) 

Where AAA is the predicted segmentation region, and BBB is the ground truth region. The 

numerator represents the area of intersection, while the denominator is the union of both predicted 

and ground truth areas. 

• Dice Similarity Coefficient (DSC) 

Dice = 2|𝐴𝐴⋂𝐵𝐵|
|𝐴𝐴|+|𝐵𝐵|

   (3) 

This metric emphasizes the harmonic mean of precision and recall, particularly useful for evaluating 

segmentation overlap in datasets with imbalanced classes or small lesion areas. 

In addition to IoU and Dice, the following classification-based metrics provide supporting 

evidence for model reliability (Eq. 4-7) 

• Accuracy 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (4) 

• Precision (positive predictive value) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (5) 

• Recall 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (6) 

• F1 Score (harmonic mean of precision and recall) 

F1 − score = 2×Precision×Recall
Precision+Recall

   (7) 

Where TP, FP, FN, and TN refer to True Positive, False Positive, False Negative, and True Negative 

pixel counts, respectively. 

These metrics collectively offer a thorough evaluation of segmentation quality, balancing spatial 

accuracy with classification reliability. The inclusion of both overlap-based (IoU, Dice) and threshold-

based (Precision, Recall) metrics ensures that the model’s performance is both clinically robust and 

statistically grounded. 

4. Results and Discussion 
This section provides a comprehensive analysis of the performance of four U-Net-based models (U-

Net, DoubleU-Net, SA-UNet, and U2-Net) in segmenting radiolucent lesions from CBCT images. The 
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discussion integrates both quantitative evaluation metrics Dice Coefficient, Intersection over Union 

(IoU), and loss and qualitative observations of segmentation quality. In addition, the impact of 

Differential Privacy (DP) and semi-supervised learning via pseudo-labeling are analyzed to assess the 

robustness and adaptability of the models for clinical deployment. 

4.1. Visual Segmentation Performance and Findings 
Fig. 4 illustrates representative segmentation outcomes from four U-Net variants U-Net, DoubleU-

Net, U2-Net, and SA-Unet on radiolucent dental CBCT images. Each row presents the original input, 

expert-annotated ground truth, and the predicted lesion masks. This visualization provides insight into 

the spatial accuracy, shape fidelity, and lesion boundary alignment achieved by each model. 

In the first sample, the lesion exhibits low contrast and an irregular boundary. U-Net and DoubleU-

Net fail to capture the full extent of the lesion, producing incomplete and fragmented masks. These 

limitations are consistent with previous findings that vanilla U-Net architectures often struggle with 

subtle boundaries and complex morphology in dental CBCT [1], [2]. In contrast, both SA-UNet and 

U2-Net effectively segment the lesion with high fidelity. Notably, U2-Net achieves superior edge 

preservation and spatial coverage, contributing to its high Dice coefficient of 83.33% and IoU of 88.14%, 

as also supported by its encoder-decoder design with nested residual blocks [3]. 

 

Fig. 4. Visual comparison of radiolucent lesion segmentation results from four U-Net variants on CBCT slices. 

Each row shows: (1) input image, (2) ground truth, and (3–6) predictions by U-Net, DoubleU-Net, SA-

UNet, and U2-Net respectively. U2-Net produces the most accurate and complete lesion masks with 

precise boundary adherence, especially for irregularly shaped lesions 

The second sample features a well-contrasted, round lesion. All models perform reasonably well in 

detecting the lesion body. However, U2-Net and SA-UNet deliver more consistent border delineation, 

while U-Net and DoubleU-Net show slight over-segmentation and edge noise. This difference reflects 

the benefits of attention enhanced architectures in focusing on discriminative features [4]. SA-UNet 
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records Dice and IoU values of 82.06% and 87.30%, respectively, reflecting strong performance in 

medium complexity cases. 

In the third sample, a large, lobulated lesion introduces complexity in shape. U-Net again under-

segments the boundaries, and DoubleU-Net captures only the core region. Such issues may stem from 

limited receptive fields and gradient flow inefficiencies in deeper networks [5]. Conversely, U2-Net 

captures the full lesion morphology, benefiting from multi scale deep supervision and skip-connected 

feature fusion, as proposed in [3]. The visual accuracy observed here corresponds with U2-Net’s lowest 

test loss of 0.319, further validating its robustness. 

The fourth sample demonstrates a small, faint lesion amidst noisy surroundings. Traditional U-Net 

and DoubleU-Net models misidentify the lesion, with the latter producing scattered predictions and 

false positives. These observations align with studies reporting U-Net’s limitations in detecting fine-

grained, low contrast regions [6]. SA-UNet provides a better response, while U2-Net effectively 

segments the lesion with minimal background interference, reaffirming its noise resilience and superior 

attention to weak signals. 

In the final row, the lesion shows irregular intensity gradients and partial boundary occlusion. U-Net 

delivers an approximate shape but lacks boundary sharpness. DoubleU-Net again fails to generalize well. 

SA-UNet and U2-Net both replicate the ground truth more accurately, with U2-Net slightly 

outperforming in spatial cohesion. These outcomes support previous reports that cascaded attention or 

deeply nested U-shaped models can improve precision in heterogeneous medical data [7], [29], [30]. 

Overall, this visual analysis validates the quantitative metrics evaluation. U2-Net consistently 

demonstrates the highest segmentation fidelity across diverse lesion types, reinforcing its suitability for 

CBCT applications involving complex radiolucent pathologies. SA-UNet offers a promising alternative, 

especially in scenarios where computational efficiency is prioritized. The consistent underperformance of 

DoubleU-Net in both visual and metric based evaluations highlights that deeper architectures do not 

necessarily yield better results in noisy, high variance imaging domains such as dental CBCT [18]. 

4.2. Training Dynamics and Quantitative Metric Trends 
To evaluate the segmentation performance of each U-Net variant over time, we analyzed the Dice 

Coefficient and Intersection over Union (IoU) across training epochs, as shown in Fig. 5 and Fig. 6. 

These metrics provide insights into both the overlap quality between predicted and ground truth asks 

and the model’s generalization ability throughout training. 

 

Fig. 5. Training Dice Coefficient curves for U-Net, DoubleU-Net, SA-UNet, and U2-Net across epochs. U2-

Net achieves the highest Dice (83.33%) with smooth convergence, while DoubleU-Net exhibits the lowest 

score (42.86%) and unstable learning 
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Fig. 6. Training Intersection over Union (IoU) curves for U-Net variants. U2-Net maintains the highest IoU 

(88.14%) with minimal fluctuation, followed closely by SA-UNet (87.30%). DoubleU-Net underperforms 

with erratic updates and final IoU of only 67.0 

The U2-Net demonstrates superior learning stability, consistently maintaining the highest scores 

with a final Dice Coefficient of 83.33% and IoU of 88.14%. Its training curve reveals smooth and steady 

growth with minimal fluctuations, reflecting effective feature learning and minimal overfitting. This is 

attributed to the nested U-Net architecture, which introduces deep supervision and rich multi-scale 

features, enhancing boundary preservation and lesion completeness consistent with prior works 

demonstrating that nested skip pathways and deep supervision improve lesion boundary preservation and 

segmentation accuracy [1], [2]. 

In contrast, the baseline U-Net reaches a Dice score of 69.79% and an IoU of 80.84%, showing 

moderate capability but limited in handling lesion complexity due to its shallower architecture. The SA-

UNet, equipped with spatial attention modules, improves upon the baseline with Dice of 82.06% and 

IoU of 87.30%, as it effectively highlights relevant features while suppressing irrelevant background 

noise. Attention-based mechanisms have been reported to improve medical segmentation by enhancing 

the model's focus on lesion structures [3]. 

DoubleU-Net, despite being a deeper architecture, performs the worst, with a Dice of only 42.86% 

and IoU of 67.00%. Its learning curves exhibit severe oscillations and early plateauing, which suggests 

difficulties in convergence, likely due to vanishing gradients or over parameterization without proper 

regularization. This instability has also been noted in other deep stacked architectures when applied to 

limited-data clinical domains [4]. To consolidate these observations, Table 1 summarizes the final 

segmentation performance across all evaluated models. 

Table 1.  Quantitative Performance Comparison of U-Net Variants in Radiolucent Lesion Segmentation 

Model Dice Coefficient (%) Intersection over Union (IoU, %) 
U-Net 69.79 80.84 

DoubleU-Net 42.86 67 

SA-UNet 82.06 87.3 

U2-Net 83.33 88.14 

 

The temporal trend observed in Fig. 5 (Dice) and Fig. 6 (IoU) validates the hypothesis that deeper 

does not always mean better in medical imaging. Instead, architectural efficiency, feature fusion 

strategies, and attention mechanisms play more critical roles in ensuring robust learning curves and 

consistent performance. 

Taken together, the evaluation confirms U2-Net as the most reliable architecture for CBCT-based 

radiolucent lesion segmentation. The nested architecture allows effective feature reuse, deeper semantic 

encoding, and stable convergence. Meanwhile, SA-UNet offers a favorable balance between accuracy and 

efficiency, especially under data scarce scenarios where attention guidance proves beneficial 
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4.3. Model Training Workflow 
To further examine the training behavior of each U-Net variant, we analyze the evolution of training 

loss over 50 epochs, as illustrated in Fig. 7. A consistent decline and low final loss indicate a model’s 

ability to effectively learn meaningful features without overfitting or suffering from optimization 

instability. 

Among the evaluated models, U2-Net displays the most stable and effective convergence pattern, 

with a smooth trajectory and a final loss of 0.319. Its architecture, featuring nested U-blocks and deep 

supervision, enables gradual and consistent learning. This pattern reflects strong generalization and 

robustness, which aligns with U2-Net’s high Dice and IoU scores discussed previously. 

SA-UNet, which incorporates spatial attention modules, converges with a final loss of 0.354. 

Although it shows slightly more fluctuation than U2-Net, its curve is relatively smooth, confirming that 

the attention mechanisms help guide the learning process toward relevant lesion features while filtering 

background noise. 

In contrast, U-Net achieves a final loss of 0.392, accompanied by several spikes in its loss curve. These 

irregularities suggest the model encounters occasional challenges during optimization, potentially due to 

the absence of advanced refinement mechanisms. Despite this, the U-Net maintains moderate 

performance and stability, making it a reliable baseline. 

 

Fig. 7. Loss Evaluation — Training loss curves of U-Net, DoubleU-Net, SA-UNet, and U2-Net across 50 

epochs 

DoubleU-Net, however, exhibits the most erratic convergence behavior, with sharp oscillations and 

a final loss of 0.489. This instability may stem from its increased architectural depth, which can lead to 

vanishing gradients or overfitting particularly when applied to medical datasets with limited annotated 

samples. Such performance issues are common in deep stacked models lacking appropriate regularization 

or optimization strategies [1], [2]. 

Overall, the convergence trends reinforce the quantitative outcomes seen in Dice and IoU metrics. 

U2-Net emerges as the most reliable and generalizable architecture, followed by SA-UNet. In contrast, 

DoubleU-Net’s poor convergence makes it unsuitable for radiolucent lesion segmentation in dental 

CBCT without further tuning or simplification. 

4.4. Differential Privacy and Pseudo-Labelling’s Effect on Loss 
To address concerns of data privacy in medical image segmentation, we evaluated the impact of 

Differential Privacy (DP) integration on model performance, particularly using U-Net as the baseline. 

In parallel, we examined how pseudo-labelling a semi-supervised learning technique affects model 

convergence and robustness, especially in cases of limited labeled data. Differential Privacy Evaluation. 

Fig. 8 and Fig. 9 illustrate the validation performance trends of U-Net trained with and without 

differential privacy. 
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Fig. 8. Validation IoU Curves for U-Net with and without Differential Privacy (DP) 

As seen in Fig. 8, the validation Intersection over Union (IoU) curves for both settings show similar 

progression. Although the model with DP presents a slight performance reduction (final IoU ≈ 66.32%) 

compared to its non-DP counterpart (final IoU ≈ 68.04%), the stability and consistency of the curve 

indicate that the added noise does not drastically impair the segmentation capability. This observation 

confirms that privacy-preserving training can be incorporated with minimal trade offs in accuracy, an 

important finding for sensitive domains such as healthcare, where data confidentiality is paramount. 

 

Fig. 9. Validation Loss Curves for U-Net with and without Differential Privacy (DP) 

Similarly, Fig. 9 demonstrates the validation loss trends. Initially, the DP-enabled model experiences 

slightly elevated loss due to noise injection. However, both curves eventually converge toward a similar 

value range (~0.18–0.22). This convergence implies that the model maintains learning capability even 

under privacy constraints, validating the robustness and practicality of DP in real world deployments. 

The alignment of these results with prior DP literature confirms that privacy aware training mechanisms 

can retain acceptable segmentation quality in sensitive imaging contexts [1], [2]. 

Effect of Pseudo-Labelling on Convergence. In addition to privacy mechanisms, we employed 

pseudo-labelling to explore its role in improving training stability and reducing annotation burden. Fig. 

10 presents the training loss progression before and after pseudo-labelling. The baseline model (blue 

line) shows a slower convergence and higher fluctuation in early epochs, with final loss at approximately 

0.2112. After applying pseudo-labelling (orange line), the model achieves smoother learning dynamics, 

with a final loss reduced to 0.1635. 

This improvement can be attributed to the additional training signal provided by high confidence 

predictions on unlabeled data, which serves to guide the model in regions of uncertainty. These findings 

are consistent with prior work suggesting that pseudo-labelling enhances representation learning and 

boosts segmentation performance when labeled data is limited [3], [4]. Furthermore, the smoother 

convergence suggests enhanced generalization and lower risk of overfitting an essential attribute for 

clinical model reliability. 
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Fig. 10. Pseudo-Labelling’s Effect on Training Loss for U-Net 

4.5. Model Training Workflow 
The complete model training workflow is illustrated in Fig. 2, outlining the pipeline from raw CBCT 

images to the final segmentation predictions. The process begins with data ingestion and preprocessing 

steps, including image resizing, noise reduction, and intensity normalization to ensure consistent input 

quality. To increase dataset diversity and model robustness, various augmentation techniques such as 

horizontal flipping, padding, rotation, and adjustments in brightness, contrast, and hue were applied. 

These augmentations expanded the dataset from 280 original images to over 6,800 samples, simulating 

clinical variability and addressing the challenge of limited annotated dental data. 

5. Clinical Implications, Limitations, and Future Work 
The outcomes of this study offer notable implications for the clinical adoption of privacy-preserving 

lesion segmentation in dental radiology. Specifically, the high Dice coefficient (83.33%) and Intersection 

over Union (IoU, 88.14%) achieved by U2-Net underscore its ability to generate consistent and precise 

lesion masks in radiolucent regions, which are often ambiguous to delineate in CBCT. Such 

segmentation accuracy holds promise for augmenting diagnostic workflows in dental informatics, 

enabling early intervention, better treatment planning, and reduced diagnostic variance among clinicians. 

Visual inspection (Fig. 7) confirms that U2-Net and SA-UNet effectively capture lesion boundaries, 

aligning closely with expert annotations, especially for small and complex structures. This reinforces 

their clinical utility, as segmentations that preserve morphological accuracy are critical in surgical and 

endodontic contexts. Moreover, the minimal performance trade-off observed with differential privacy 

(DP) integration IoU reduction of only 0.7% demonstrates that patient confidentiality can be maintained 

without significantly sacrificing diagnostic utility. This is particularly relevant in the context of GDPR-

compliant AI systems in healthcare, where balancing privacy and accuracy remains a pressing challenge. 

The incorporation of pseudo-labeling further addresses one of the biggest bottlenecks in medical 

imaging limited annotated data. Our results reveal that pseudo-labeling reduced the validation loss by 

14.9%, improving generalization and robustness. This indicates its potential to extend model scalability 

across multi-center datasets or rare conditions where manual annotation is scarce or costly. 

Despite these strengths, certain limitations remain. The DoubleU-Net architecture performed 

poorly, with high training loss and unstable convergence, likely due to excessive parameterization and 

lack of sufficient regularization in a limited-data setting. This highlights the need to tailor model 

complexity to dataset size and quality. Another limitation is the lack of multi-view and multi-modal 

input integration, which could provide complementary anatomical cues for more robust segmentation, 

especially for ambiguous or overlapping lesions. 

From a deployment perspective, although the proposed framework demonstrates promise in 

experimental settings, real-world implementation would require further validation using larger and more 
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heterogeneous datasets, potentially under varied imaging protocols and device manufacturers. 

Additionally, training with DP-SGD incurs longer training times and requires careful tuning of the noise 

multiplier and gradient clipping thresholds to prevent underfitting an aspect to be further explored in 

future iterations. 

In terms of research impact and funding relevance, the outcomes of this study align with the goals 

of developing secure, AI-driven solutions for dental diagnostics. The demonstrated effectiveness of 

hybrid U-Net models with integrated privacy mechanisms supports investment into translating these 

methods into deployable clinical tools. Future directions include exploring transformer-based hybrid 

architectures, federated learning frameworks for decentralized training, and extending evaluation to real-

time segmentation scenarios in clinical workflows. 

6. Conclusion 
This research developed and evaluated privacy-preserving U-Net variants for automatic segmentation 

of radiolucent lesions in dental cone-beam computed tomography (CBCT). By integrating U2-Net, SA-

UNet, U-Net, and DoubleU-Net architectures with differential privacy (DP-SGD) and semi-supervised 

pseudo-labeling, the framework addresses critical challenges in dental imaging such as limited labeled 

data and patient confidentiality. Among the models, U2-Net delivered the best segmentation 

performance (Dice = 83.33%, IoU = 88.14%) with smooth convergence and stable learning, while SA-

UNet followed closely due to its effective spatial attention mechanism. In contrast, DoubleU-Net 

showed limited generalizability, likely due to its over-parameterization and unstable convergence on 

relatively small clinical datasets. The integration of differential privacy resulted in only a minor decrease 

in IoU (78.2% vs. 78.9%), confirming its suitability for clinical-grade deployment without 

compromising accuracy. Additionally, the use of pseudo-labeling reduced validation loss by 14.9%, 

demonstrating the benefit of leveraging unlabeled data to improve generalization. These findings 

highlight that a lightweight, explainable, and privacy-aware segmentation model like U2-Net is a 

promising candidate for real-world dental diagnostic systems. Future directions will involve expanding 

to multi-class lesion classification, adopting federated learning for decentralized model training, and 

validating the framework across diverse CBCT scanners and institutions. 
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