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Abstract
The neurogenic locus notch homolog protein 3 (NOTCH3), is central in both 
vasculogenesis and oncogenesis and, therefore, has been considered an important 
factor in the development of cerebral small vessel disease (CSVD) and breast 
cancer (BC). Pathogenic mutations of NOTCH3 induce vascular smooth muscle cell 
degeneration, microvascular dysfunction and neurovascular damage in cerebral 
autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL), which is a genetic cause of CSVD. Meanwhile, NOTCH3 aberrant signalling 
in BC promotes tumour progression, metastasis and chemoresistance, especially in 
aggressive subtypes, such as triple-negative BC. A growing body of evidence points 
to a common molecular pathway whereby NOTCH3 dysregulation mediates vascular 
and tumour pathologies, thus providing an important link between these conditions. 
This narrative review synthesises current insights into the dual role of NOTCH3, 
focusing on translational relevance as a therapeutic target. Targeting NOTCH3 may 
mitigate vascular damage in CSVD and simultaneously inhibit tumour progression 
and metastasis in BC. The review further discusses NOTCH3 as a biomarker for early 
diagnosis and risk stratification, besides novel therapeutic strategies involving 
γ-secretase inhibitors and monoclonal antibodies. Future directions include studies 
into the ligand-independent functions of NOTCH3, its role within the tumour 
microenvironment, and the development of therapies with dual-action potential. This 
review discusses, for the 1st time, common mechanisms between CSVD and BC, thereby 
opening new avenues for therapies that could effectively target both conditions. By 
translating these laboratory findings into clinical applications, this approach aims to 
improve outcomes for patients affected by these devastating disorders.
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1. Introduction
Breast cancer (BC) and stroke are two different medical 
disorders, each with unique pathophysiological causes. 
Recent discoveries suggest a possible connection between 
these two unconnected entities,1,2 identifying the roles of 
neurogenic locus notch homolog protein 3 (NOTCH3) 
signalling as important participants in both illnesses.

One member of the NOTCH family that has become 
important in both oncogenesis and vasculogenesis is 
NOTCH3. Variations in the NOTCH3 gene have been 
linked to several cardio-  and cerebral-vascular diseases, 
such as cerebral small vessel disease (CSVD), which is 
a precursor to stroke and is characterised by cerebral 
autosomal-dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy (CADASIL).3 The 
pathological hallmark of CSVD is the accumulation of 
NOTCH3 extracellular domain within small penetrating 
arteries, which is noteworthy.4 Despite CSVD is often 
silent, many affected individuals remain asymptomatic. 
Their manifestation is frequently unintentionally detected 
during normal magnetic resonance imaging (MRI) brain 
scans, showing distinctive cerebral white matter lesions.5

Moreover, pre-clinical studies have revealed that 
NOTCH3 plays a dual role in BC, contributing to both 
tumor development and metastatic progression.6,7 
Alarmingly, increased cancer invasiveness, partly mediated 
by the development of lymphovascular emboli, is associated 
with elevated NOTCH3 expression in inflammatory BC.8 
These results are further supported by observations that 
hypercoagulation and vascular impairment related to 
cancer are associated with a higher risk of stroke and that 
stroke-related death is more common in BC patients than 
in non-cancer patients.9

Given the ageing global population and the increasing 
incidence of both CSVD and BC, the clinical overlap 
between these conditions is of growing interest. CSVD 
contributes significantly to ischemic stroke, a leading cause 
of death in cancer patients, and the underlying shared 
molecular mechanisms involving NOTCH3 signalling 
may suggest an urgent need for integrative research. 
Uncovering these connections holds the potential to 
transform clinical approaches by identifying shared 
therapeutic targets and improving outcomes in patients 
at the intersection of these pathologies. The intersection 
of these research avenues demands a reassessment of the 
clinical environment, where the symptomatology of BC 
and CSVD may counterintuitively resemble one another, 
ultimately predisposing individuals to ischemic stroke.

Thus, the purpose of this narrative review is to compile 
the body of knowledge clarifying the dynamic interactions 

among NOTCH3 signaling, CSVD and BC. Across 
exploring the common mechanical foundations of these 
illnesses, we hope to uncover new understandings of their 
relationship. These disclosures could lead to the creation of 
novel preventive and therapeutic approaches, which would 
be an example of ‘killing two birds with one stone’ in the 
fight against these powerful enemies.

2. BC
BC is an array of distinguished malignancies that occur 
within the mammary glands.9 Indications of BC can 
encompass a breast lump, alterations in breast contour, skin 
dimpling, nipple discharge, inverted nipple (turns inward), 
and/or the presence of a red or scaly skin patch.10,11 In 
addition, individuals with the disease or tumours that have 
metastasised to distant sites may experience symptoms 
such as bone pain, difficulty in breathing, enlarged lymph 
nodes, and/or jaundice.12 Factors that increase the risk of 
developing BC encompass a sedentary lifestyle, obesity, 
alcohol consumption, early onset of menstruation, ageing, 
delayed or absent childbearing, hormone replacement 
therapy during menopause, exposure to ionising radiation, 
a prior BC diagnosis and a family history of the disease.13

2.1. BC epidemiology and present trends

BC is the second most common cause of cancer-related 
mortality in women globally.14 The World Health 
Organization reported that in 2020, BC was diagnosed in 
2.3 million women worldwide, resulting in 685,000 fatalities. 
By the end of 2020, there were 7.8 million women who had 
received a BC diagnosis within the past 5 years, solidifying its 
status as the most widespread cancer globally. Moreover, BC 
affects women of all ages in every country after they reach 
puberty, with higher incidence rates in later life. Alarmingly, 
around 0.5 – 1% of BC cases are observed in males.15

Moreover, BC has experienced a significant rise in both 
the number of cases and fatalities in the past 30  years. 
Between 1990 and 2016, BC cases more than doubled in 
60 out of 102 countries, including Afghanistan, Argentina, 
Brazil and the Philippines. Simultaneously, BC-related 
deaths also doubled in 43 out of 102 countries, including 
Libya, Paraguay, Saudi Arabia and Yemen.16 It has been 
suggested that according to the projections for the year 
2030, there will be approximately 2.7 million new cases of 
BC diagnosed globally each year, with around 0.87 million 
annual deaths.17 Moreover, the incidence of BC in low- and 
middle-income countries is anticipated to rise even more, 
primarily because of the increasing adoption of Western 
lifestyles, which include the previously mentioned risk 
factors. In addition, improved cancer registration and 
diagnostic capabilities also contribute to the observed 
increase in reported cases.18

https://dx.doi.org/10.36922/EJMO025150095


Volume 9 Issue 3 (2025)	 34� doi: 10.36922/EJMO025150095

NOTCH3 in CSVD and breast cancer

Eurasian Journal of 
Medicine and Oncology

2.2. Genetics of BC: Present updates

While BC research has predominantly focused on 
understanding the molecular mechanisms behind 
tumourigenesis, metastatic spread to distant organs 
following the surgical removal of the primary tumour 
remains a significant factor contributing to unfavourable 
outcomes.19 Hence, it is crucial to gain a deeper 
comprehension of the molecular mechanism that drives 
cancer cell seeding and the development of metastases. 
This knowledge is beneficial for the development of novel 
therapies specifically targeting breast tumour metastasis-
initiating cells, with the goal of halting the advancement 
of the tumour.

Despite only about 5 – 10% of BC cases having a genetic 
basis, multiple genetic mutations have been identified as 
strongly linked to an elevated risk of developing BC. Two 
prominent genes with a significant penetrance, BRCA1 
(located on chromosome 17) and BRCA2 (situated on 
chromosome 13), are primarily associated with an elevated 
risk of BC development.20 The mutations in these genes 
are typically inherited through an autosomal dominant 
pattern, but sporadic mutations are also frequently 
documented. Additional BC genes with significant 
penetrance, such as TP53, CDH1, PTEN and STK11, have 
also been reported.21-24 In addition to the heightened risk 
of BC, individuals with these mutations are also at an 
increased susceptibility to ovarian cancer.

In addition, genetic predisposition plays a critical 
role in a subset of BC cases, particularly those with early 
onset or strong family history. While 5 – 10% of BCs are 
hereditary, several high-  and moderate-penetrance genes 
significantly elevate the associated risk.20,25 BRCA1 and 
BRCA2 mutations remain the most studied, with high 
lifetime risks for BC and ovarian cancer. Other key genes, 
such as TP53, PALB2, CHEK2 and ATM influence tumour 
suppression and DNA repair pathways. These mutations 
typically follow autosomal dominant inheritance patterns. 
Table  1 summarises the most clinically relevant genes, 
their functions and associated cancer risks.

In addition to genes related to BC, NOTCH receptors 
have been reported to be likely to exert distinct regulatory 
effects on BC cells.36 Therefore, it is crucial to define the 
specific functional roles of individual NOTCH receptors 
in propelling tumour advancement. Later in this narrative 
review, we provide evidence that the expression of 
NOTCH3 is associated with the pathogenesis of cancer 
cell dissemination and the progression of BC metastases. 
Moreover, there is an increasing body of evidence 
suggesting that BC can lead to the onset and progression of 
ischemic stroke, and BC is currently being referred to as a 
risk factor for stroke and its subtypes. In the next section, 

we will discuss the precursor for ischemic stroke, CSVD 
and its relation to BC.

3. CSVD
CSVD is responsible for approximately 25% of ischemic 
strokes, most intracerebral haemorrhages in individuals 
over the age of 65, as well as the primary cause of vascular 
dementia. A recent study also linked CSVD with vascular 
Parkinsonism.37 In addition, it is linked to issues with 
mobility, gait, neurobehavioural functions and mood 
disorders.38 The pathophysiological foundation of CSVD 
encompasses alterations in the structure and function of 
the microvasculature within the deep subcortical regions. 
These alterations primarily affect arteries, including 
tributaries of the middle cerebral artery, and arterioles, 
resulting in phenomena, such as fibrinolysis, lipohyalinosis, 
necrosis and microthrombosis.39,40

CSVD is a condition that becomes increasingly 
prevalent with age and is frequently encountered as 
an incidental discovery during neuroimaging. This 
condition is frequently underestimated by healthcare 
professionals because of its covert (silent) nature, as it 
often presents without symptoms. Clinically, it commonly 
presents with subtle but progressive symptoms such as 
forgetfulness, depression, slowed thinking, balance issues, 
and urinary urgency.38 Present neuroimaging indicators 
(or manifestation) of CSVD based on the Standards 
for Reporting Vascular Changes on Neuroimaging 
2 encompass recent small subcortical infarcts, white 
matter hyperintensities (WMHs) of presumed vascular 
origin, lacunar infarcts (of presumed vascular origin), 
enlarged perivascular spaces, cerebral microbleeds, 
cortical superficial siderosis, brain atrophy and cortical 
cerebral microinfarcts.41 Frequent cardio-cerebrovascular 
risk factors for sporadic CSVD, including ageing, type  2 
diabetes, hypertension, smoking and dyslipidaemia, 
elevate the risk of pathological alterations in arteries and 
arterioles, potentially resulting in vessel blockage, which 
in turn leads to the development of arteriosclerosis and 
arteriolosclerosis.40

Several aetiopathogenic classifications have been 
proposed for CSVD. Nevertheless, the most widely 
acknowledged categories of CSVD include amyloidal 
CSVD (e.g., sporadic and hereditary cerebral amyloid 
angiopathy) and non-amyloid CSVD, which encompasses 
age-related and small vessel disease related to vascular risk 
factors (such as arteriolosclerosis and ageing).42 Meanwhile, 
the less prevalent categories of CSVD encompass inherited 
or genetic (monogenic) forms, which exhibit distinct 
characteristics separate from cerebral amyloid angiopathy. 
Examples include Fabry’s disease and CADASIL, as well 
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as inflammatory and immune-mediated CSVD, venous 
collagenopathies and other forms of CSVD, including non-
amyloid microvessel degeneration in Alzheimer’s disease 
and post-radiation angiopathy.43 Various pathomechanisms 
and molecular cascades have been proposed for the 
onset and progression of CSVD, and many of which are 
interrelated across most, if not all, CSVD categories.44-50

4. Putative clinicopathological correlates of 
BC and CSVD
CSVD is a precursor for ischemic stroke, a complex 
pathological event leading to sudden neurological damage, 
with cancer being just one of the numerous associated risk 
factors. Simultaneously, it seems that the occurrence and 
frequency of both conditions are rising within the elderly 
population. Similarly, in cancer patients, cerebrovascular 
disease emerges as the second most prevalent neurological 
condition after metastases.51 However, this connection 
is frequently overlooked by the clinician. CSVD or 
even ischemic stroke may manifest at any stage during 
malignancy and, in some cases, serve as the initial sign of 

a silent malignancy in up to 3% of patients.52 In addition, 
post-mortem examinations of cancer patients show the 
presence of ischemic stroke in 15% of cases, with half of 
these cases being silent or asymptomatic.53 Considering 
that CSVD could potentially serve as the initial indication 
of neoplasia, in this case, BC. This necessitates a precise 
determination of the underlying cause to tailor treatment 
appropriately and enhance clinical outcomes.52

BC and malignancies in general, share numerous risk 
factors with CSVD. These risk factors are more prevalent 
among the elderly population, which also tends to have a 
higher burden of vascular risk factors. Studies have indicated 
that the prevalence of these vascular risk factors, including 
diabetes mellitus, obesity, hypertension, hyperlipidemia, 
smoking, alcoholism, and atrial fibrillation, is comparable 
between ischemic stroke patients with cancer and stroke 
patients without cancer.2,54 Considering both higher 
pathogenicity and prevalence of vascular risk factors, it comes 
as no surprise that these factors continue to be the most 
common cause of ischemic stroke, even among individuals 
with cancer, specifically BC.54 Alarmingly, studies have shown 

Table 1. Prominent genes linked to an elevated risk of breast cancer incidence

Gene Chromosome 
site

Function and degree of penetration Risk for breast cancer (%)

ATM26 11q22.3 • DNA repair and cell cycle regulation
• Moderate penetration

20 – 60

BRCA127 17q21.31 • DNA repair and cell cycle regulation
• High penetration

45 – 87

BRCA228 13q13.1 • DNA repair and cell cycle regulation
• High penetration

50 – 85

BRIP129 17q23.2 • Participation in BRCA1 function
• Moderate penetration

Limited Data

CDH130 16q22.1 • Cell adhesion regulation
• Regulate epithelial cell proliferation and mobility
• High penetration

63 – 83

CHEK231 22q12.1 • Cell cycle regulation
• Moderate penetration

20 – 25

PALB232 16p12.2 • DNA repair
• Moderate penetration

33 – 58

PTEN33 10q23.31 • Cell cycle regulation
• High penetration

50 – 85

STK1134 19p13.3 • Cell cycle regulation
• Upkeep of energy balance
• High penetration

32 – 54

TP5335 17p13.1 • �DNA repair, cell cycle regulation, triggering apoptosis, promoting senescence 
and sustaining cellular metabolism are all crucial cellular processes

• High penetration

20 – 85

Note: Risk percentages reflect ranges from recent meta-analyses (2020 – 2024).
Abbreviations: ATM: Ataxia telangiectasia mutated; BRCA1: Breast cancer gene 1; BRCA2: Breast cancer gene 2; BRIP1: BRCA1 interacting protein 
c-terminal helicase 1; CDH1: Cadherin 1; CHEK2: Checkpoint kinase 2; PALB2: Partner and localizer of BRCA2; PTEN: Phosphatase and tensin 
homolog; STK11: Serine/Threonine kinase 11; TP53: Tumour protein 53.
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that the conventional ischemic stroke mechanisms, such as 
cardioembolic and lacunar strokes, are roughly the same 
among patients with and without cancer.54 Furthermore, 
previous studies have indicated that atherosclerosis is the 
leading cause of ischemic stroke in patients with neoplasia.1

The exact mechanisms of CSVD and ischemic stroke in the 
context of BC remain vague. Given that vascular risk factors 
are widespread among CSVD and/or ischemic stroke patients, 
whether both CSVD and BC emerge independently and 
simultaneously, or if BC directly impacts the pathophysiology 
of CSVD and/or ischemic stroke, remains uncertain. 
Interestingly, hypercoagulability has been considered the 
primary mechanism behind ischemic stroke in individuals 
with cancer.55 Tumour cells secrete pro-coagulant molecules, 
including tissue factors and cancer pro-coagulants, such as 
cysteine protease, which enhance the coagulation process. 
Furthermore, they release various cytokines, such as tumour 
necrosis factor-alpha, and interleukins (ILs), including IL-1 
and IL-6.56 These molecules function as pro-coagulants 
through three mechanisms: First, by inducing cells to express 
tissue factors; second, by impeding the activation of Protein C; 
and finally, by causing shedding of vascular endothelial cells, 
thereby contributing to increased blood viscosity and clot 
formation.54 This constitutes a paraneoplastic phenomenon 
that remains poorly understood but is associated with reduced 
survival in affected individuals.57

Numerous studies have attempted to employ laboratory 
markers to assess coagulation abnormalities. D-dimer 
serves as an indicator of an activated coagulation system, 
including in patients with CSVD. Cancer patients who 
experience strokes tend to have elevated D-dimer levels 
in comparison to stroke patients without cancer.2,54,57 
D-dimer is also an independent predictor for CSVD 
and strokes caused by non-conventional mechanisms, 
which are notably linked to cancer in several studies.58 
Moreover, previous studies have reported a greater 
occurrence of micro-embolisms detected by transcranial 
Doppler inpatients who experienced strokes due to 
cancer, especially in cases involving unconventional stroke 
mechanisms. This correlation was notably significant and 
aligned with elevated D-dimer levels.59 Nevertheless, it’s 
important to note that D-dimer is a non-specific marker, 
as it can become elevated in various situations, even in 
cancer patients who do not have a stroke.57 Hence, new and 
alternative approaches are needed to further strengthen 
the association between CSVD and/or stroke and cancer, 
specifically BC in this context.

4.1. Roles of NOTCH3 in BC and CSVD

The Notch gene received its initial identification during 
research on irregular notched-wing Drosophila melanogaster 

in 1914.60 NOTCH signalling contributes to a range of 
biological processes in different species, including organ 
development, tissue maintenance, and tissue regeneration. 
Consequently, disrupted NOTCH signalling can lead to 
pathological outcomes. In addition, NOTCH protein and 
its homologs, including NOTCH1, NOTCH2, NOTCH3, 
NOTCH4, LIN-12, and glucagon-like peptide 1, have 
been detected in genomes across all biological kingdoms, 
signifying the ongoing diversification of the NOTCH 
family. Their length spans from approximately 110 amino 
acids in bacteria to about 4,500 amino acids in animals.61 
Members of the NOTCH family have evolutionarily 
preserved type-1 transmembrane glycoproteins, serving the 
dual role of acting as transmembrane receptors for ligands 
and functioning as transcription factors.62 To date, there 
are four paralogous NOTCH transmembrane receptors 
encoded by four distinct genes, namely, NOTCH1 to 4 
were found in mammals.

Structurally, the human NOTCH family receptor 
comprises an extracellular domain (NOTCH extracellular 
domain, NECD), a transmembrane domain, and an 
intracellular domain (NOTCH intracellular domain, 
NICD) (Figure  1).63 The NECD comprises between 29 
and 36 epidermal growth factor-like repeats (EGF-like 
domains), a number that varies depending on the receptor 
type, along with a negative regulatory region (NRR). The 
NRR consists of three cysteine-rich LIN-12/NOTCH 
repeats (LNRs) and a heterodimerisation domain. Each 
EGF-like repeat contains six cysteines, resulting in the 
formation of three disulphide bonds that contribute to the 
protein’s three-dimensional structure.3 Moreover, a recent 
study detailed that the NICD is comprised of an RBPJκ-
associated molecule (RAM) domain, a domain with seven 
ankyrin repeats (ANK), nuclear localization sequences 
(NLS), a transcriptional activation domain (TAD), and a 
C-terminal Pro-Glu-Ser-Thr (PEST) domain (Figure 1).64 
While NOTCH receptors are largely preserved, they 
exhibit structural variability, particularly in the number of 
EGF-like repeats, the presence of the TAD domain, and the 
length of the segment between the ANK repeats and the 
C-terminal region.65

5. NOTCH3 signalling
The NOTCH3 gene encodes a receptor of approximately 
2321 amino acids, which dictates the fate of vascular 
smooth muscle cells (VSMCs) within the brain’s arterial 
network.66 Activation of the NOTCH (in this case 
NOTCH3) signalling pathway occurs through cellular 
interactions with a NOTCH ligand. In mammals, there 
are five NOTCH ligands have been reported, such as delta-
like ligands (DLL) 1, 3, and 4 and jagged (JAG) 1, and 2. 
Before reaching the cell membrane, the intact NOTCH3 
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receptor undergoes an initial cleavage, often referred 
to as S1 cleavage, within the Golgi apparatus. When a 
NOTCH ligand (JAG or DLL) on the cell membrane of 
an adjacent signal-sending cell engages with a NOTCH3 
receptor on the cell membrane of the signal-receiving cell, 
it triggers the activation of the NOTCH3 receptor, leading 
to a subsequent proteolytic cleavage. The processes known 
as S2 and S3 cleavage are initiated by a disintegrin and 
metalloprotease domain-containing protein 10 and the 
γ-secretase complex, respectively, as reported in previous 
studies.62,67 Following these cleavages, the NICD is 
released and translocated into the nucleus, where it forms 
a complex by binding to the DNA-binding transcription 
factor CBF-1 (RBPJ)/suppressor of hairless/Lag1 (CSL). 
This complex then recruits the transcriptional co-activator 
known as mastermind-like (MAML) protein to stimulate 
the transcription of downstream target genes. Finally, the 
NOTCH3 receptor or NICD undergoes degradation in the 
proteasome or lysosome.62,67,68

The existing evidence suggests that the activation 
of NOTCH3 occurs through the stereotypical ligands 
containing DSL domains, following the mechanism 
described above.69 However, recent findings suggest 
that NOTCH3 exhibits a significant baseline of 

ligand-independent signalling, which may be relevant 
to both its physiological functions and pathological 
conditions.70 Although the mechanism remains elusive, 
it has been reported that the native NRR fold of EGF is 
comparatively less stable in NOTCH3 than in other studied 
NOTCH proteins. Whether this ligand-independent 
process is contingent upon NOTCH3 endocytosis, like the 
activation mechanisms observed in Drosophila sp., remains 
to be determined. Furthermore, it cannot be ruled out that 
non-canonical ligands may play a role. For instance, Y-box 
binding protein 1, a protein related to cold shock domains, 
has been reported to activate NOTCH3 by binding to 
EGF-modules 20 – 23, potentially influencing immune and 
inflammatory responses.71

5.1. Roles of NOTCH3 in vasculogenesis

As discussed, NOTCH3 plays a significant part in vascular 
development, specifically within the lineage responsible 
for determining the fate of VSMCs. A pre-clinical animal 
study on post-natal mice lacking NOTCH3 revealed 
defects in the maturation of smooth muscle cells, arterial 
differentiation, and morphology when compared to 
wild-type mice. This resulted in thinner and improperly 
structured smooth muscle cell layers, which typically 

Figure  1. An overview of the structural characteristics of NOTCH family receptors, between Drosophila melanogaster and 
Homo sapiens NOTCH family receptors are depicted with key domains labelled, encompassing the NECD that includes EGF, 
cysteine-rich LNR repeats and NOTCH domain present in multiple NOTCH proteins (NOD/NODP). NECD was separated 
from the NICD by the TM. NICD includes RAM domain, ANK, NLS, TAD, and PEST domain. Image created by the authors. 
Abbreviations: ANK: Ankyrin repeat domain; EGF: Epidermal growth factor; LNR: LIN-12/NOTCH repeat (LNR); NECD: NOTCH extracellular 
domain; NICD: NOTCH intracellular domain; NLS: Nuclear localization sequences; PEST: Pro-Glu-Ser-Thr; RAM: RBPJκ-associated molecule; TAD: 
Transcriptional activation domain; TM: Transmembrane domain.
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surround arterial vessels.72 Moreover, in vitro studies 
suggest that the expression of JAG-1 in endothelial cells 
triggers the activation of NOTCH3 in VSMCs, and this 
process forms an auto-regulatory loop that sustains the 
expression of NOTCH3 in VSMCs.69 In this process, 
a pivotal downstream effector is the platelet-derived 
growth factor (PDGF) signalling pathway, and NOTCH3 
activation leads to the upregulation of PDGF.73

Additional research has demonstrated that NOTCH3 
plays earlier roles within the VSMC lineage, although these 
functions may be concealed by the partial redundancy 
with other NOTCH homologues. In one animal study on 
zebrafish, researchers have found that Notch2 and Notch3 
cooperate to govern the embryonic production of both 
mesoderm-derived and neural crest-derived mural cells, 
which serve as precursors for VSMCs.74 This was supported 
by a later study that revealed a comparable redundancy in 
mice models, as double mutants lacking both NOTCH2 and 
NOTCH3 are embryonically lethal, and this is associated 
with a profound reduction in VSMCs and the presence of 
vascular abnormalities.75 Nonetheless, additional research 
employing primary cell cultures has unveiled distinctive 
roles for NOTCH2 and NOTCH3 within the VSMCs. For 
example, NOTCH2 exerts an inhibitory effect on VSMC 
proliferation, whereas NOTCH3 facilitates proliferation 
and serves as a protective factor against VSMC apoptosis.76 
The functional overlap and interactions between various 
NOTCH proteins are therefore intricate and greatly 
context-dependent.

5.2. NOTCH3 and cancer

While the primary role of NOTCH appears to be the 
regulation of vasculogenesis, where its dysregulation has 
been associated with various vascular disorders, it can 
also exhibit tumour-suppressing or oncogenic functions. 
Numerous studies have demonstrated the common 
occurrence of aberrantly elevated NOTCH3 expression 
in human cancer tissues. Table 2 summarises the tumour-
suppressive and oncogenic roles of human NOTCH3.

The overexpression of NOTCH3 in cancer tissues is 
associated with various clinicopathological characteristics, 
including larger tumour size, advanced tumour-node-
metastasis stage, higher pathological grade, tumour 
metastasis, and an unfavourable prognosis. This is reflected 
in diminished disease-free survival, progression-free 
survival, relapse-free survival, and overall survival among 
cancer patients.100,101 The predominant cause for NOTCH3 
overexpression in cancer is genetic alterations within the 
NOTCH3 gene. According to the Cancer Genome Atlas, 
the NOTCH3 gene was modified in 5% of cancer samples, 
primarily through mutations and gene amplification.102 

Moreover, one study reported that mutations in the NRR 
and PEST domains of the NOTCH3 gene could lead to 
NOTCH3 activation, characterised as gain-of-function or 
activating mutations. These mutations have been observed 
in human T-ALL.103

An important function of NOTCH3 is the preservation 
of cancer stem cell (CSC) stemness. CSCs, a subset of self-
renewing cells possessing strong tumourigenic potential, 
are known to be stimulated by NOTCH3 signalling in 
various cancer types, thereby contributing to cancer 
progression through intricate mechanisms. Another 
significant aspect of NOTCH3 signalling is its ability to 
promote resistance to multiple types of chemotherapeutic 
drugs, such as platinum agents, doxorubicin, epidermal 
growth factor receptor (EGFR)–tyrosine kinase inhibitors, 
taxanes, and gemcitabine. It’s important to highlight that 
the support of CSC activity by NOTCH3 is also implicated 
in the mechanisms of tumour chemo-resistance, 
angiogenesis, and metastasis.36,104,105 These underscore the 
pivotal role of NOTCH3 signalling in cancer.

6. Roles of NOTCH3 in BC
In the context of BC, NOTCH3 typically functions as an 
oncogene, with a few exceptions. Notably, NOTCH3 has 
been shown to induce the development of mammary 
tumours in transgenic mice.6 Among BC cell lines, 
NOTCH3 signalling remains persistently active, and when 
compared to other NOTCH receptors, its activity alone is 
adequate to drive tumour growth both in vitro and in vivo.7 
Recently, there has been an acknowledgement of the role 
of juxtacrine NOTCH signalling between tumour cells and 
distinct cell types within the tumour microenvironment 
(TME).106

The communication between cancer cells and the 
TME, which includes both juxtacrine and paracrine 
signalling, holds significance in the development of novel 
targeted therapies for BC progression and addressing 
drug resistance.107 Certainly, the activation of NOTCH3 in 
tumour cells stimulates the release of various soluble factors 
that can exert paracrine effects on cells within the TME.108 
These effects extend to immune and stromal cells, including 
cancer-associated fibroblasts (CAFs) and endothelial cells. 
However, it’s important to highlight that CAFs can also 
enhance NOTCH3 signalling and contribute to resistance 
by secreting multiple pro-inflammatory cytokines and 
chemokines.109,110 Indeed, Studebaker et al.111 observed that 
BC CAFs activate NOTCH3 through the secretion of IL-6.

Apart from that, a previous study by Yamaguchi 
et  al.112 highlighted the significance of NOTCH3 
signalling when compared to other NOTCH family 
members. They revealed that reducing NOTCH3 
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expression significantly inhibited growth and stimulated 
apoptosis in receptor tyrosine-protein kinase (ErbB2)-
negative tumour cell lines. Interestingly, this effect was 
not seen in ErbB2-positive tumour cells. Conversely, 
silencing NOTCH1 using small interfering (siRNA) 
did not hinder the proliferation of either ErbB2-
positive or ErbB2-negative cell lines. Nonetheless, one 
study demonstrated that CAFs can produce substantial 
amounts of the chemokine (C-C motif) ligand 2 (CCL-
2).109 This chemokine, in turn, can regulate the CSC 
phenotype and influence NOTCH1 expression in BC 
cells. Similarly, in a xenograft model where fibroblasts 
and BC cells were co-transplanted into NOD/SCID/
IL-2Rg-null mice, the elimination of CCL-2 significantly 
reduced tumourigenesis and NOTCH1 expression. This 

suggests that CAFs can engage in crosstalk with cancer 
cells through a CCL-2/NOTCH1 axis.113

In addition, NOTCH3 activation has been observed in 
a human xenograft model of inflammatory BC through 
various methods, including real-time quantitative 
reverse transcription polymerase chain reaction, western 
blotting, and immunohistochemistry.114 In triple-negative 
BC (TNBC), NOTCH3 aberrations, specifically the 
amplifications of NOTCH3, are more frequently observed 
compared to mutations. When mutations do occur, 
they tend to affect the PEST domain, which is generally 
associated with the negative regulation of gene expression.77 
Moreover, among the TNBC samples, 34% of the tumours 
tested positive for the NOTCH3 intracellular domain 
(NICD3), whereas only 4% were positive for the NOTCH1 

Table 2. Tumor-suppressive and oncogenic roles of human NOTCH3

Type of cancer Clinicopathological features

Breast cancer • In TNBC, NOTCH3 amplifications are more frequently observed than mutations.77

• �In TNBC, mutations have been observed within the PEST domain, which plays a role in negatively regulating gene 
expression.78

• NOTCH3 is linked to increased invasiveness and a higher rate of metastasis in breast cancer.79

• NOTCH3 is connected to the development of chemoresistance.80

• NOTCH3 can enhance chemo-sensitivity in doxorubicin-resistant breast cancer.80

Colorectal cancer • NOTCH3 is frequently found to be expressed at markedly elevated levels compared to its expression in normal tissue.81

• NOTCH3 is linked to the invasiveness and metastasis of the tumour.82

• NOTCH3 is connected to chemo-resistance and leads to poorer clinical outcomes.83

Haemangioma • The expression of NOTCH3 is increased in stem cells of infantile hemangioma.84

Hepatocellular carcinoma • NOTCH3 is linked to the invasiveness and metastasis of the tumour.85

• NOTCH3 expression is markedly elevated (especially in larger tumours) compared to its expression in normal tissue.86

Nasopharyngeal 
carcinoma

• �Knocking down the expression of NOTCH3 in nasopharyngeal carcinoma enhanced the sensitivity to cisplatin 
chemotherapy.87

Non-small cell lung cancer • 40% of non-small cell lung cancers had NOTCH3 overexpression.88

• NOTCH3 suppressed apoptosis and reduced cell proliferation.88

• NOTCH3 is linked to the invasiveness and metastasis of the tumour.89

• NOTCH3 is connected to radiotherapy resistance, and chemo-resistance and leads to poorer clinical outcomes.90

Ovarian cancer • �The expression NOTCH3 is notably elevated in ovarian cancer when compared to normal ovaries or benign ovarian 
tumours.91

• �The expression of NOTCH3 is linked to a higher tumour grade, lymph node, and distant metastasis, as well as a more 
advanced clinical stage.91

• �NOTCH3 overexpression is linked to tumour recurrence and a higher mortality rate.92

• �Stimulating the NOTCH3 intracellular domain resulted in the accumulation of p27kip1, causing cancer cells to arrest in 
the G0/G1 phase of the cell cycle.93

Prostatic adenocarcinoma • �The expression of NOTCH3 is positively associated with the Gleason score, and overexpression of NOTCH3 is observed 
in prostate cancers with a high risk for metastasis.94,95

• �NOTCH3 is connected to chemo-resistance.95

Squamous cell cancer • �The expression of NOTCH3 is notably elevated in comparison with normal cells.96

• �NOTCH3 is linked to the aggressiveness of oesophageal squamous cell carcinoma and resistance to 5-fluorouracil 
chemotherapy.97

T-cell acute lymphoblastic 
leukaemia (T-ALL)

• �The activation of NOTCH3 signalling is connected to cancer cell survival and proliferation.98

• �Knockdown of NOTCH3 resulted in reduced MKP-1 levels, ultimately causing decreased tumourigenicity and an increase 
in apoptosis in T-ALL.99

Abbreviations: TNBC: Triple-negative breast cancer; MKP-1: Mitogen-activated protein kinase phosphatase 1; T-ALL: T-cell acute lymphoblastic 
leukaemia.
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intracellular domain (NICD1).7 Nonetheless, the exact role 
of NOTCH3 in BC remains unclear. A  study conducted 
by Chen et al.93 proposed that the activation of the NICD3 
resulted in the accumulation of p27kip1, leading to the 
arrest of cancer cell cycles in the G0/G1 phase.

Another extensively recognised immune component 
of BC is the presence of tumour-associated macrophages 
(TAMs). One study indicated that the JAG-mediated 
NOTCH signalling in BC has been linked to the 
differentiation of macrophages into TAMs within the 
TME in luminal BC patient samples.115 When tumour cells 
and TAMs are co-cultured, it leads to the differentiation 
of macrophages into a predominant M2-type phenotype. 
While TAMs can exhibit both inflammatory and 
immunosuppressive behaviours, in BC patient samples 
they are primarily linked to the immunosuppressive M2 
subtype. This association is largely due to the elevated 
secretion of macrophage colony-stimulating factors by 
tumour cells, which directs macrophages toward the M2 
phenotype.116 On the other hand, in the basal subtype of 
BC, NOTCH3 signalling through JAG-1 in tumour cells 
triggers the release of crucial macrophage-activating 
cytokines, including IL-β and CCL-2. These cytokines 
facilitate the recruitment of M2-type macrophages, 
which subsequently secrete transforming growth factor-β 
(TGF-β), thus activating TGF-β signalling within the 
tumour cells.108 The interplay between tumour cells and 
TAMs mediated by NOTCH3 signalling could also be 
of significance in the development of drug resistance, 
although additional investigation is needed.108

The involvement of NOTCH3 in the epidermal-to-
mesenchymal transition (EMT) in BC remains a topic of 
debate. Some researchers have indicated that NOTCH3 
encourages tumour aggressiveness by instigating EMT, 
while others have shown evidence that NOTCH3 inhibits 
EMT, for instance, by upregulating the Hippo/Yap 
pathway.7 It has been reported that EMT inhibition can 
also occur through the reduction of Fos-related antigen 1 
(Fra1), an activator of the EMT process. This observation 
was made in human BC cells that developed resistance to 
Adriamycin, where Fra1 was expressed at elevated levels 
whilst NOTCH3 was downregulated.80 Conversely, within 
metastatic BC cells, a reduction in NOTCH3 levels resulted 
in reduced levels of EMT-associated proteins, such as 
vimentin, fibronectin and Snail.

Previous study on animal models of allergic airway 
inflammation have shown that regulatory T-cells (Tregs), 
another prominent immune component associated with 
immune suppression, are elevated by both JAG-1 and 
JAG-2 through the involvement of mesenchymal stem 
cells.117 Both JAG-1 and JAG-2 exhibit elevated expression 

levels in TNBC.118 Given that Tregs play a role in evading 
immune surveillance and are associated with increased 
tumour invasiveness and unfavourable prognoses, the 
disruption of Tregs’ function mediated by NOTCH3 
signalling could significantly impact on BC therapy. 
Nonetheless, no study has directly examined NOTCH3 
signalling within Tregs in the context of BC. Therefore, it is 
imperative to gain a better understanding of how different 
NOTCH3 ligands and receptors regulate the recruitment 
of Tregs. Intriguingly, NOTCH3 signalling can also 
hinder the function of Tregs, potentially diminishing their 
capacity for immunosuppression.119

6.1. NOTCH3 and BC metastasis and chemo-sensitivity

In terms of BC metastasis, NOTCH3 expression is notably 
higher in invasive cancer when compared to ductal 
carcinoma in situ.78 In addition, the truncated isoform 
of the Fms-related receptor tyrosine kinase 1 has been 
linked to enhanced BC invasiveness and was found to 
be upregulated by NOTCH3.120 Lymphovascular emboli 
in human inflammatory BC have shown elevated levels 
of NOTCH3 expression. When normal breast epithelial 
cells were transfected with NICD3, spheroid formation 
was observed, a phenomenon that was not seen after 
NICD1 transfection.8 An exclusive elevation in NOTCH3 
expression was also observed in human BC cell lines 
following exposure to TGF-β1 released by bone marrow 
osteoblasts. The formation of cancer cell colonies was 
impeded upon treatment with an anti-TGF-β1 antibody 
and chemical inhibition of NOTCH3. Furthermore, the 
expression of NOTCH3 was linked to the presence of 
osteolytic bone lesions.121

Another mechanism by which NOTCH3 can 
enhance the aggressiveness of BC is through its role in 
cellular metabolism. NOTCH3 activity is crucial for 
the survival of metastatic BC cells resistant to hormone 
therapy. Furthermore, it has been demonstrated to boost 
mitochondrial activity and facilitate the transition out 
of metabolic dormancy. In tamoxifen-resistant cells, 
mitochondrial DNA copy number, mitochondrial 
antigen expression, and oxidative phosphorylation were 
all reduced. The decline in mitochondrial activity was 
reversed through IL-6 treatment, which was orchestrated 
by NOTCH3.79 The critical function of NOTCH3 in 
reversing the mitochondrial damage induced by tamoxifen 
was substantiated when IL-6 treatment proved ineffective 
in enhancing mitochondrial activity in cells with 
suppressed NOTCH3.79 Multiple studies have supported 
that in metastatic BC, the presence of functional NOTCH3 
is indispensable for IL-6 to sustain elevated levels of 
carbonic anhydrase, an enzyme linked to survival in 
hypoxic conditions and increased invasiveness in cancer.122
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NOTCH3 can enhance chemo-sensitivity in 
doxorubicin-resistant BC by negatively regulating 
Fra1, a critical factor in the EMT of BC cell lines.80,123 In 
doxorubicin-resistant BC cells, Fra1 was notably over-
expressed while NOTCH3 was under-expressed. This 
resistance was attributed to the EMT induced by Fra1. It 
was possible to induce Adriamycin chemo-resistance in 
initially chemo-sensitive cells by suppressing NOTCH3 
signalling.80 Apart from that, the stromal cells can also 
further enhance chemo-resistance by stimulating the 
expression of NOTCH3 in BC cells, an effect that can 
be counteracted with NOTCH3 siRNA or a γ-secretase 
inhibitor (GSI).110 Another mechanism by which cancer 
cells resist treatment is through a state of tumour dormancy. 
Activation of the NOTCH3 pathway induces cell cycle 
arrest at the G0/G1 phase and promotes the expression 
of DNp63a, Mix1 and Hes1 proteins, which encourage 
cellular quiescence.124

Given the constrained effectiveness of immunotherapy 
directed solely at tumour cells in BC, it becomes crucial 
to comprehend the regulatory function of NOTCH3 
signalling in the interactions between cancer cells and 
immune cells within the TME across various subtypes of 
BC. This understanding can facilitate the identification of 
more effective drug targets involving NOTCH3 signalling 
and immune cells.

7. NOTCH3 and the brain
A previous study reported that adult mice with NOTCH3 
deficiency exhibit ongoing progressive symptoms in the 
vasculature of the brain and retina, stemming from VSMC 
degeneration and loss through apoptosis.125 This leads to 
a breakdown in vessel integrity, causing haemorrhaging 
and impairing the functionality of the blood–brain barrier 
(BBB). Furthermore, the expression of NOTCH3 in 
VSMCs contributes to the regulation of vascular tone and 
flow-mediated dilation in both cerebral and tail resistance 
arteries in mice.125 Moreover, the functions of NOTCH3 
may extend beyond vascular roles, whereby recent research 
has reported its involvement in neuronal stem cells and 
neuronal differentiation.126

The subependymal zone serves as a crucial stem 
cell niche within the adult mammalian brain, housing 
both active and dormant stem cell populations. There 
is a distinct functional difference between NOTCH1 
and NOTCH3 in the regulation of these populations. In 
mouse model studies, NOTCH1 is expressed in active 
stem cells, stimulating their proliferation. On the other 
hand, NOTCH3 is primarily expressed in quiescent stem 
cells, and its role is essential for maintaining these cells by 
inhibiting their proliferation.127 Apart from that, NOTCH3 

participates in the regulation of satellite cells, which are 
stem cells responsible for the repair of skeletal muscle. 
A recent study demonstrated that mice lacking NOTCH3 
exhibited significantly greater muscle growth than their 
wild-type counterparts following repeated injuries, which 
was attributed to the increased proliferation of activated 
satellite cells.128 In contrast, NOTCH1 has been associated 
with promoting satellite cell activation and proliferation.129

7.1. NOTCH3 gene aberration and risk for ischemic 
stroke

The exact pathophysiological mechanisms responsible 
for ischemic stroke and its various subtypes remain 
incompletely understood. A  combination of genetic and 
environmental factors probably contributes to the onset and 
progression of the condition.130 The NOTCH3 gene is in the 
19p13.12 region, spanning from 15,159,633 base pairs to 
15,200,981 base pairs. It comprises 33 exons and 32 introns 
and encodes a protein consisting of 2,321 amino acids, 
which plays a critical role in neuronal development.131 The 
NOTCH3 gene variants, rs1044009 (g.45022C > T, c.6668C 
> T, p. Ala2223Val), and rs3815188 (g.13568C > T, c.303C 
> T, p. Thr101=), correspond to a missense mutation and 
a synonymous variant, respectively. Both polymorphisms 
are situated within the intracellular DUF3454 domain of 
the protein, and they have a direct impact on the signal 
transduction activity of NOTCH3. However, NOTCH3 
rs1043994 (g.13949A > G, c.606A > G, p. Ala202=) is a 
benign point mutation or synonymous variant situated 
in the conserved protein family of the calcium-binding 
endothelial growth factor (EGF)-like domain within the 
NOTCH3 protein.132

Certain mutations in the NOTCH3 gene have been 
documented as a direct cause of CADASIL, an autosomal 
dominant disorder affecting cerebral small penetrating 
vessels. It presents typical clinical symptoms such as 
migraine with aura, recurrent ischemic strokes in early to 
middle adulthood, apathy, neuropsychological symptoms 
and cognitive impairment that advances to dementia.132 
The details on NOTCH3 gene aberration and its roles in 
ischemic strokes and CSVD will be discussed in the later 
section.

7.2. NOTCH3 and inherited cause of CSVD

However, as far back as the 1970s, literature documented 
families who, despite lacking typical vascular risk factors, 
exhibited a heightened susceptibility to CSVD. Studies 
reported cases of families in which multiple-infarct 
dementia afflicted individuals in a manner consistent with 
autosomal-dominant inheritance.133,134 The prevalence of 
deep white-matter lesions in these individuals indicated 
that they were likely influenced by a genetic factor causing 
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severe CSVD. Indeed, examinations of tissues samples 
from members of these families revealed distinct brain 
pathology, characterised by degenerative alterations in the 
walls of cerebral arteries.135 Therefore, it became evident 
that while most cases of CSVD are sporadic or involve 
multiple genes, a certain portion is probably attributed to 
monogenic genetic variations.

Subsequently, an acronym was coined for the most 
prevalent monogenic autosomal-dominant form of CSVD, 
which is CADASIL. An analysis of numerous extensive 
and well-documented CADASIL families established a 
genetic linkage to a single disease locus on chromosome 
19q12.136 The defining pathological feature of CADASIL 
is the existence of granular osmophilic material (GOM) 
within the basement membrane of VSMCs. Common 
clinical manifestations in CADASIL patients encompass 
migraine with aura, transient ischemic attacks or ischemic 
strokes, intracranial haemorrhage, cognitive deficits, and 
psychiatric disturbances. Patients may exhibit one or 
more of these symptoms. Neuroimaging, typically MRI, 
frequently reveals WMHs, lacune infarcts and cerebral 
microbleeds.137 Anomalies in periventricular regions 
appear as initial findings on fluid-attenuated inversion 
recovery and T2-weighted imaging. Over time, these 
anomalies spread symmetrically to affect other regions, 
including distinctive areas, such as the anterior temporal 
pole and the external capsule.138

The NOTCH3 gene encodes a single-pass transmembrane 
NOTCH3 receptor. It has been pinpointed as the causative 
gene for CADASIL.139 Exons 2 – 24 of the NOTCH3 gene 
encode 34 epidermal growth factor-like repeats (EGFRs) 
within the extracellular domain of the NOTCH3 protein.140 
Each EGFR contains six cysteine residues that form three 
disulphide bonds, contributing to the receptor’s structural 
stability. However, mutations that alter in the number 
of cysteine residues, changing from an even to an odd 
number, result in a structural change in the extracellular 
domain of the NOTCH3 receptor. This structural change 
leads to misfolding and the aggregation of the extracellular 
domain. Consequently, this misfolding and aggregation 
can give rise to the formation of GOM deposits, which are 
a distinctive characteristic of CADASIL. Furthermore, this 
process can also lead to the deterioration of VSMCs.141

CADASIL is a rare condition, and its estimated 
occurrence in the general population ranges from 1.98 
to 4.6  cases/100,000.142 Nonetheless, recent research 
indicates that NOTCH3 gene mutations, which alter 
cysteine, are considerably more common than previously 
documented.142 As an illustration, utilising exome 
databases that are publicly accessible, recent investigations 
have approximated the prevalence of NOTCH3 gene 

mutations that modify cysteine to be between 2.2 and 
3.4  cases/1000 individuals. This prevalence is nearly 
100  times higher than the earlier estimates available for 
CADASIL.143 The evident disparity in the estimates of 
disease and mutation occurrence lacks a comprehensive 
understanding but probably stems from variations in 
the extent of penetrance or the severity linked to these 
genetic mutations. This explanation aligns with evidence 
suggesting that not all individuals carrying NOTCH3 gene 
mutations, whether altering cysteine or sparing cysteine, 
or those with legitimate NOTCH3 loss-of-function 
mutations, exhibit symptoms.143 Hence, some individuals 
can be asymptomatic, which reflects the typical nature of 
CSVD.

7.3. Impact of aberrant NOTCH3 signalling in 
CADASIL and NOTCH3-related CSVD

The pathophysiological mechanisms underlying CADASIL 
involve NOTCH3 receptor activation by its ligands, leading 
to proteolytic cleavages and release of the NICD. The 
NICD then translocate to the nucleus, where it influences 
gene transcription and cellular processes. However, in 
CADASIL, the aberrant receptor structure disrupts this 
signalling cascade, promoting VSMC apoptosis and 
impairing vascular function.144

Moreover, recent findings highlight a significant baseline 
of ligand-independent NOTCH3 signalling, which could 
be relevant in both normal and pathological contexts.145 
This signalling variability underscores the complexity of 
NOTCH3-related diseases and suggests potential targets 
for therapeutic intervention. Understanding the precise 
molecular mechanisms and cellular effects of NOTCH3 
mutations is essential for developing targeted treatments 
for CADASIL and NOTCH3-related CSVD.

In conclusion, aberrant NOTCH3 signalling plays 
a critical role in the pathogenesis of CADASIL and 
NOTCH3-related CSVD. Advances in genetic and 
molecular research continue to unravel the complexities of 
this signalling pathway, offering hope for novel therapeutic 
strategies aimed at mitigating the clinical burden of these 
debilitating conditions.

8. NOTCH3 as a potential link between the 
BC and CSVD
The interplay between BC and CSVD through aberrant 
NOTCH3 signalling presents a compelling narrative that 
underscores the intricate pathophysiological mechanisms 
linking these two seemingly distinct conditions. This 
manuscript has delineated the critical role of NOTCH3 
in both oncogenesis and vasculogenesis, particularly 
highlighting its involvement in CADASIL and BC 
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metastasis. Figure  2 summarises the roles of NOTCH3 
as a potential molecular link between BC and CSVD 
(i.e., CADASIL).

Recent experimental studies have further elucidated the 
dual role of NOTCH3 signalling in both cerebrovascular 
and oncogenic contexts. In CSVD, particularly in CADASIL 
models, aberrant NOTCH3 activity has been shown to 

induce VSMC degeneration, arterial wall remodelling 
deficits, and compromised BBB integrity through increased 
apoptotic signalling pathways.72,125 These pathophysiological 
processes contribute to the hallmark features of CSVD, 
including WMHs and microvascular ischemia.

Moreover, mutations in the NOTCH3 gene lead to 
the misfolding and aggregation of the receptor, resulting 

Figure  2. Schematic illustration of the central role of NOTCH3 in linking BC and CSVD. In BC, NOTCH3 activation promotes tumor growth, 
metastasis, and chemo-resistance, as depicted by tumor cells, the microenvironment, and blood vessels. In CSVD, NOTCH3 gene mutations 
lead to VSMC degeneration, endothelial dysfunction, and ischemic stroke. A  potential targeted therapy against NOTCH3 aberration may 
serve as a dual strategy to potentially mitigate tumor progression in BC and prevent vascular damage in CSVD. Image created by the authors. 
Abbreviations: BC: Breast cancer; CSVD: Cerebral small vessel disease; VSMC: Vascular smooth muscle cell; BBB: Blood–brain barrier; CADASIL: 
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy.	
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in the degeneration of VSMCs and the formation of 
GOM, a hallmark of CADASIL. These pathophysiological 
changes disrupt vascular integrity, contributing to the 
clinical manifestations of CADASIL, including migraines, 
recurrent strokes, cognitive decline and psychiatric 
disturbances.

In BC, NOTCH3 signalling has been implicated in 
tumour growth, metastasis and chemo-resistance. Notably, 
studies have demonstrated that IL-6-induced NOTCH3 
activation promotes mitochondrial recovery in tamoxifen-
resistant BC cells, enabling the transition out of metabolic 
dormancy and enhancing survival under hypoxic stress.79 
Elevated NOTCH3 expression has been associated with 
increased invasiveness and higher metastatic potential, 
particularly in TNBC.77 Furthermore, NOTCH3 plays a 
critical role in maintaining CSC properties, facilitating 
EMT, and remodelling the TME through its interaction 
with TAMs and cytokines such as IL-6 and TGF-β.108,115 The 
convergence of these pathomechanisms suggests a shared 
pathway that may underline both CSVD and BC. This dual 
role of NOTCH3 in vascular and oncogenic processes 
opens new avenues for therapeutic interventions targeting 
this signalling pathway. By inhibiting aberrant NOTCH3 
activity, it may be possible to mitigate the vascular damage 
seen in CADASIL and suppress tumour progression and 
metastasis in BC.

Future research should prioritise elucidating the 
molecular mechanisms of ligand-independent NOTCH3 
signalling, which remains poorly understood but is 
increasingly recognised as relevant in both normal 
physiology and disease states. Studies investigating the 
structural instability of NOTCH3’s NRR and its role in 
spontaneous receptor activation could uncover novel 
regulatory checkpoints. Furthermore, the role of NOTCH3 
within the TME, particularly its crosstalk with CAFs, 
TAMs and Tregs, warrants further exploration to identify 
immunomodulatory functions that contribute to tumour 
aggressiveness and resistance.

Therapeutically, targeting NOTCH3 offers a promising 
dual-action approach. Strategies under development 
include GSIs, which block NOTCH receptor cleavage and 
downstream signalling,146 monoclonal antibodies specific 
to NOTCH3 or its ligands, such as DLL4 and JAG1, and 
selective NOTCH3 inhibitors. These agents may be used 
alone or in combination with conventional therapies to 
address vascular degeneration in CSVD and metastatic 
progression in BC. Pre-clinical models and early-phase trials 
should focus on optimising dosage, minimising off-target 
effects, and assessing tissue-specific responses. Ultimately, 
advancing these research directions could lead to integrated 
therapeutic strategies that transcend traditional disease 

boundaries and significantly improve outcomes for patients 
affected by both CSVD and BC. Despite the promising 
role of NOTCH3 as a therapeutic target, several challenges 
must be addressed to enable clinical translation. One major 
concern is the off-target effects, particularly when using 
non-selective agents, such as GSIs, which affect multiple 
NOTCH receptors and may lead to gastrointestinal 
and immunological side effects.147 Furthermore, tissue-
specific variability in NOTCH3 expression complicates 
the prediction of therapeutic responses and raises the risk 
of unintended impacts on normal vascular or immune 
function. Ensuring selectivity and safety in targeting 
NOTCH3, especially in the context of long-term treatment, 
is critical and warrants the development of more refined, 
receptor-specific strategies and delivery systems. In 
summary, the exploration of NOTCH3 signalling as a 
common link between CADASIL and BC underscores the 
importance of integrated research approaches that consider 
the multifaceted roles of key molecular players in disease 
pathogenesis. This comprehensive understanding could 
lead to innovative strategies for prevention, diagnosis, and 
treatment, ultimately benefiting patients affected by these 
debilitating conditions.

9. Conclusion
The intricate role of NOTCH3 in both CSVD and BC 
underscores its significance as a shared molecular driver 
of vascular degeneration and tumour progression. This 
review highlights how aberrant NOTCH3 signalling 
contributes to VSMC dysfunction and white matter 
damage in CSVD, while simultaneously promoting 
proliferation, chemo-resistance, and immune evasion 
in BC. These insights position NOTCH3 as a promising 
dual-purpose therapeutic target with potential benefits 
across neurovascular and oncologic domains. However, 
this synthesis also reveals several limitations and gaps in 
present knowledge. Notably, direct mechanistic studies 
that experimentally link NOTCH3 signalling between 
CSVD and BC are limited. The biological relevance 
of ligand-independent NOTCH3 activation remains 
incompletely understood, as does the precise role of 
NOTCH3 in mediating immune-tumour interactions. 
Furthermore, while pre-clinical models suggest promising 
avenues for targeted therapies, the clinical translation of 
NOTCH3 inhibitors requires caution due to potential off-
target effects and tissue-specific variability. In conclusion, 
the convergence of NOTCH3 signalling in CSVD and 
BC represents both a scientific opportunity and a clinical 
challenge. Future studies should prioritise mechanistic 
elucidation, therapeutic refinement and cross-disciplinary 
collaboration to fully unlock the translational potential of 
targeting this signalling axis.
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