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Abstract. Gold has been considered one of the most reliable assets in finance and a safe-haven investment, especially during
turbulent conditions in the economy. Taking this into consideration, a new interest began to take place in the study of gold prices
during financial turmoil, especially during the unprecedented COVID-19 pandemic outbreak that started at the end of 2019. The
COVID-19 pandemic outbreak had caused a huge dramatic change around the globe in all sectors, especially in financial sectors.
The method used in this study is the ARIMA-GARCH model which is an integration of the well-established ARIMA model and
GARCH model. This integration model is applied to gold prices and could help to handle the volatility characteristic presented in
the data. The analysis of gold prices in this study focuses on modeling of gold prices by splitting the data before and during the
pandemic. Thus, this method gives an insight into how the ARIMA-GARCH model performs with the data before and during the
pandemic. Based on the study, the ARIMA-GARCH model produces a good result with a low value in MAE, RMSE and MAPE
for both periods before and during the pandemic.

INTRODUCTION

The unprecedented declaration of the COVID-19 pandemic outbreak by World Health Organization (WHO) at the
end of 2019 transforms all sectors including financial sectors into a massive shock. The pandemic, which the early
cluster was detected in Wuhan and eventually later expanded over the world compelled each country to impose a
severe lockdown to reduce the virus’s spreaders [1]. Thus, these measures impacted the economy significantly since
all the sectors need to slow down. As a result, investors must be careful in diversifying their portfolio to gain profit or
at least minimise their lost despite the crisis.

One of the initiatives taken by investors during extreme market condition to diversify their portfolios is by investing
in gold market. The gold market has long been seen as safe-haven against stock, inflation, and other financial market
risks [2]. As a result, a gold price analysis is necessary to assist investors and banks in understanding and forecasting
gold price. Analysis on the gold price has been studied in various literatures including Ali et al. [3], Lamouchi and
Badkook [4], Yang [5] and Mohd Nasir et al. [6]. Ali et al. [3] focused on the gold price in United States while Mohd
Nasir et al. [7] focus on the gold price in Malaysia. While Ali et al. [3] analysed on the gold price from 2014 to
2015 , Yang [5] studied on the gold price during a period between 2013 to 2018 with a similar pricing as in US dollar.
All of the studies are essential because they assists investor understand gold as safe-haven asset, particularly during
turbulence periods [4].

Due to the time series nature of gold prices, the Box-Jenkins model is one of the most popular model in forecasting
gold prices[3]. In another study, Susruth [8] compared the Box-Jenkins model with the Holt and Winters exponential
model as well as the Moving Average model. The author discovered that Box Jenkins model performs well and
produces higher forecasting accuracy. This also confirms that Box-Jenkins model is considered as the benchmark
model among time series models as mentioned in Abdelkader et al. [9], which studies gold prices. Thus, choosing
Box-Jenkins model to compare the performance of the Box-Jenkins before and during pandemic for gold price data is
considered appropriate.

Nevertheless, the gold prices data consist of volatility clustering that could be handled by Generalised Autore-
gressive Conditional Heteroscedastic (GARCH) model [4]. Thus, by integrating GARCH model with Autoregressive
Integrated Moving Average (ARIMA) model would yield a good performance in forecasting. Yaziz et al. [12] applied



ARIMA-GARCH on gold prices and find a promising result. Incorporating the GARCH model into the ARIMA
model could help in handling the non-constant variance errors in time series data [12]. Besides, Yousef and Shahadeh
[13] considered GARCH model as an excellent model to identify the volatility in the world gold prices.

This study focuses on the performance of ARIMA–GARCH model in forecasting gold price by splitting the gold
prices data into before and during the COVID-19 pandemic. In this study, the gold price data is examined from 3rd
January 2015 until 30th July 2021 which is divided into two periods that are before pandemic and during pandemic.
The duration before and during pandemic is considered to demonstrate that the forecasting performance would be
influenced by the COVID-19 pandemic outbreak. With our limited understanding, it is hope that this study would
prevail how well the model would perform within these two durations, before and during the pandemic and either
COVID-19 could give effect towards the performance of ARIMA-GARCH model.

LITERATURE REVIEW

The application of Box-Jenkins-GARCH model models in economics and finance have been taken up by various
researchers. The related recent studies are summarised in Table 1.

TABLE 1. Selected studies in economics and finance using Box-Jenkins-GARCH models

Researcher Data Model Methods/Procedure
Bouazizi et al. (2020) -Brent crude oil prices in dollars

-The period start from 27th Novem-
ber 2019 to 04 February 2020 in
levels

-ARMA,
-ARMA-GARCH,
-ARMA-EGARCH,
-ARMA-GJR,
-ARMA-APARCH,
-ARMA-IGARCH

-Descriptive statistics
-Transform gold price at time t into a return
-ARIMA model identification: Akaikae In-
formation Criterion (AIC), Bayesian Infor-
mation Criterion (BIC)
-GARCH model identification: AIC, BIC

Yaziz et al. (2019) -Daily Malaysia gold price (5-day-
per-week)
-The data period is from 2nd Jan-
uary 2003 to 12th June 2014 (2845
observations)
-The data is quoted in Ringgit
-Estimation ratio (in-sample series)
to forecast (out-of-sample series) is
90:10

-ARIMA - (standard
GARCH, IGARCH
and GARCH-M) under
three types of innova-
tions that are Gaussian,
t and Generalized error
distribution

-Transform data: Box-Cox method
-Stationary test: ADF, ACF, PACF (first dif-
ference)
-Model Estimation and Identification: ACF,
PACF, AIC, SIC
-Diagnostic Test: ARCH Lagrange multi-
plier (LM) test
-Residuals: PACF, Ljung Box test, Jarque-
Bera
-Model estimation: Maximum likelihood
estimation (MLE)
-Evaluation: Root Mean Square Error
(RMSE), Mean absolute error (MAE),
Mean absolute percentage error (MAPE)
*One-step ahead

Hasanah et al. (2019) -Daily gold in bullion$/troy ounce
rate
-The period of data is from January
2014 to September 2016

-ARIMA-GARCH -Transform gold price at time t into a return
- Stationary Test: Augmented Dickey Fuller
Test (ADF)
- Model Identification: autocorrelation
function (ACF), partial autocorrelation
(PACF)
- Model Estimation: AIC, Schwarz Infor-
mation Criterion (SIC)
- Diagnostic Check: residuals analysis
- Heteroscedasticity Test: Breusch Pagan
Godfrey’s test (BPG test)
- GARCH model estimation: ACF, PACF
- Evaluation: Mean absolute percentage er-
ror (MAPE)



TABLE 1. Selected studies in economics and finance using Box-Jenkins-GARCH models (continued)

Researcher Data Model Methods/Procedure
Kumari and Tan (2018) -Gold future prices traded on the

COMEX
-The period of the data is from Jan-
uary 1990 to June 2014
-In-sample: January 1990 to June
2013 (6373 observations)
-Out-of-sample: July 2013 to June
2014(238 observations)

-ARCH
-GARCH
-ARFIMA
-EGARCH
-APARCH
-TARCH
-FIGARCH
-FIEGARCH

- Preliminary step: log return
- Descriptive statistic
- Stationary Test: ADF
- Identification, PACF PP,
- Parameter: ACF, PACF, AIC, Ljung Box
Q-test
- ARCH test: ARCH-LM test
- Evaluation: MAE, MSE, QLIKE, TIC

Sopipan (2018) - Daily closed gold prices from
London Gold Market Fixing Lim-
ited on a day and foreign exchange
rate for Baht to US dollars an-
nounced by TFEX
- The period of data: 2/01/2015 to
31/3/2016(1 313)
- In-sample: 291 observations, Out-
of-sample: 23 observations

-ARIMA-GARCH - Descriptive Statistic
- Identification: ACF, PACF
- Estimation: AIC, SBC
- Diagnostic checking: Box-Piece (BP),
Ljung-Box (LB) Q-statistic, Engles ARCH
test

Senaviratna
and
Cooray,
(2017)

- Daily gold prices in Sri Lanka
(gold prices per gram (LKR))
- The period of data is from 02nd
January 2007 to 06th January 2017
(2585 observations)
-In-sample: 2580 observations,
Out-of-sample: 5 observations

- ARMA
-VAR-
GARCH(EGARCH,
-PGARCH,
-C-ARCH,
-GJR GARCH)

- Descriptive statistic
- Stationary Test: ADF
- Model parameters: ACF, PACF
- Diagnostic test: Jarque-Bera test,
Breusch-Godfrey LM test and White’s
general test
- Estimating: VAR, GARCH (SIC, AIC,
Hannan-Quinn, Durbin Watson stat
- Evaluation:MAPE
*Box-Cox transformation for data
transformation

METHODOLOGY

Box-Jenkins Model

The five model types that make up the Box-Jenkins model are separated into two groups namely stationary models
and non-stationary models. Three models—autoregressive (AR), moving average (MA), and autoregressive moving
average (ARMA) are the stationary models. The seasonal autoregressive integrated moving average (SARIMA) and
the autoregressive integrated moving average (ARIMA) are the two models that represent the non-stationary model
(SARIMA). The gold price data displayed a trend pattern without any evidence of seasonality, hence the ARIMA
model was used for this investigation.

An autoregressive integrated moving average of order p and q with order of differencing, d, is written as ARIMA
(p,d,q) model. The ARIMA (p,d,q) model using backshift operator is given by Equation (1),

φp(B)(1−B)dyt = θq(B)at . (1)

Given that, |φi| < 1, i = 1,2, ..p, |θ j| < 1, j = 1,2, ..q, d ̸= 0, ▽ = (1−B); yt and at are the observed value and
random error at time period tµ is the mean of the model, p and q are the order of AR and MA models respectively,
d is the order of differencing, B is the backshift operator and which φp(B) = 1−∑

p
i=1 Bi for AR model and θq(B) =

1−∑
q
j=1 θ jB j for MA model.

The random errors, at for all the previously mentioned equations in this chapter are assumed as independent iden-
tically distributed (iid) sequences taken from a continuous distribution with zero mean and constant variance of σ2

which is denoted as at ∼ iid(0,σ2).



GARCH Model

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) is proposed by Bollerslev [17] to general-
ized the Autoregressive Conditional Heteroscedasticity (ARCH) model developed by Engle [18]. In GARCH model,
the mean model is given in Equation (2) with st as a stationary data at time t and at as the random error at time period
t. The µt is the conditional mean of st and at = σtεt where εt is the innovations of the models and has zero-mean
independent and identically distributed sequences with continuous distributions.

st = µt +at (2)

The standard GARCH model is expressed in Equation (3) as follows,

σ
2
t = α0 +

r

∑
i=1

αiα
2
t−1 +

s

∑
j=1

β jσ
2
t−1. (3)

where αi and β j are the coefficient of the parameters ARCH and GARCH, respectrively. The volatility at is the
random variable of σt . αi and β j are nonnegative|constants (αt ≥ 0,βt ≥ 0) and α0 is a positive constant (α0 > 0). αi
and β j should lies between 0 and 1 to satisfy the stationarity [18]. If r = 0, the GARCH(r,s) process reduces to the
ARCH(s) process, and for r = s = 0, at is simply white noise.

Box-Jenkins-GARCH Model

Since ARIMA is one of the Box-Jenkins model, the research framework for this study is given by the Box-Jenkins-
GARCH modelling as presented in Figure 1. The modelling of Box-Jenkin-GARCH integrates GARCH model into
Box-Jenkins model that enables the handling of heteroscedasticity in the gold prices. The standard GARCH model is
considered in the Box-Jenkins-GARCH modelling to highlight its parsimonious feature and its broad applications in
handling heteroscedasticity in a financial time series [20]. The ratio of estimation used to forecast the time series data
and for cross validation follows 90 to 10 ratio [21].

Stage I: Model identification

In the first stage of model identification, the gold price data is transformed by using Box-Cox transformation to ensure
the stationarity of data in-variance. Then, the plots of auto-correlation function (ACF) and partial auto-correlation
function (PACF) are used to check the stationarity of the in-sample data in-mean and identify the order of time series
model. The ACF plots represent the linear relationship between the time series observations separated by lag k and
suggesting the order of q for the MA model. The p order for the AR model could be identified in the partial auto-
correlation function (PACF). The stationary in-mean is achieved by differencing the gold prices data and tested with
the Augmented Dickey-Fuller (ADF) test. The null hypothesis of the ADF test is the time series data is non-stationary
in-mean.

Stage II: Parameter estimation

In parameter estimation stage, the Maximum Likelihood Estimation (MLE) is employed to find the parameter values
in Box-Jenkins modelling. The method optimizes the probability of obtaining the data that have been studied which
minimises the sum of squared errors (SSE) given by SSE = ∑

T
t−1 ∈2

t . The two conditions in considering the best
significant Box-Jenkins model are: two times the value of standard error less than the value of model coefficient
and the p-value≤ α . Then, the model with the lowest value of Akaike’s Information Criterion (AIC) and Schwarz’s
Bayesian Information Criterion (BIC/SIC) values is chosen for the next stage.



FIGURE 1. Research framework of Box-Jenkins-GARCH

Stage III: Diagnostic Checking

The chosen models from the previous stage are checked in the residual time series data for serial correlation, het-
eroscedasticity or ARCH effect, and normal characteristics. A well fitted model has small, estimated errors or resid-
uals values, â , a finite variance and normally distributed. The integration of the ARIMA model with the GARCH
model is determined by the presence of the ARCH effect in the residuals. If the ARCH exists in the residuals, the
appropriate GARCH model is chosen from the PACF for the squared residuals.

Stage IV: Forecasting

The performance of the model predictions is then assessed using the forecasted result. The validation process employs
the following Equation (4), Equation (5), and Equation (6) to calculate the minimum mean mean absolute absolute
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error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), respectively,

MAE =
1
n

n

∑
t=1

|yi − ŷt | (4)

RMSE =

√
∑

n
t=1(yi − ŷt)2

n
(5)

MAPE =
100%

n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (6)

where yt and ŷt are the observed and forecast values at time t and n is the number of time periods t.

RESULTS AND DISCUSSION

The Dataset

The gold prices used in this study were collected through R Studio using the free Nasdaq Data Link R package, which
is based on the London PM fix from the London Bullion Market Association (LBMA). The London Gold Fixing
Companies determines and set the prices for Gold Fixing Companies and the international standard of gold price.
The gold price is analysed from 3rd January 2015 until 30th July 2021 and are split into the period before pandemic
and during pandemic with a total of 1652 observations. The period before pandemic starts from 3rd January 2015
to 30th December 2019 while from 1st January 2020 to 30th July 2022 is the period during pandemic with a total
observations of 1254 and 398 observations, respectively. Syahri and Robiyanto [22] considered the start of pandemic
is on 1st January 2020. They study on the correlation of gold, exchange rate and CSPI on the impact of Covid-19
pandemic. The data is analysed by using R programming language.

Stage I: Box-Jenkins-GARCH Model identification

The Figure 2(a) and Figure 2(b) illustrate the time series plot for in-sample data of gold prices before and during
pandemic, respectively. The in-sample data for the gold prices before the pandemic begins on January 2, 2015, and
ends on July 2, 2019, while the in-sample for the gold prices during the pandemic begins on January 2, 2020 and ends
on June 4, 2021. In Fig.2, both series demonstrates a random or irregular trend with nonseasonal trends.

(a) Before pandemic from 2nd January 2015 to 2nd
July 2019.

(b) During the pandemic from 2nd January 2020 to
4th June 2021

FIGURE 2. Time series plot for the in-sample data of the gold price.



Based on Figure 2(a), the gold prices plummeted at the close of 2016, 2017 and 2018 which stayed low price for
a brief time before rebounding. Then as the year progressed, there were numerous ups and downs in the gold prices
until the prices started to increase in 2019 with the highest peak at $1431.40. From Figure 2(b), the gold prices
depict an upward trend from the early year of 2020 until it reaches the highest peak at the second half of 2020. Then,
the gold prices start to show a downward trend after reaching the peaks in the second half of 2020 with an intense
fluctuation throughout the period. Because there is no repeated, regular pattern as demonstrated in the time series plot,
neither series in Figure 2(a) nor Figure 2(b) are cyclical or seasonal. Based on the lambda value derived from Box-
Cox transformation is close to 1 for both in-sample data before the pandemic and during the pandemic. Therefore,
a transformation is not considered as the process since both data are considered stationary in variance. Both series,
however, are non-stationary in the mean because of irregular trends from the beginning. Furthermore, the ADF-test is
utilised to validate the non-stationarity in-mean for both series, with p-values of 0.2118 and 0.7021, before and during
the pandemic, respectively. Because the null hypothesis is not rejected at the 5% significance level, the values validate
the non-stationary in-mean of the series.

Table 2 shows the comparison of gold prices for in-sample data before and during the pandemic for both stationary
and non stationary data for the descriptive statistics component. The highest gold prices were $2067.15 per ounce
from January 2, 2015, to July 30, 2021. Moreover, during the pandemic, the minimum, median, and mean of the gold
prices were at their highest. Thus, the values of minimum, median and mean, imply that the prices of gold experienced
an increment during the COVID-19 pandemic. As seen in Table 2, the variance between the in-sample non-stationary
data of gold prices before pandemic and during the pandemic are 5 129.32 and 15 496.67, respectively. Based on
the variance, the data of in-sample non-stationary gold prices, spreads more during COVID-19 as compared to before
pandemic. Thus, the finding demonstrates that the COVID-19 pandemic had a significant impact on gold prices as
gold prices surged throughout the crisis which is consistent with Lamouchi and Badkook [4].

TABLE 2. Descriptive statistics for in-sample non-stationary data and stationary data before and during pandemic.

Statistics Before Pandemic (2/1/2015 – 2/7/ 2019) During Pandemic (2/1/2020 – 4/6/2021)
Non-stationary data Stationary Data Non-stationary data Stationary Data

No of observation 1129 1128 358 357
Minimum 1049.4 -35.3 1474.25 -104.85
Maximum 1431.4 53.35 2067.15 80.35

Mean 1242.33 0.1942 1779.23 1.02
Median 1251.1 -0.15 1787.83 1.65
Variance 5129.32 96.84 15496.67 438.28

Standard Deviation 71.6192 9.841 124.4856 20.935
Skewness -0.5256 0.3269 -0.3289 -0.5736
Kurtosis -0.1958 2.5084 -0.687 3.3842

(a) Before the data undergo first order
differencing transformation.

(b) After the data undergo first order differencing
transformation.

FIGURE 3. ACF and PACF plots for in-sample gold prices data before pandemic 2nd January 2015 to 2nd July
2019.



(a) Before the data undergo first order
differencing transformation.

(b) After the data undergo first order differencing
transformation

FIGURE 4. ACF and PACF plots for in-sample gold prices data during the pandemic from 2nd January 2020 to 4th
June 2021

(a) Before pandemic from 2nd January 2015 to 2nd July 2019. (b) During the pandemic from 2nd January 2020 to 4th June
2021

FIGURE 5. Time series plot for the first order differenced in-sample data of the gold price.

In Figure 3(a) and Figure 4(a), both ACF and PACF plots before and during pandemic for the gold prices data
before the data undergo first order differencing transformation display that the correlograms have no drastic cut off.
Thus, the figures confirm both data before and during pandemic need to be transformed with the first order differenced
to ensure there is stationarity in-mean in the series. After the first order differencing, the ACF and PACF plots for both
before and during pandemic confirm the existence of stationarity for in-sample data before and during pandemic. The
ACF and PACF plots before and during pandemic for the first order difference data are depicted in Figure 3(b) and
Figure 4(b). Thus, the first order difference data before and during pandemic are used to estimate the parameter of
ARIMA model. Figure 5 illustrates the plot of in-sample gold price data before and during the pandemic that confirm
to be stationary in-mean, after the first order differencing transformation.

Stage II and Stage III:Parameter estimation and Diagnostic Checking

Table 3 illustrates all the possible models of ARIMA model before and during pandemic, with the value of AIC, BIC,
and the parameter significance value. Based on the values of AIC, BIC and significant on parameters, model ARIMA
(1,1,1) and model ARIMA (2,1,2) are chosen as the most suited models before and during pandemic, respectively.
The models are chosen since both models are considered to be significant at 5% significance level. For all the feasible
models before the pandemic, model ARIMA (1,1,1) has the lowest value of AIC and BIC which are 8363.51 and
8383.62, respectively. While, ARIMA (2,1,2) has the lowest value of AIC and BIC of all the potential models for
during pandemic, with 3180.65 and 3207.79, respectively.



The descriptive statistics of the series residuals for ARIMA (1,1,1) and ARIMA (2,1,2) are listed in Table 4 to
ensure the models’ residuals have a generally small, randomly distributed and homoscedasticity characteristics. Both
ARIMA (1,1,1) and ARIMA (2,1,2) show that the p-value of Jarque Bera (JB) test is less than α = 0.05, therefore the
null of hypothesis of the residuals series are normally distributed is rejected.

TABLE 3. Possible time series models of ARIMA model before and during pandemic.

No ARIMA (p,d,q) Before Pandemic During Pandemic
2*SE <
Coefficient

AIC BIC Significant on
parameters

2*SE <
Coefficient

AIC BIC Significant on
parameters

1 ARIMA (0,1,0) No 8362.59 8372.65 All not significant No 3187.7 3195.45 All not significant
2 ARIMA (0,1,1) No 8364.26 8379.35 All not significant No 3189.7 3201.33 All not significant
3 ARIMA (0,1,2) No 8365.83 8385.94 All not significant No 3189.21 3204.72 1 not significant
4 ARIMA (0,1,3) No 8363.42 8388.56 2 not significant No 3190.6 3209.99 2 not significant
5 ARIMA (1,1,0) No 8364.27 8379.36 All not significant No 3189.7 3201.33 All not significant
6 ARIMA (1,1,1) Yes 8363.51 8383.62 All significant Yes 3191.7 3207.21 All significant
7 ARIMA (1,1,2) Yes 8364.6 8389.75 1 not significant Yes 3191.1 3210.49 1 not significant
8 ARIMA (1,1,3) No 8363.99 8394.16 3 not significant No 3186.37 3209.64 1 not significant
9 ARIMA (2,1,0) No 8365.96 8386.07 All not significant No 3190 3205.51 1 not significant
10 ARIMA (2,1,1) No 8364.46 8389.6 1 not significant No 3191.84 3211.22 All not significant
11 ARIMA (2,1,2) Yes 8367.49 8397.65 All significant Yes 3183.34 3206.61 All significant
12 ARIMA (2,1,3) Yes 8361.08 8396.28 1 not significant Yes 3180.65 3207.79 All significant
13 ARIMA (3,1,0) No 8363.68 8388.82 2 not significant No 3191.06 3210.45 2 not significant
14 ARIMA (3,1,1) No 8363.37 8393.54 2 not significant No 3185.44 3208.71 1 not significant
15 ARIMA (3,1,2) No 8360.94 8396.14 1 not significant Yes 3181.77 3208.91 All significant
16 ARIMA (3,1,3) No 8362.51 8402.74 All not significant No 3181.77 3212.79 1 not significant

TABLE 4. The descriptive statistics of the series residuals of ARIMA(1,1,1) model and ARIMA(2,1,2) model.

Statistics Before pandemic During pandemic
No of observation 1128 357
Minimum -35.5706 -96.9315
Maximum 53.5799 81.2031
Mean -0.00102 -0.005025
Median -0.3536 0.906
First Quartile -5.4811 -10.4089
Third Quartile 4.9664 12.194
Sum -1.1506 -1.7938
Variance 96.5797 422.9672
Standard Deviation 9.8275 20.5662
Skewness 0.3227 -0.4478
Kurtosis 2.5174 2.8389
JB Test (p-value) 319.7942 (0.0000) 39.2060 (0.0000)

The residual plots for both ARIMA (1,1,1) and ARIMA (2,1,2) models in the Figure 6 below show that the models
are randomly distributed, and correlation is almost close to zero. The Ljung-Box (LBQ) test is used to validate the
serial correlation of the residual series for both models. The LBQ Test on ARIMA (1,1,1) and ARIMA (2,1,2) models
yielded p-value of 0.5054 and 0.1825, respectively which indicate the mean equation ot ARIMA (1,1,1) and ARIMA
(2,1,2) to the data series are correctly specified up to lag 10. As a result, the in-sample residual series of the gold prices
prior to pandemic and during the pandemic are independent and randomly distributed. Thus, the ARIMA (1,1,1) and
ARIMA (2,1,2) are considered adequate to describe the data for the gold prices data prior the pandemic and during
the pandemic respectively.



(a) ARIMA(1,1,1) model (b) ARIMA(2,1,2) model

FIGURE 6. Residual plot of the squared residuals for ARIMA models.

Based on the p-value of the Ljung-Box test on the squared residual for both ARIMA (1,1,1) and ARIMA (2,1,2) at
lag 10 equal 0.000, the null hypothesis of there is no ARCH effect in the residuals series is rejected at 5% significance
level. Thus, the integration of GARCH model with ARIMA model is needed to correctly specified the variance
equation for both ARIMA (1,1,1) and ARIMA (2,1,2) models which represents for the gold prices data before and
during pandemic, respectively. The ACF and PACF plots of squared residuals of both ARIMA (1,1,1) and ARIMA
(2,1,2) are used to obtain the order of r and s in GARCH model. Figure 7(a) and Figure 7(b) illustrate the ACF
and PACF plots of square residuals for ARIMA(1,1,1) model and ARIMA (2,1,2) model, respectively. Based on
the Figure 7(a) the suggested values of r are 0,1,2 and the suggested values of s are 0,1,2. The standard error (SE)
limit of two-standard error ACF and two-standard error of PACF in Figure 7(a) are 0.0309 and 0.0298, respectively.
Based on the results in the ACF and PACF of the squared residuals of ARIMA model in Figure 7(a), ARIMA (1,1,1)-
GARCH (1,1) is chosen as the preferred model for the data before the pandemic. Hence, Table 5 shows that ARIMA
(1,1,1)-GARCH(1,1) is the most appropriate model for the gold price data before the pandemic with skewed-GED
innovations based on the significance, AIC and BIC.

In Figure 7(b), it is suggested values of r is 1,2 and s is 1,2. Based on Figure 7(b), the series consist of a volatility
clustering since there are several spikes in ACF and PACF plots at the beginning of the plots that are beyond two-
standard error (SE) limit of two-standard error of ACF = 0.0549 and two-standard error of PACF = 0.0529. The plots
also imply that the model of ARIMA(2,1,2) is significant up to lag 20. he ARIMA (2,1,2)-GARCH (1,1) is chosen
as the most appropriate model to forecast the data during the pandemic based on the results in the ACF and PACF of
the squared residuals of ARIMA model in Figure 7(b). Besides, Table 6 shows that the model is the most appropriate
model to represent the gold price data during pandemic.

(a) ARIMA(1,1,1) model (b) ARIMA (2,1,2) model

FIGURE 7. ACF and PACF plots of the squared residuals for ARIMA models.



Table 5 lists out the Information Criterion test, and diagnostic checking for ARIMA(1,1,1)–GARCH(1,1) for the
model estimated by using the data before pandemic. Model ARIMA(1,1,1)–GARCH(1,1) with skewed-GED innova-
tions is chosen for the next forecasting step for the data gold data prior to pandemic, based on the models’ significance,
AIC, and BIC.

TABLE 5. Estimation results, information criterion test and diagnostic checking for ARIMA(1,1,1)–GARCH(1,1)
model

Parameter Innovations
normal t Skewed-t GED Skewed-GED

Parameter Estimation
µ 0.0455 (0.8010) -0.0283 (0.8639) 0.0690 (0.6853) -0.0700 (0.6532) 0.0594 (0.7244)
ϕ1 0.3775 (0.2190) 0.3781 (0.0983) 0.4065 (0.0596) 0.3693 (0.0000) 0.3984 (0.0000)
θ1 -0.3352 (0.2860) -0.3405 (0.1447) -0.3738 (0.09108) -0.3389 (0.0000) -0.3713 (0.0000)
α0 0.4437 (0.1030) 0.7111 (0.1067) 0.6844 (0.1115) 0.5827 (0.12613) 0.5540 (0.1287)
α1 0.0237 (0.0000) 0.0249 (0.00298) 0.0246 (0.00313) 0.0234 (0.0022) 0.0227 (0.0021)
β2 0.9720 (0.0000) 0.9683 (0.0000) 0.9689 (0.0000) 0.9705 (0.0000) 0.9715 (0.0000)
ς - - 1.0646 (0.0000) - 1.0690 (0.0000)
ν - 5.5840 (0.0000) 5.6041 (0.0000) 1.2987 (0.0000) 1.2980 (0.0000)

Information Criterion (IC)test
AIC 7.3318 7.2814 7.2809 7.2809 7.2796
BIC 7.3586 7.3126 7.3166 7.3121 7.3153

Diagnostic Checking
LBQ(10) 18.4032 (0.0485) 18.7350 (0.0438) 18.8380 (0.0424) 18.8140 (0.0427) 18.9240 (0.0412)
LBQ(15) 22.3270 (0.0995) 22.5110 (0.0951) 22.6649 (0.0915) 22.6480 (0.09191) 22.8100 (0.0883)
LBQ2(10) 9.8452 (0.4542) 9.6026 (0.4760) 9.6689 (0.4700) 9.9625 (0.4438) 10.2250 (0.4210)
LBQ2(15) 15.8670 (0.3910) 15.6910 (0.4029) 15.8540 (0.3918) 15.9340 (0.3864) 16.2750 (0.3640)

The Information Criterion test and diagnostic checking for ARIMA (2,1,2)–GARCH (1,1) for the model during
pandemic are listed in Table 6. The forecasting stage for the gold price data during pandemic applies ARIMA
(2,1,2)–GARCH (1,1) model with normal innovations since it is considered as the appropriate model.

TABLE 6. Estimation results, information criterion test and diagnostic checking for ARIMA(2,1,2)–GARCH(1,1)
model

Parameter
Innovations

normal t Skewed-t GED Skewed-GED
Parameter Estimation

µ 1.1340 (0.361) 1.1161 (0.030) 0.7798 (0.1832) 2.3225 (0.0017) 2.0010 (0.0391)
ϕ1 0.4905 (0.0004) 1.0000 (NA) 1.0000 (NA) 0.4452 (0.0000) 0.4405 (0.0000)
ϕ2 -0.6219 (0.0000) -0.6070 (0.0004) -0.5860 (0.0132) -0.8005 (0.0000) -0.7778 (0.0000)
θ1 -0.4730 (0.0000) -0.9539 (NA) -0.9546 (NA) -0.4338 (0.0000) -0.4290 (0.0000)
θ2 0.73566 (0.0000) 0.5527 (0.0129) 0.5208 (0.0732) 0.86650 (0.0000) 0.8515 (0.0000)
α0 28.72842 (0.03193) 22.4626 (0.0813) 23.5669 (0.0685) 25.3003 (0.0800) 25.8106 (0.0711)
α1 0.1149 (0.00173) 0.1137 (0.0182) 0.1118 (0.0176) 0.1176 (0.0127) 0.1147 (0.0117)
β1 0.8236 (0.0000) 0.8528 (0.0000) 0.8500 (0.0000) 0.8308 (0.0000) 0.8306 (0.0000)
ς - - 0.9209 (0.0000) - 0.9780 (0.0000)
ν - 4.1567 (0.0000) 4.2990 (0.0001) 1.1542 (0.0000) 1.1794 (0.0000)

Information Criterion (IC) Test
AIC 8.84 8.7619 8.7643 8.767 8.7723
BIC 8.9269 8.8597 8.873 8.8648 8.8809

Diagnostic Checking
LBQ(10) 10.7411 (0.3780) 14.3172 (0.1590) 14.4169 (0.1548) 13.6697 (0.1886) 13.3023 (0.2073)
LBQ(15) 14.2770 (0.5046) 19.2361 (0.2032) 19.4204 (0.1953) 16.9767 (0.3203) 16.5566 (0.3461)
LBQ2(10) 18.4913 (0.0472) 21.5045 (0.0178) 21.4246 (0.0183) 19.6421 (0.0328) 19.3036 (0.0366)
LBQ2(15) 21.7350 (0.1149) 23.7644 (0.0692) 23.7140 (0.0701) 22.1458 (0.1040) 21.8887 (0.1108)



Stage IV: Forecasting

ARIMA (1,1,1)–GARCH (1,1) model with skewed-GED innovation in the stationary form to forecast the gold prices
before the pandemic is given by Equation (7) where St = yt − yt−1 and at = σtεt are the stationary series and random
error. The innovations at time t is given by Equation (8).

St = 0.05938−0.6016t−1 −0.3984St−2 +at −0.3713at−1. (7)

σt = 0.5540+0.02777a2
t−1 +0.9714σ

2
t−1,εt ∼ SGED∗

1.2980 (8)

St−1, St−2, yt , yt−1, and at−1 are the stationary series up to lag 1 (or the previous value), stationary series up to lag 2,
the observed values, the predictor up to lag 1 (or the previous value), and the random error up to lag 1 (or the previous
value), respectively and σ2

t is the conditional variance of St . Moreover, εt represents the innovations at time t.
The actual stationary gold prices data, forecast stationary gold prices data, actual gold prices data, forecast gold

prices data, 95% lower and 95% upper intervals before the pandemic for the last 10 days by using ARIMA (1,1,1) –
GARCH (1,1) model is compared in Table 7. For the stationary data, the values of MAE and RMSE are 8.7966 and
12.1381, respectively. The value of MAPE is not obtained since the series consists of zero values. Nevertheless, the
out-of-sample’s forecast data generates the value of MAE, RMSE and MAPE equal to 8.7966, 12.1381 and 0.5944,
respectively. With a small prediction error of MAPE that is below 5%, the model is concluded as the best model for
modelling gold price data before pandemic. Figure 8(a) displays a plot of actual data versus forecast data of the gold
prices before pandemic by using ARIMA(1,1,1)–GARCH(1,1) model with skewed-GED. The red colour forecast line
and blue colour of actual gold price data show a small gap throughout the period.

TABLE 7. Actual stationary gold prices data, forecast stationary gold prices data, actual gold prices data, forecast
gold prices data, 95% lower and 95% upper intervals for last 10 days using ARIMA(1,1,1)–GARCH(1,1) model

Date
Actual Stationary Forecast Stationary Actual Gold Prices Data Actual Gold Prices Data Lower Upper

Gold Prices Gold Price (USD/oz) (USD/oz) 95% 95%
12/12/2019 1 -4.988 1467.8 1461.81 1428.44 1495.18
13/12/2019 -1.2 -2.772 1466.6 1465.03 1431.66 1498.4
16/12/2019 11.3 -0.4002 1477.9 1466.2 1432.83 1499.57
17/12/2019 -2.1 3.1785 1475.8 1481.08 1447.71 1514.45
18/12/2019 -1.75 1.9186 1474.05 1477.72 1444.35 1511.09
19/12/2019 2.65 3.2424 1476.7 1477.29 1443.92 1510.66
20/12/2019 2.3 1.381 1479 1478.08 1444.71 1511.45
23/12/2019 3.1 1.3286 1482.1 1480.33 1446.96 1513.7
27/12/2019 29.4 0.283 1511.5 1482.38 1449.01 1515.75
30/12/2019 3.25 -0.1363 1514.75 1511.36 1478 1544.73

ARIMA (2,1,2)–GARCH (1,1) model with normal distribution in the stationary form, to forecast the gold prices
during the pandemic is given by Equation (9). St = yt −yt−1 and at = σtεt are applied to calculate the stationary series
and random error.

St = 1.134+1.4910St−1 −1.1124St−2 −0.6219St−3 +at −0.4730at−1 +0.7357at−2. (9)

St , St−1, St−2, St−3, yt , yt−1, at , at−1 and at−2 are the stationary series, stationary series up to lag 1 (or the previous
value), stationary series up to lag 2, stationary series up to lag 3, the observed values, the predictor up to lag 1 (or
the previous value), the random error at time period t, the random error up to lag 1 (or the previous value) and r
the random error up to lag 2, respectively and σ2

t is the conditional variance of St . Moreover, εt represents the error
distribution as independent and identically distributed (IID) innovations at time t.



Table 8 compares actual stationary gold prices data, forecast stationary gold prices data, actual gold prices data,
forecast gold prices data, 95% lower and 95% upper intervals before pandemic during pandemic for the last 10 days by
using ARIMA(2,1,2)–GARCH(1,1) model. The MAE and RMSE values for stationary data are 15.1751 and 21.4967,
respectively. Because the series contains zeros values, MAPE cannot be calculated. Nonetheless, the MAE, RMSE,
and MAPE values for the out-of-sample forecast data are 15.1751, 21.4967 and 0.8409, respectively. The model is
concluded as the best model for modelling gold price data during the pandemic, with a MAPE prediction error of
less than 5%. Figure 8(b) shows a plot of actual data versus forecast gold prices prior to the pandemic by using
ARIMA(2,1,2)–GARCH(1,1) model with normal innovations.

TABLE 8. Actual stationary gold prices data, forecast stationary gold prices data, actual gold prices data, forecast
gold prices data, 95% lower and 95% upper intervals for last 10 days using ARIMA (2,1,2)–GARCH(1,1) model

Date
Actual Stationary Forecast Stationary Actual Gold Prices Data Actual Gold Prices Data Lower Upper

Gold Prices Gold Price (USD/oz) (USD/oz) 95% 95%
16/7/2021 -9.4 5.1709 1814.9 1829.471 1769.754 1889.187
19/7/2021 8.15 16.8101 1823.05 1798.09 1738.373 1857.807
21/7/2021 -20.9 11.6751 1802.15 1834.725 1775.008 1894.442
22/7/2021 -2.7 -24.3557 1799.45 1777.794 1718.078 1837.511
23/7/2021 0.15 -5.0379 1799.6 1794.412 1734.695 1854.129
26/7/2021 0.6 -3.9654 1800.2 1795.635 1735.918 1855.351
27/7/2021 0.15 -29.0167 1800.35 1771.183 1711.467 1830.9
28/7/2021 -3.75 17.3656 1796.6 1817.716 1757.999 1877.432
29/7/2021 32.7 -9.7273 1829.3 1786.873 1727.156 1846.589
30/7/2021 -3.55 -4.493 1825.75 1824.807 1765.09 1884.524

(a) Before pandemic with ARIMA (1,1,1)–GARCH (1,1) model
with skewed-GED innovation.

(b) During pandemic by using ARIMA (2,1,2)–GARCH (1,1)
model with normal distributions innovations.

FIGURE 8. Plot of actual data versus forecast data with 95% prediction intervals of the gold prices data

Table 9 shows the MAE, RMSE and MAPE values for the ARIMA (1,1,1) – GARCH (1,1) and ARIMA (2,1,2) –
GARCH (1,1) models before and during pandemic, respectively. In overall, the Box-Jenkins–GARCH model performs
better before the pandemic as compared to during pandemic. Nevertheless, the performance of the model could be
affected by the varied length of data, as the data used for modelling stage before pandemic had a higher number of
observations than data used during the pandemic. For future research, this may be overcome by using an equal number
of observations for both periods. Nonetheless, both models managed to achieve MAPE values less than 5%.

TABLE 9. The value of MAE, RMSE and MAPE for ARIMA(1,1,1)–GARCH(1,1) and ARIMA(2,1,2)–GARCH
(1,1) for the gold price before and during pandemic.

Model
Forecast Evaluation

MAE RMSE MAPE
ARIMA (1,1,1)–GARCH (1,1) (Before pandemic) 8.7966 12.1381 0.5944
ARIMA (2,1,2)–GARCH (1,1) (During pandemic) 15.175 21.4967 0.8409

The model obtained from the data utilised preceding to and during the COVID-19 pandemic are ARIMA (1,1,1) –



GARCH (1,1) and ARIMA (2,1,2) – GARCH(1,1), respectively. Both models are statistically significant for the data
before and during pandemic, respectively with a low value of MAE, RMSE and MAPE. However, in comparison for
both ARIMA-GARCH models, ARIMA-GARCH model perform marginally better in the data prior to pandemic.

CONCLUSION

The model obtained from the data utilised preceding to and during the COVID-19 pandemic are ARIMA (1,1,1) –
GARCH (1,1) and ARIMA (2,1,2) – GARCH (1,1), respectively. Both models are statistically significant for the data
before and during pandemic, respectively with a low value of MAE, RMSE and MAPE. However, in comparison
for both ARIMA-GARCH models, ARIMA-GARCH model perform marginally better in the data prior to pandemic.
Thus, this research revealed a new insight about how the ARIMA-GARCH model behaves with the data before and
during the COVID-19 pandemic. It is advisable that, future studies to make a thorough review, whenever a modelling
and forecasting are performed on the gold prices data involving period of financial turmoil.
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