Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

Fabrication of Thermoelectric Bismuth Telluride Films using the Novel Resin 3D Printing Technique

Journal of Advanced Research in Micro and Nano Engineering • Article • Open

Access • 2025 • DOI: 10.37934/armne.31.1.8389
Mohd Redzuan, Farah Liana ™; Mohammad, Ahmad Faiz ™; Mohd Yusuf, Shahir Yasin ™;

Syafiq, Ubaidah ™; Md Yatim, Nadhrah ™; +2 authors

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan

Sultan Yahya Petra, Wilayah Persekutuan Kuala Lumpur, 54100, Malaysia

Show all information

Abstract

The global drive for clean energy sources to replace carbon-based fossil fuels necessitates the development of advanced fabrication processes for thermoelectric materials. Thermoelectric materials can generate electricity from ambient heat, making them promising for low-power generating devices that typically rely on batteries with limited lifespans. Compared to bulk materials, thermoelectric thin films offer enhanced performance due to increased Seebeck coefficient and reduced thermal conductivity. However, fabricating high-quality thermoelectric thin films often involves complex and costly vacuum deposition techniques, hindering their widespread application. This study explores the fabrication of thermoelectric Bismuth Telluride (Bi₂Te₃) films using a resin-based 3D printing method aimed at reducing synthesis costs while enhancing

thermoelectric properties. Bi₂Te₃ films were synthesized via photopolymerization, commercially known as resin 3D printing. In this method, Bi₂Te₃ was mixed with a flexible photopolymer resin to facilitate film formation. Ratios of resin to Bi₂Te₃ tested were 60:40, 70:30, 80:20, and 90:10. As the resin content increased, the films became more durable and sturdier, despite a potential trade-off in performance. Phase analysis of the films was conducted using X-ray diffraction (XRD), confirming the presence of Bi₂Te₃ peaks. Elemental and microstructural characterization via Scanning Electron Microscope (SEM) revealed the presence of Bi₂Te₃, including pores that are potentially associated with the resin content. This study demonstrates a novel and cost-effective approach to fabricating Bi₂Te₃ thermoelectric films using photopolymerization 3D printing, maintaining desirable thermoelectric properties without the need for complex fabrication processes. © 2025, Semarak Ilmu Publishing. All rights reserved.

Author keywords

bismuth telluride; Resin 3D printing; thermoelectric

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Ministry of Higher Education, Malaysia See opportunities by MOHE 7	FRGS/1/2023/TK08/UTM/02/26	МОНЕ
Ministry of Higher Education, Malaysia See opportunities by MOHE 7		МОНЕ

Funding text

This research was funded by a grant from the Ministry of Higher Education of Malaysia (FRGS Grant FRGS/1/2023/TK08/UTM/02/26).

Corresponding authors

https://www.scopus.com/pages/publications/105004319242?origin=resultslist

Corresponding F.L. Mohd Redzuan

author