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The global drive for clean energy sources to replace carbon-based fossil fuels 
necessitates the development of advanced fabrication processes for thermoelectric 
materials. Thermoelectric materials can generate electricity from ambient heat, making 
them promising for low-power generating devices that typically rely on batteries with 
limited lifespans. Compared to bulk materials, thermoelectric thin films offer enhanced 
performance due to increased Seebeck coefficient and reduced thermal conductivity. 
However, fabricating high-quality thermoelectric thin films often involves complex and 
costly vacuum deposition techniques, hindering their widespread application. This 
study explores the fabrication of thermoelectric Bismuth Telluride (Bi2Te3) films using a 
resin-based 3D printing method aimed at reducing synthesis costs while enhancing 
thermoelectric properties. Bi2Te3 films were synthesized via photopolymerization, 
commercially known as resin 3D printing. In this method, Bi2Te3 was mixed with a 
flexible photopolymer resin to facilitate film formation. Ratios of resin to Bi2Te3 tested 
were 60:40, 70:30, 80:20, and 90:10. As the resin content increased, the films became 
more durable and sturdier, despite a potential trade-off in performance. Phase analysis 
of the films was conducted using X-ray diffraction (XRD), confirming the presence of 
Bi2Te3 peaks. Elemental and microstructural characterization via Scanning Electron 
Microscope (SEM) revealed the presence of Bi2Te3, including pores that are potentially 
associated with the resin content. This study demonstrates a novel and cost-effective 
approach to fabricating Bi2Te3 thermoelectric films using photopolymerization 3D 
printing, maintaining desirable thermoelectric properties without the need for complex 
fabrication processes.  
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1. Introduction 
 

Thermoelectric (TE) materials are gaining traction as a promising renewable energy source. They 
have the potential to efficiently utilize widely available waste heat, offering a sustainable and long-
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term energy solution without the need for battery replacements or frequent recharging [1]. The TE 
performance of materials in TE devices directly dictates their overall energy conversion efficiency. TE 
materials are crucial components in TE devices as their performance substantially affects the device's 
ability to convert heat into electricity efficiently [2,3].  

The dimensionless figure of merit (𝑍𝑇) governs the conversion efficiency of thermoelectric (TE) 
materials. 𝑍𝑇 is defined as 𝑍𝑇 = 𝜎𝑆2𝑇/𝜅, where 𝑆 is the Seebeck coefficient, 𝜎 is the electrical 
conductivity, 𝑇 is the absolute temperature, and 𝜅 represents the total thermal conductivity which 
includes electronic (𝜅𝑒), bipolar (𝜅𝑏), and lattice (𝜅𝑙) contributions [4]. Optimizing TE performance 
therefore requires minimizing 𝜅 while maintaining high values for both 𝜎 and 𝑆. Near room 
temperature applications favor bismuth telluride (Bi2Te3) as the leading TE material. This is due to its 
unique combination of inherently low lattice thermal conductivity, 𝜅𝑙 and high electronic weighted 
mobility [5,6]. For instance, Bi2Te3 and its alloys like Sb2Te3 or Bi2Se3 have established themselves as 
the leading TE materials for near-room temperature applications [7,8]. This dominance stems from 
their successful implementation in commercially available TE devices and modules for both power 
generation and solid-state cooling within this temperature range [9]. 

On the downside, the fabrication process of Bi2Te3 is time- and cost-consuming. For example, 
zone melting (ZM) which remains the dominant method for commercial production of Bi2Te3-based 
TE materials suffers from drawbacks such as being time-consuming and energy-intensive [10]. 
Additionally, prolonged high-temperature annealing can cause compositional deviations, ultimately 
degrading TE performance. Furthermore, ZM-produced materials exhibit high orientation and a 
propensity to cleave along the basal plane, leading to poor mechanical properties and hindering long-
term durability [11]. Extensive research has explored alternative fabrication methods to address the 
limitations of zone melting, particularly its high energy consumption, extended processing times, and 
associated costs. Techniques like high-energy ball milling, melt spinning, and various wet chemical 
methods have been successfully developed for synthesizing Bi2Te3-based compounds with desirable 
features like fine grain size and modulated microstructure [12-15].  

Combining these synthesis methods with hot pressing (HP) or spark plasma sintering (SPS) can 
achieve both robust mechanical properties and high TE performance in Bi2Te3 bulk materials [16,17]. 
However, these alternative methods still present challenges. They can be time-consuming and 
energy-intensive, and the products may suffer from oxidation or contamination by residual media 
and organic impurities during synthesis, ultimately leading to degraded TE performance. In an 
attempt to overcome these drawbacks, this work explores 3D printing as a novel and potentially cost-
effective approach to fabricating Bi2Te3 films for TE applications. 3D printing technology, first 
reported by Hull [18,19], has seen rapid advancements in recent years due to progress in precision 
measurement and control. One prominent 3D printing method utilizes photopolymer resins, 
implemented primarily through stereolithography apparatus (SLA), digital light processing (DLP), and 
3D spray printing (3DSP) techniques [19,20,21]. This technology builds objects layer-by-layer by 
optically curing liquid photopolymer resins [22,23]. 3D printing with photopolymer resins offers 
advantages such as cost-effective utilization, high building accuracy, and rapid fabrication, making it 
a popular choice for rapid prototyping and manufacturing [24-26]. Therefore, this work investigates 
a novel approach for fabricating Bi2Te3 films via photopolymer resin-based 3D printing. The pre-
printing mixture ratio of photopolymer resin and Bi2Te3 powder was carefully considered towards 
fabrication. Subsequently, the microstructure and elemental composition of the printed films were 
characterized to assess the feasibility of this fabrication process.  
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2. Methodology  
 

The 3D printed Bi2Te3 films were prepared firstly by manually mixing Bi2Te3 powders with 
photopolymer resin (Magma Flexible Photopolymer Resin Series).  Here, the ratio of Bi2Te3 powders 
and photopolymer resin was determined by the following equation:  

 
𝑥

𝑛%
×

𝑦

𝑚%
                 (1) 

  
where 𝑥 and 𝑦 are the weight of photopolymer resin and Bi2Te3 powder respectively in gram, while 
𝑛 is the percentage of photopolymer resin and 𝑚 is the percentage of Bi2Te3 powder, both in the final 
mixture. Then, these mixtures were stirred manually for 10 minutes using a glass rod. As illustrated 
in Figure 1, these mixtures were placed in the printer (Creality LD-002H Mono LCD UV Resin 3D 
printer) with the printing setting associated with the design dimension of 20 mm-wide, 20 mm-long 
and 0.1 mm-thick.  The mixtures were then imprinted on the soda lime substrate to obtain the resin-
Bi2Te3 layer for further procedure. 
 

 
Fig. 1. Schematic diagram of 3D printing fabrication procedure 

 
After printing, these films were exposed to UV light for 9 seconds to solidify them. With the 

purpose of densification and resin elimination, these films were placed on aluminum oxide (Al2O3) 
boats for the following annealing procedure. Annealing conditions were set to 200 ℃ of holding 
temperature, and 40 minutes of holding time in a muffle furnace (Furnace Carbolite 301). This 
condition was selected based on previous works where an annealing temperature of 350 ℃ for 90 
minutes showed the best TE performance [17]. However, during the preliminary step for the current 
work, the samples turned into powder with the same annealing condition, showing a possible sudden 
loss of binding effect expected by the photopolymer resins. Hence, 200 ℃ of holding temperature, 
and 40 minutes of holding time were found to be the most suitable annealing condition for this work. 
The sample names associated with its photopolymer resin-powder ratio and annealing conditions are 
summarized in Table 1 below. 
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Table 1 
Sample composition and annealing condition 
Sample name Mixing ratio in wt% (resin: powder) Annealing condition 

10BT 90:10 Unannealed 
20BT 80:20 Unannealed 
30BT 70:30 Unannealed 
40BT 60:40 Unannealed 
40BTa 60:40 200 ℃, 40 minutes 

 
Following the fabrication process, the 3D printed films’ microstructure and elemental 

composition were observed using the Low-Vacuum Secondary Electron Microscope (LV-SEM) and its 
attached Energy Dispersive X-ray Analyzer (EDS). 
 
3. Results  
 

As shown in Figures 2(a-d), increasing the photopolymer resin ratio led to the enhanced physical 
integrity of the fabricated films, suggesting improved mechanical strength. This aligns with the 
expected binding effect of the photopolymer resin, contributing to enhanced printability [27]. 
However, a potential trade-off may arise as the increased resin content could compromise TE 
performance due to decreased Bi2Te3 powder proportion. SEM images in Figure 3 illustrate a flaky 
morphology for the Bi₂Te₃ powders, appearing as lighter gray regions. Image analysis determined an 
average particle size ranging from 10 to 100 µm. 
 

 
 Fig. 2. Images of fabricated films with the photopolymer resin to Bi2Te3 ratio at (a) 90:10  
 (b) 80:20 (c) 70:30 (d) 60:40 

 

 
Fig. 3. SEM images of fabricated film before annealing with the photopolymer 
resin to Bi2Te3 ratio at (a) 90:10 (b) 80:20 (c) 70:30 (d) 60:40 (e) 60:40 after 
annealed at 200℃ for 40 minutes 
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The surface of the Bi2Te3 appeared smooth with no visible defects. The darker grey region is 
believed to be the photopolymer resin or pores, agreeing with the EDS quantitative analysis, 
summarised in Figure 4 and Table 2. This morphology is consistent with previous studies on similar 
materials [19]. Furthermore, there is a sign of densification after the annealing process as shown in 
Figure 3(d) and Figure 3(e). For powdered materials, annealing can cause the particles to bond 
together through atomic diffusion, reducing their porosity and increasing density [28]. This is 
promising towards TE performance enhancement with the increase in density in fabricated films. 
Further studies are required to identify quantitively the amount of remaining photopolymer resins 
or pores associated with the annealing process which was expected to eliminate traces of 
photopolymer resins. 
 

 
Fig. 4. (a) SEM image (b-e) EDS mapping of C, O, Bi and Te (f) 
Elemental  composition, for sample 40BTa 

 
EDS mapping (Figure 4) and corresponding quantitative analysis (Table 2) indicate a predominant 

distribution of Bi and Te within the film. Oxygen (O) and carbon (C) were detected throughout the 
sample, exhibiting higher concentrations in regions depleted in Bi and Te.  
 

Table 2  
Quantitative analysis of sample 40BTa 
Elements Mass (%) 

C 14.99 
O 1.90 
Te 25.80 
Bi 57.31 
Total 100 
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The presence of O suggests the formation of oxide phases, porosity, or residual photopolymer 
resin, which may influence material properties. To elucidate the precise nature of C and O, further 
characterization using Raman or FTIR spectroscopy is recommended. In summary, the phase and 
elemental analyses collectively demonstrate the feasibility of fabricating Bi2Te3-based films via 
photopolymerization 3D printing. 
 
4. Conclusions 
 

A novel resin 3D printing method successfully was successfully implemented in the fabrication of 
promising high-performance Bi2Te3 films, with a minimum resin content of 60 wt%. SEM images 
confirmed the films' microstructure and EDS analysis verified their elemental composition. However, 
further quantitative analysis is needed to assess porosity and resin content. Additionally, 
thermoelectric property evaluation is crucial to definitively determine the viability of this Bi2Te3 film 
fabrication method. 
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