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hancing safety, supporting law enforcement, facilitating toll collection, and con-
tributing to smart city initiatives through real-time monitoring and data anal-
ysis. With the rapid growth of smart city technologies, the need for efficient,
scalable, and high-accuracy vehicle detection models has become increasingly
critical. This study aims to propose an advanced vehicle detection system using
Convolutional Neural Networks (CNNs) in combination with the YOLOvS
model, which is known for its high-speed performance and superior accuracy
in image recognition tasks. The proposed model is evaluated using a custom-
trained YOLOv5s model, tested on a dataset comprising 1460 images of ve-
hicles. These images are divided into five classes which are cars, motorcy-
cles, trucks, ambulances, and buses. Performance evaluation metrics such as
precision, recall, and mean Average Precision (mAP50-95) are used to assess
the model’s effectiveness. The results indicate that the YOLOv5-based model
achieved impressive detection accuracy, with precision, recall, and mAP values
exceeding 87%. The proposed system demonstrates its robustness in detect-
ing and classifying various vehicle types across different conditions, including
small, partially visible, and distant vehicles. The findings suggest that this model
holds significant potential for real-world applications in urban traffic manage-
ment and smart city infrastructure.
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1. INTRODUCTION

The advancement of technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI),
coupled with the vast availability of data, plays a critical role in the development of smart cities by enabling
predictive analytics and data-driven decision-making particularly in urban transportation networks [1]. These
technologies help enhance transportation infrastructure and improve road safety by employing image recog-
nition and computer vision techniques to detect vehicles for effective traffic management, congestion control,
and future planning [2]. Vision-based vehicle detection leverages sensors like cameras to automatically identify
and monitor vehicles and their movements on the road [2].
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This technology enables the automatic regulation of traffic flow in urban environments and facilitates
incident detection such as accidents or unusual traffic patterns [3]. However, this depends on the availability
of an accurate and reliable vehicle classification system capable of precisely identifying various types of vehi-
cles under diverse conditions [4]. Therefore, this paper investigates the implementation of image recognition
methods for vehicle classification using deep learning [5]. In particular, the ability to classify vehicles that
are small, far away, or partially visible in low-light conditions remains a significant challenge that can directly
affect system performance [6].

Despite recent advances, many models still struggle to maintain high classification accuracy in chal-
lenging real-world scenarios such as occlusion, dense traffic, and small object detection [7]. Previous studies
have focused mainly on clear and centered vehicle images, lacking sufficient attention to faraway or overlap-
ping vehicles [8]. This gap highlights the need for a more robust model capable of generalizing to various
vehicle sizes and visibility levels [9]. Addressing this gap not only contributes to more resilient vehicle clas-
sification models but also strengthens intelligent transportation systems by improving traffic regulation, law
enforcement, and road safety outcomes [10].

In this context, enhancing vehicle detection and classification contributes to broader societal goals,
particularly the United Nations Sustainable Development Goals (SDGs) [11]. This research aligns with SDG
11 (Sustainable Cities and Communities) by promoting safer and smarter urban transportation and SDG 9
(Industry, Innovation, and Infrastructure) through the development of advanced Al-based systems [12]. By en-
abling real-time traffic monitoring and responsive management strategies, this research supports the transition
toward more sustainable, efficient, and livable cities [13].

2. LITERATURE REVIEW

In vehicle classification, Selective Search Algorithm for small vehicles is investigated by [14]. They
tested on Pascal VOC 2007 dataset to evaluate its performance in vehicle detection [15]. Their research high-
lighted the adaptability of Selective Search for small vehicles and introduced deep learning method [16]. In
their research, using Selective Search Algorithm able to achived high classification [17]. However, they found
that, it is challenges to balance between the accuracy and time complexity, especially for small instances [18].

Similarly, [19] explored advanced vehicle detection focusing on deep learning frameworks of R-CNN
and YOLO [19]. They investigate on the enhancements in YOLO versions to improve small object detection
and addressed computational complexities, highlighting advancements of Faster R-CNN and YOLOv4 for
better efficiency [20]. They found that original Faster R-CNN less effecitive in detecting small objects and
persistent challenges in detecting small vehicles, indicating areas for further innovation in vision-based vehicle
detection systems [21].

[22] investigate the vehicle detection on the Real-Time Vehicle Classification and Tracking Using
a Convolution Neural Networks (CNN), Transfer Learning-Improved Deep Learning Network which uses a
combination of deep learning, YOLO-based object detection, transfer learning, and a multi-vehicle tracking
method [22]. In their research, it is observed that the YOLOvS5]1, YOLOv5m, YOLOv5n and YOLOv5s model
only able to detect the vehicle on a single straight sections of road an unable to detect the vehicle appear on
bi-directional roads [23].

From the review conducted, the most commonly used methods in vehicle classification are CNN using
YOLO model, particularly YOLOvS5 [24]. The CNN is chosen due to its ability to effectively extract features
from images, making it highly suitable for complex object detection tasks like vehicle recognition [22]. While
YOLOQO’s able to detects and classifies multiple vehicles at the same time, making it ideal for dynamic traffic
surveillance scenarios [25]. Therefore, in this research, we investigate the CNN method with YOLOv5 model
to improves the vehicle classification especially multiple, small and far away vehicle [26]. YOLOv5 was chosen
over other versions due to its ability in detecting small objects [27].

3. METHODS
Generally, the proposed work can be divided into two phases, proposed model and web development
[28]. Each of the phases will be discussed in the following subsections [29].
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3.1. Proposed Model

The proposed model for vision-based vehicle classification using CNN with YOLOvS model [30].
YOLOVS5 was chosen due to its accuracy performance in detecting small objects [19]. The YOLOvS5 architec-
ture used as shown in Figure 1 [31].
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Figure 1. YOLOVS5 Architecture

It consists of a series of convolutional and pooling layers that extract spatial features from the input
image, followed by fully connected layers that perform classification based on the detected patterns [32]. The
architecture is optimized for real-time object detection and is particularly effective in identifying small and
overlapping vehicles in complex environments [33].

YOLOVS5 architecture used for vehicle classification consists of 24 convolutional layers, four max-
pooling layers, and two fully connected layers [34]. As illustrated in Figure 1, it focuses on localized feature
analysis, analyzing vehicle parts of the image rather than the entire image to reduce computational complexity
for real-time detection [35]. The convolutional network begins with a 1x1 convolution, followed by a 3x3
convolution that generates a cuboidal output [36]. A 1x1 convolution is used to reduce channel numbers,
followed by a 3x3 convolution to extract feature maps [37]. To extract feature maps, the YOLO algorithm
utilizes convolutions repeatedly [38].
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Figure 2. YOLO Algorithm Structure

The YOLO Algorithm structure is shown in Figure 2 [39]. Convolution extracts important features
from vehicle input image by parameters Kernels, Strides, and paddings, which structure the operations and
help in feature extraction [40]. The feature extraction process in our model incorporates multiple convolutional
layers, CSP (Cross Stage Partial) modules, an SPPF (Spatial Pyramid Pooling Fast) layer, and a combination
of upsampling and concatenation operations [41]. CSP modules is used to enhance gradient flow and improve
learning efficiency [42]. The SPPF layer is included to generate fixed-size feature maps regardless of input
vehicle image size, enabling the model to capture spatial information effectively [43].

A combination of upsampling and concatenation operations is used to merge features from different
scales and levels of abstraction [44]. This multi-scale feature extraction ensures that the model can accurately
detect various sizes vehicles within the image [45]. The refined features extracted through this process are then
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used by the detection layers to precisely identify and locate the vehicle, ensuring high accuracy and robustness
in detection phase [46]. A ReLU and linear activation functions are used in our model architecture [47]. ReLU
activation function is used throughout the network except in the final layer where a linear activation function
is used in the final layer. To enhance performance and prevent overfitting, batch normalization techniques and
dropout are used in our proposed model. Batch normalization helps to standardize inputs to each layer, making
training more stable and efficient, while dropout randomly disables some neurons during training to prevent
reliance on certain features and improve generalization [48].

3.2. Web Development

In the web development phase, the proposed model in the previous phase are integrated in the web-
page. The webpage architecture for the proposed vision-based vehicle classification utilized the HTML, CSS,
and JavaScript components. HTML structures the user interface, buttons, labels, headers, and images elements.
CSS used to design the color schemes, button styles, font choices, and layout configurations. Meanwhile,
JavaScript used to for image handling, server communication, response processing, and dynamic interface en-
hancements. The vision-based vehicle classification used Flask server to integrate with the proposed model.
The Flask serve as the server which will call the proposed model functionalities in previous phase to load and
produce inference results based on the input image from the user. Users can interact with the webpage by
uploading images and initiate the scan image” function. The uploaded images will be sent to the Flask server,
which employs sub processes and invoke the proposed model for predictions.

Vision-Based Vehicle Classification
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Figure 3. Vision-Based Vehicle Classification

Figure 3 shows the user interface of the vision-based vehicle classification system developed in the
web implementation phase. The interface allows users to upload images and perform real-time vehicle detec-
tion using the integrated YOLOvS5 model. On the left side of the interface, several traffic-related images are
displayed to represent various conditions under which vehicles may be detected. The central section features
the uploaded image preview, while the right section presents the classification results, including the types of
detected vehicles (e.g., car, truck) and the computational time required for processing.

This visual interface enables users to interact with the system intuitively. As illustrated in figure above,
once an image is uploaded and the ”Scan Image” button is clicked, the system processes the image through the
back-end Flask server and returns the detection results in real time [49]. The design of the interface ensures
clarity, accessibility, and responsiveness, which are essential for practical deployment in smart city applications
[501].

3.3. Experiments

To demonstrate the reliability of the proposed model, a series of comprehensive experiments is con-
ducted between two versions of YOLOvVS namely; YOLOv5s and YOLOv5x. Their performance are evaluated
and compared. YOLOVS5s is chosen due to its smallest and fastest model, which is suitable for real-time ap-
plications with limited computational resources. Although YOLOv5x is the largest and slowest model, the
model is also consired in this research due to its promising accuracy performance in many object detection and
classification task. Both of these models are trained using Google Colab with T4 GPU for faster processing. A
vehicle image dataset is created to evaluate the performance of the two models.

APTISI Transactions on Technopreneurship (ATT), Vol. 7, No. 2, July 2025, pp. 441-453



APTISI Transactions on Technopreneurship (ATT) a 445

Generally, the dataset consists of 1460 vehicle images classified into five categories of vehicle which
are Car, Bus, Truck, Motorcycle and Ambulance. The vehicle images collected with different poses and angles
including multiple, small and distant or far away vehicle. The properties and sample of vehicle dataset are
shown in Table 1 and Figure 4.

Table 1. Details of the Characteristics in Vehicle Dataset

Category Total
Car 370
Bus 329
Truck 312
Motorcycle 275
Ambulance 174
Total 1460

Table 1 presents the characteristics of the vehicle dataset, which consists of 1460 images categorized
into five vehicle types: Car, Bus, Truck, Motorcycle, and Ambulance. The dataset includes a varied collection
of images, captured from different poses and angles, which may feature vehicles from a close-up perspective, as
well as distant or far-away views. The distribution of images across these categories is as follows: 370 images
for Cars, 329 images for Buses, 312 images for Trucks, 275 images for Motorcycles, and 174 images for
Ambulances. This diverse set of images provides a comprehensive sample for vehicle classification, ensuring
that the dataset covers a wide range of vehicle types and visual perspectives, which is essential for building a
robust model for vehicle recognition and analysis. The details outlined in Table 1 highlight the well-balanced
nature of the dataset, with each category contributing a substantial number of images to the overall collection.

Figure 4. Examples of Images in the Vehicle Dataset )

Figure 4 illustrates examples of images from the vehicle dataset used in the research. The images show
various vehicles in different environments and perspectives, representing different vehicle types such as buses,
cars, and trucks. These examples demonstrate the diversity of the dataset, which includes images captured from
various angles and distances. The vehicles depicted in the figure serve as visual samples that reflect the range of
conditions under which the dataset was collected, supporting the development of a robust vehicle classification
model. As shown in Figure 4, the dataset consists of images taken in various settings, helping to ensure that
the model can recognize vehicles under diverse circumstances. These images play a crucial role in training and
validating the proposed model’s effectiveness in distinguishing between vehicle categories.

In this research, the training split technique is used to split the vehicle dataset into training, validation
and testing set. The dataset were divided into 70% training, 20% validation and 10% testing set. The validation
set will helps in identifying the most efficient model and preventing the overfitting [51]. The aforementioned
technique is considered in this research since most of the work related to this domain from the literature use this
percentage to split the training, validation and testing set in their work [52]. The performance of the proposed
model is measured in terms of Precision, Recall and Mean Average Precision (mAP) metric, define as follows:
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TP
TP+ FP
TP
TP+ FN

1A ,
mAP = - Z AP,

k=1

Precision =

Recall =

where:
* AP, =the AP of class k, n = the number of classes
* TP = True positive
» ['P =False positive, I'N = False negative

The True Positive (TP) is the correctly classifification of a vehicle image into its actual class [53].
False Positive (FP) is the incorrectly classifies a vehicle into a wrong classes. False Negative (FN) is the model
unable to recognize a vehicle in its correct class and assigns it to another classes.

To obtain the most optimal settings for the porposed model, the experiment conducted with different
batch sizes and epoch values. The parameter setting of the Confidence Threshold value are also evaluated
to determine the optimal Confidence Threshold value. Three Confidence Threshold value are tested in this
experiment. The experiment started with a low Confidence Threshold value of 0.01 and incremented to 0.05,
and 0.1 to identify the most suitable Confidence Threshold value for the proposed model. The first experiment
are tested with the parameter setting batch sizes of 16 and 32, with the epoch counts of 30 and 300. The
maximum number of 32 for batch size and 300 for epochs in the experiment are chosen due to the maximum
limit constraints of Google Colab for T4 GPU usage. Their performances are evaluated and compared.

4. RESULTS AND DISCUSSION

To evaluate the performance of the proposed model against different Confidence Threshold, the test
with three different Confidence Threshold value (i.e., 0.01,0.5 and 0.1.) are conducted. The experiments started
with a low Confidence Threshold value of 0.01 and incremented accordingly to identify the most suitable
Confidence Threshold value that balances precision and recall for the proposed model. The comparative results
of their precision and recall are presented in Table 2. From the results, it can be seen that the performance
of both Confidence Threshold value of 0.05 and 0.1 demonstrate high precision and recall for almost all the
vehicle classes with both Confidence Threshold value able to obtain 1.000 precision and 1.000 recall. Only
a slightly lower in precision can be observed in Car class with both obtain 0.917 precision and 0.917 recall.
While the lowest precision and recall can be observed in Confidence Threshold value of 0.01 for almost all
classes with both precision and recall of 0.867 for Car class. Compared to the other two Confidence Threshold
value (0.05 and 0.1) tested, a lower in precision can also be observed using the Confidence Threshold value
of 0.1 in all other classes with only 0.857 for motorcycle, 0.800 for Bus and 0.875 for ambulance class. The
high precision and recall using the Confidence Threshold value of 0.1 can only be observed in Truck class with
1.000 precision and 1.000 recall. Based on the result obtain, the Truck class is shown able to be detected not
only by the Confidence Threshold value of 0.01, but also for all Confidence Threshold value tested. All the
Confidence Threshold value tested able to obtain 1.000 for both performance measure of precision and recall
for the Truck class.

Table 2. Comparative Results of the Proposed Model for Different Confidence Threshold Value

Class Confidence Threshold
0.01 0.05 (Proposed) 0.1
Car Precision 0.867 0.917 0.917
Recall 0.867 1.000 1.000
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Motorcycle  Precision 0.857 1.000 1.000
Recall 1.000 1.000 1.000
Bus Precision 0.800 1.000 1.000
Recall 1.000 1.000 1.000
Ambulance Precision (.875 1.000 1.000
Recall 1.000 1.000 1.000
Truck Precision 1.000 1.000 1.000
Recall 1.000 1.000 1.000

Table 2 presents the comparative results of the proposed model for different confidence threshold
values, specifically for vehicle classification tasks. The table shows the precision and recall values for five
vehicle categories Car, Motorcycle, Bus, Ambulance, and Truck at three different confidence threshold levels
is 0.01, 0.05 (proposed), and 0.1.

As indicated in Table 2, the confidence threshold value of 0.05, which is the proposed value in this
research, generally provides the best performance across all vehicle classes. The precision and recall values at
this threshold are consistently high, reaching 1.000 for most vehicle categories, except for the Bus class, where
the precision is 0.800 at the 0.05 threshold. The confidence threshold of 0.05 produced clearer bounding box
detection, effectively handling images with multiple vehicles and detecting partially visible ones, especially in
complex real-world environments like crowded traffic conditions.

In contrast, the 0.01 and 0.1 thresholds show lower or less reliable performance in vehicle detection,
particularly in detecting vehicles that are partially obscured or located inside the image. The precision and
recall values at the 0.1 threshold do not exceed 0.917, indicating less efficient detection when compared to the
0.05 threshold. Therefore, Table 2 highlights that the confidence threshold of 0.05 is the optimal choice for
ensuring robust and accurate vehicle classification in the proposed model.

Overall, from the result, it can be seen that both the Confidence Threshold value of 0.05 and 0.1
demonstrated high precision and recall rates. However, the detection in Confidence Threshold value of 0.1 not
able to detect vehicles which are partly inside in the image. In contrast, the Confidence Threshold value of 0.05
produced clearer bounding boxes detection and able to detect multiple inferences on a single vehicle images
compared to other Confidence Threshold value. The Confidence Threshold value detection on vehicle images
are shown in Figure 4. In addition, the Confidence Threshold value of 0.05 also effective in detecting partially
visible vehicles in the image. This will enhanced vehicle detection especially for real-world applications where
vehicles may be partially obscured or occluded especially in crowded traffic conditions or urban environments.
From the result obtain, the Confidence Threshold value of 0.05 also shows the highest performance measure
for all performance measure of prescion and recall across all the tested vehicle class with the value exceeding
0.917. Thus, the Confidence Threshold value of 0.05 are used in the proposed model as it able to produce
clear and accurate detections, making it the optimal Confidence Threshold value for robust and reliable vehicle
classification.

(b)
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Figure 5. Confidence Threshold Value Detection on Vehicle Images (a) Confidence Threshold of 0.01 (b)
Confidence Threshold of 0.05 and (c) Confidence Threshold Value of 0.1

To obtain the most optimal model, the proposed Confidence Threshold value of 0.05 are utilized in
YOLOWVS5 and are tested in vehicle dataset. The YOLOvS model is chosen due to its high-speed performance,
making it ideal for vehicle classification. The selection of YOLOv5 models in this research are YOLOv5s
and YOLOv5x model. YOLOvSs is the smallest and fastest model,which suitable for real-time applications
with limited computational resources. Although YOLOvV5x is the largest and slowest model, YOLOv5x model
is also considered in this research due to its promising accuracy performance in many classification task. In
searching for the best vehicle classification model, the effect of hyper-parameter tuning of batch size and
epochs are evaluated to find the right balance between training efficiency, model accuracy, and generalization.
The parameter settings used for each model and their results are summarized in Table 3.

Table 3. Parameters Settings and Comparative Results for Each Models
Model1l Model2 Model3 Modeld Model S (Proposed)

Batch Size 16 16 32 32 32
Epochs 30 300 30 300 30
Precision 0.898 0.942 0.874 0.921 0.961
Recall 0.892 0.855 0.917 0.875 0.892
mAP50 0.938 0.930 0.952 0.940 0.947
mAP50-95 0.796 0.821 0.820 0.826 0.871

From the experiment conducted on the evaluation of batch sizes and epoch counts as presented in
Table 3, Model 3 achieved the highest performance of recall and mAP50 (across all classes ) with 0.917 recall
and 0.952 mAP50. Model 3 based on the YOLOv5s models, which was trained with a batch size of 32 and 30
epochs able to detect all the five vehicle classes, particularly for Ambulance and Truck classes. From the result,
it shows that the selection batch size of 32 able to balance between training speed and model stability, ensuring
efficient use of computational resources while maintaining its performance. In addition, training for 30 epochs
prevents overfitting, which can occur with prolonged training periods, ensuring the model generalizes well
to unseen data. Although the Model 4 that based on YOLOv5s model was trained with a batch size of 32
and 300 epochs demonstrates a slightly higher mAP50-95 (across all classes) which only minimal diffrence
of 0.006 compared to Model 3, it required more training time as the number of epochs increase in Model 4.
Increases the number of epoch may risk overfitting, which may degrade performance on the new data [11].
Model 3 able to obtained high recall value with 0.917 and mAP50 of 0.952 and outperform the other models.
The results indicate that the selection batch size of 32 with 30 epochs on YOLOv5s models able to optimize
the performance where it balance the training data with strong generalization capabilities. A batch size of 32
ensure the stablity for training, while 30 epochs prevent overfitting, helping the model to generalize well to a
new data.

Overall, Model 3 outperfomed the others especially for mAP50 and recall in the experiment con-
ducted. On the other hand, Model 5 outperformed other for mAP50-95 and precision with 0.871 mAP50-95
and 0.961 precision. Despite having the same batch size (32) and epoch count (30) as other models, Model 5
which based on YOLOV5x, able to achive highest score of mAP50-95 and precision. This superior performance
is due to YOLOv5xX is a more advanced model than YOLOv5s, which allows more detailed feature extraction
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that leads to higher precision and mAP50-95 scores.
To further evaluate the performance of the models, the results for each vehicle classes were further
explored and presented on Table 4.

Table 4. Comparative Results for Each Models on Vehicle Classes

Class Modell Model2 Model3 Modeld Model 5
(Proposed)

mAPS0  0.952 0.965 0.972 0.962 0.993
Ambulance

mAPS0- 0.842 0.896 0.911 0.885 0.952

95
B mAPS0  0.992 1.000 0.994 0.994 0.994
us

mAP5S0- 0912 0.921 0.913 0.913 0.965

95
C mAP50  0.963 0.946 0.964 0.958 0.960
ar

mAP5S0- 0.854 0.880 0.859 0.891 0.914

95

mAPS0  0.860 0.842 0.878 0.861 0.875
Motorcycle

mAP50- 0.605 0.633 0.621 0.639 0.695

95

mAPS0  0.924 0.904 0.951 0.924 0.916
Truck

mAP50- 0.765 0.773 0.798 0.800 0.828
95

Overall, Model 5 recorded the highest mAP50-95 for all the vehicle classes. Model 5 shows con-
sistency in obtaining highest performance across all vehicle classes. The highest mAP50-95 of 0.965 can be
observed on Bus detection. While the lowest mAP50-95 for all the model can be seen on Motorcycle. For
the Motorcycle class, Model 5 able to obtain the highest mAP50-95 compared to other models with 0.695
mAP50-95. The results indicates Model 5 which is based on the YOLOv5x models with batch a size of 32
and epoch count 30 are more robust compared to other models. Thus in this research, Model 5 is proposed for
vision-based vehicle classification.

Despite the effectiveness of the proposed model in detecting the vehicle images, missclassification
still can be observed especially on white-color vehicles. The white-color vehicles tend to be missclassified as
an ambulance. The example of the missclassifcation of ambulance are shown in Figure 6.

Ambulance 0.62

Figure 6. Misclassification of White-Color Vehicles

Figure 6 illustrates the misclassification of white-color vehicles, specifically ambulances, in the ve-
hicle detection model. The images show examples where white-colored vehicles, including ambulances, are
incorrectly classified by the model. The bounding boxes in the images highlight the misclassified vehicles, with
the confidence scores displayed next to each detection. In the first image, an ambulance is misclassified with
a confidence score of 0.39, and in the second image, it is misclassified with a higher confidence score of 0.65.
Similarly, in the third image, another ambulance is misclassified with a confidence score of 0.62.
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As shown in Figure 6, these misclassifications of white-color vehicles, particularly ambulances, are a
significant challenge for the model. Despite the model’s strong performance in detecting other vehicles, white-
colored vehicles tend to be misclassified, possibly due to their color and design, which makes them difficult to
distinguish accurately from other types of vehicles in certain conditions. This issue highlights a limitation in the
model’s ability to correctly classify all vehicle types, especially in real-world scenarios where environmental
conditions and vehicle colors can impact detection accuracy.

5. CONCLUSION

The proposed Vision-Based Vehicle Classification model for smart city applications demonstrates sig-
nificant potential in enhancing traffic management and congestion control. The experimental results reveal that
the YOLOv5x-based Model 5 effectively classifies vehicles under various conditions, including the detection
of multiple, small, and distant vehicles, making it highly suitable for real-world dynamic traffic environments.
The model outperforms the YOLOv5s model, achieving the highest mAP50-95 value of 0.871 across all vehi-
cle classes. Despite its high accuracy, the model encounters challenges in classifying white-colored vehicles,
which are sometimes misclassified as ambulances.

Future improvements will focus on addressing this misclassification issue, specifically with white-
colored vehicles. This can be achieved by incorporating more advanced detection models and expanding the
dataset to include a greater diversity of vehicle types, especially ambulances and other white-colored vehicles.
Additionally, overcoming GPU computation limitations, which affect training epochs and batch sizes, is essen-
tial for optimizing model performance. Exploring newer YOLO versions, such as YOLOv9 and YOLOv10,
may offer improved accuracy and processing efficiency, enhancing the model overall performance.

The findings of this research have significant implications for the development of intelligent trans-
portation systems in smart cities. Accurate vehicle classification, even in complex and crowded environments,
supports the advancement of traffic regulation, law enforcement, and safety measures. The integration of this
system into urban infrastructures can lead to more efficient road traffic management, enhancing public safety
and contributing to the creation of sustainable, smart cities. Furthermore, the proposed model lays the ground-
work for future developments in automated vehicle classification systems, driving innovation in smart city
technologies.
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