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Graphical abstract 

 

Abstract 
 

The development of a precise forecasting model for electricity demand 

is essential for optimizing the efficiency of planning within the power 

generation sector. The electricity demand data in Malaysia exhibits 

seasonal patterns, making it necessary to evaluate the forecasting 

capabilities of the Box-Jenkins model for predicting weekly peak 

electricity demand. The objective of this study is to assess how well the 

Box-Jenkins model performs in forecasting the weekly peak electricity 

demand. This study utilizes weekly electricity demand data, specifically 

the highest values recorded each week, measured in megawatts (MW), 

spanning from 2005 to 2016. The findings indicate that SARIMA 

(4,1,0)(0,1,0)52 is the best-suited choice for predicting electricity demand. 

This conclusion is supported by its notably low values of Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) which stand at 623.3015, 488.5673, and 2.95%, 

respectively. The MAPE value of the suggested model, falling below the 

5% threshold, suggests that the seasonal Box-Jenkins model performs 

quite effectively when it comes to predicting electricity demand in the 

context of Malaysian data. To summarize, the proposed seasonal Box-

Jenkins model exhibits significant potential and delivers promising 

performance when forecasting electricity demand characterized by 

seasonal patterns.    
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Abstrak 
 

Pembangunan model ramalan yang tepat untuk permintaan elektrik 

adalah penting untuk mengoptimumkan kecekapan perancangan 

dalam sektor penjanaan kuasa. Data permintaan elektrik di Malaysia 

mempamerkan corak bermusim, menjadikannya perlu untuk menilai 

keupayaan ramalan model Box-Jenkins untuk meramalkan permintaan 

elektrik puncak mingguan. Objektif kajian ini adalah untuk menilai sejauh 

mana prestasi model Box-Jenkins dalam meramalkan permintaan 

elektrik puncak mingguan. Kajian ini menggunakan data permintaan 

elektrik mingguan, khususnya nilai tertinggi yang dicatatkan setiap 
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1.0 INTRODUCTION 
 

Predicting electricity consumption is crucial because 

electricity, being a non-storable resource, requires 

efficient management. In this context, load 

forecasters commonly refer to "peak demand" or 

"peak load" to analyze the optimal electricity 

utilization during specific time frames. The usage of 

electricity is influenced by shifts in weather patterns 

and various environmental factors. As an example, 

as reported by the Department of Statistics Malaysia 

[1], Malaysia experienced its peak electricity 

demand of 17,788 MW on 19 April 2016, attributed to 

the El-Nino phenomenon. This period saw electricity 

consumption soar to its highest point due to the hot 

and dry weather conditions. Consequently, the 

maximum demand is regarded as a key indicator for 

assessing the electricity system's performance, taking 

precedence over the minimum demand. 

From a rational standpoint, prioritizing the 

maximum value over the minimum holds greater 

merit, especially in the context of predicting 

electricity demand. Additionally, in the power 

industry, strategic planning and infrastructure 

expansion depend heavily on the ability to estimate 

electricity demand. Therefore, the accuracy of these 

predictions can significantly reduce maintenance 

and operating expenses while improving the 

electrical power supply and distribution’s network 

efficiency. This in turn makes it easier to make well-

informed decisions on prospective developments. 

Thus, it becomes essential to achieve high-precision 

demand projections in order to avoid wasting energy 

and having equipment breakdown. Therefore, the 

application of the most effective techniques for 

generating accurate forecasts of electricity demand 

is of utmost importance, given the significant role that 

predicting electricity consumption plays, particularly 

in the economy. As a result, there are various 

approaches that can be explored for forecasting 

electricity demand. 

Furthermore, electricity plays a crucial and 

widespread role as a primary source of energy, 

significantly shaping modern society. Its diverse 

benefits span various sectors such as transportation, 

manufacturing, mining, and communication. Serving 

as a foundational element, electricity plays a vital 

role in driving economic prosperity and 

development, holding a key position in socio-

economic progress. It acts as a versatile tool that 

contributes significantly to strategic planning and 

future policy direction within the energy sector. The 

demand for electrical energy continues to rise 

steadily each day, and its multifaceted applications 

have propelled human civilization to unprecedented 

levels of advancement. Consequently, the need for 

electricity is intricately linked to all facets of 

development [2]. 

The accurate forecasting of electricity demand 

and prices is of paramount importance for market 

participants and system operators alike. Accurate 

forecasting is essential for effective power system 

management. However, because of their unique 

features-high frequency, volatility, extended trends, 

non-uniform mean and variance, mean reversion, 

different seasonal patterns, calendar-related effects, 

and the occurrence of spikes and jumps-projecting 

electricity demand and prices is a challenging 

undertaking [3]. 

It is essential for electricity generators, distributors, 

and suppliers to carry out a number of studies in 

order to forecast future electricity usage for both 

residential and commercial uses. In order to 

encourage consumer energy conservation efforts, 

this kind of proactive planning is crucial. Numerous 

statistical models are utilized for forecasting 

electricity consumption, such as the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) 

[4] and the Simple, Holt’s, and Brown’s Exponential 

Smoothing Models [5]. Other methods include Fuzzy 

Time Series (FTS), Least Square Support Vector 

Machines (LSSVMs), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), and Artificial Neural Network (ANN) 

[6]. 

Goswami and Kandali [4] focused on analyzing 

daily 24-hour electrical load data obtained from the 

State Load Dispatch Centre (SLDC) in Assam. Over a 

period of three years, 1095 data points from daily 

minggu, diukur dalam megawatt (MW), antara 2005 hingga 2016. 

Dapatan menunjukkan bahawa SARIMA (4,1,0)(0,1,0)52 ialah pilihan 

yang paling sesuai untuk meramalkan permintaan elektrik. Kesimpulan ini 

disokong oleh nilai yang sangat rendah Punca Min Kuasa Dua Ralat 

(RMSE), Min Ralat Mutlak (MAE) dan Min Ralat Peratusan Mutlak (MAPE) 

yang masing-masing adalah 623.3015, 488.5673, dan 2.95%. Nilai MAPE 

model yang dicadangkan, jatuh di bawah ambang 5%, menunjukkan 

bahawa model Box-Jenkins bermusim menunjukkan prestasi yang agak 

berkesan apabila ia digunakan untuk meramalkan permintaan elektrik 

dalam konteks data Malaysia. Sebagai rumusan, model Box-Jenkins 

bermusim yang dicadangkan mempamerkan potensi yang ketara dan 

memberikan prestasi yang menjanjikan apabila meramalkan 

permintaan elektrik yang dicirikan oleh corak bermusim. 

 

Kata kunci: Ramalan, Permintaan Elektrik, Box-Jenkins, Data Bermusim 
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load data at 10 am, from 1 January 2016 to 31 

December 2018, were included in the dataset. For 

the purposed of model creation and evaluation, the 

data was split into two categories which are 75% 

training data (822 points) and 25% testing data. The 

SARIMA model was utilized in the study to analyze 

time series data. The results showed that the SARIMA 

model performed better in terms of prediction, with a 

low MAPE value of 10.7% by integrating the seasonal 

patterns in the load data. 

Ishak et al. [5] applied annual data from the 

Malaysia Energy Information Hub (MEIH) covering the 

years 1997 to 2018 to forecast the amount of power 

consumed in Malaysia’s residential sector. Brown’s 

Exponential Smoothing, Holt’s Exponential Smoothing, 

and Simple Exponential Smoothing were used in the 

study. The principal aim was to provide an analysis of 

energy trends and projections for the period 

spanning 2019 to 2032. In results, Holt’s Exponential 

Smoothing performed better than the others, with the 

lowest MAPE score of 2.3%. 

Meanwhile, monthly electricity consumption data 

for seven nations over a ten-year period (2007-2016) 

was projected by Lee et al. [6]. Four different models 

were used in the study which are Fuzzy Time Series 

(FTS), Least Squares Support Vector Machines 

(LSSVMs), Adaptive Neuro-Fuzzy Inference System 

(ANFIS), and Artificial Neural Network (ANN) and the 

data source from ceicdata.com has been 

implemented. Metrics including RMSE, average 

forecasting error (AFE), and performance parameter 

(PP) were utilized to evaluate and compare the 

performance of these models. In conclusion, after 

highlighting the advantages and disadvantages of 

each model, for the majority of the countries under 

examination, the FTS model performed best. 

The electricity demand, particularly in Malaysia, is 

a seasonal time series. In the field of time series data 

analysis, the Box-Jenkins modelling approach stands 

out as a very powerful forecasting technique. The 

Box-Jenkins model is a reliable option for forecasting 

and is frequently used as the standard or a crucial 

part of modern research due to its practicality and 

steady high performance in time series data analysis. 

The adoption of the seasonal Box-Jenkins model to 

anticipate the electricity demand data is justified by 

its seasonal aspect. 

Andoh et al. [7] investigated the potential time 

series models for predicting energy consumption in 

Ghana's Western Regions. Forecasting was done 

using historical data, which included the monthly 

electricity usage by three client categories from 

January 2008 to December 2013. Therefore, the 

purpose of this research is to evaluate SARIMA’s 

predictive power. In order to confirm the parameter 

values of of p, q, P, and Q, Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) 

were examined. The Sum of Squared Estimate of Error 

(SSE) values, which yield the least squares regression 

line of the data, have been used to evaluate the 

forecast's accuracy. The Box-Jenkins methodology 

was employed in the construction of the model for 

each of the three-monthly time series related to load 

tariffs. The aim of this approach is to fit a SARIMA 

model to the given series. It has been demonstrated 

that the time series models can reveal and amplify the 

region’s electricity consumption in upcoming months 

or years.  

Furthermore, Duong et al. [8] investigated how the 

SARIMA model could be used to forecast Hanoi's 

short-term load. Finding appropriate methods and 

models for forecasting energy consumption, especially 

electricity load, is the aim of their study. The dataset 

used for assessing and forecasting the power load in 

Hanoi encompassed the period from 1 January 2019 

to 23 December 2021 which included hourly data 

every day. According to Box-Jenkins methodology, 

there is a structured four-step process, and it has been 

implemented in this research. Firstly, they focused on 

model recognition, which involved preparing the data 

and choosing suitable models. They also evaluated 

the stationarity of the data series and determined 

which model most closely matched the data. 

Subsequently, the authors estimated model 

parameters to select the most suitable model based 

on appropriate criteria, utilizing EVIEWS software. The 

third step involved assessing the suitability of the 

models by conducting residual tests. In the final step, 

the authors forecasted three SARIMA models which 

are SARIMA(0,1,1)(0,1,1)24, SARIMA(0,1,6)(0,1,1)24, 

SARIMA(0,1,7)(0,1,1)24, for comparison purposes. After 

considering various factors, including the conditions of 

random residuals and forecasting accuracy, they 

concluded that SARIMA(0,1,7)(0,1,1)24 was the most 

appropriate choice for hourly load forecasting on 

regular days in Hanoi. 

Additionally, forecasting electricity prices and 

demand is essential to the smooth operation and 

management of energy markets. To improve the 

accuracy of these projections, researchers have been 

using more complex modelling techniques in recent 

years. Functional data analysis is one of these 

techniques that has shown promise since it can 

identify intricate patterns present in time series data. 

Shah et al. [9] utilized data from the Nord Pool 

energy market and various forecasting accuracy 

metrics have been implemented to assess the one-

day-ahead out-of-sample that was achieved for an 

entire year. The purpose of this study was to examine 

how well models based on functional data analysis 

forecasted. First, the extreme values in the demand 

time series are processed. Next, the filtered series is split 

into components that are stochastic and deterministic. 

The deterministic component is modeled using the 

generalized additive modelling technique, while the 

stochastic component is modeled and forecasted 

using functional autoregressive (FAR), FAR with 

exogenous variable (FARX), and classical univariate 

AR models. The findings show that the functional 

modelling technique yields better predicting 

outcomes than FAR and classical AR models where 

FARX generates a MAPE value of 2.74%, while the 

MAPE values for FAR and AR models are 6.27% and 

9.73%, respectively. 
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Shah et al. [3] proposed models that can efficiently 

forecast electricity demand and prices. The demand 

and prices datasets of Nord Pool electricity market 

from 1 January 2013 to 31 December 2017 are 

considered. There are two parts of the time series. A 

trend, weekly, seasonal, and yearly periodicities, 

calendar effects, and lagged exogenous data are 

all included in the first component, which is regarded 

as deterministic and is modelled using both 

parametric and nonparametric techniques. The 

univariate autoregressive (AR) and multivariate 

vector autoregressive (VAR) models are used to 

estimate the second component, which is referred to 

as a stochastic component. Four distinct estimation 

techniques are used to carry out the estimate of 

these models: Elastic-net (E), Lasso (L), Ridge (R), and 

Ordinary Least Squares (O). The findings imply that 

the suggested methodology successfully predicts the 

cost and demand for electricity. 

Jan et al. [10] suggested a functional forecasting 

technique based on a two-component estimate 

strategy for the precise forecasting of power prices. 

Italian Electricity Market (IPEX) provided the “Prezzo 

Unico Nazionale (PUN)” dataset for this empirical 

study, which was gathered between 1 January 2012 

to 31 December 2017. The additive modelling 

method is used to calculate the first component, also 

referred to as the deterministic component. On the 

other side, a functional AR of order P, FAR (P) model 

is used to represent the stochastic component, and 

the dimension and lags are chosen automatically. 

Lastly, a full year of testing is done on the model to 

determine how well it forecasts. Based on the 

empirical data, it can be concluded that the 

suggested FAR(P) model outperformed the rival 

model with significantly less predicting mistakes. In 

addition, the component estimating process works 

quite well for predicting the cost of power. 

Shah et al. [11] implemented a forecasting 

procedure based on components estimation 

technique to forecast medium-term electricity 

consumption. They utilized the dataset of Pakistan 

electricity consumption ranging from January 1990 to 

December 2015. The electricity consumption series is 

divided into two major components: deterministic 

and stochastic. For the estimation of deterministic 

component, parametric and nonparametric models 

have been used. The stochastic component is 

modeled by using four different univariate time series 

models including parametric AR, nonparametric AR 

(NPAR), Smooth Transition autoregressive (STAR), and 

Autoregressive Moving Average (ARMA) models. To 

evaluate the forecasting accuracy, three standard 

error measures, namely MAE, MAPE, and RMSE, were 

calculated. The results show that the proposed 

component-based estimation procedure is very 

effective at predicting electricity consumption.  

Shah et al.  [12] forecasted one-day-ahead 

electricity prices by using different forecasting 

techniques and models. The electricity price data, 

ranges from 1 January 2012 to 31 December 2017, is 

used from the Italian electricity market (IPEX). They 

considered linear and nonlinear models for one-day-

ahead forecast of electricity prices using 

components estimation techniques where the price 

time series is divided into two major components: 

deterministic and stochastic. The deterministic 

component consists of long-run dynamics, multiple 

periodicities (yearly and weekly cycles) and 

calendar effects whereas the stochastic component 

accounts for the short-run dynamics of the process. 

Deterministic as well as stochastic components are 

modelled through parametric and nonparametric 

approaches. The results indicate that the component 

estimation approach is efficient in forecasting 

electricity prices series. The parametric estimation of 

deterministic component performs better forecasting 

results. 

Shah et al. [13] took into account demand data 

from the Italian electricity market (IPEX) for the period 

1 January 2005 to 31 December 2010 as well as from 

the British market (APX Power UK) for the period 1 

April 2005 to 31 December 2010. This study compares 

the forecasting performances of parametric and 

nonparametric models based on the functional 

approach with other standard models, such as 

multivariate AR models, univariate AR models, and 

univariate kernel-based nonparametric models. The 

demand projections for the Italian (IPEX) and British 

(APX Power UK) electricity markets. Descriptive 

indicators are used to analyze predictive 

performances, followed by conducting a test to 

determine the significance of the discrepancies, 

According to the analysis, functional nonparametric 

models are the most accurate within the multivariate 

framework, with VAR being a competitive model. The 

multivariate approach yields better results than the 

univariate one. 

Overall, the results point to the potential of 

functional data analysis to enhance the accuracy 

and dependability of forecasts of power demand 

and price in energy markets. The potential for 

applying these methods to other domains and the 

creation of advanced functional models to further 

improve predictive performance could be 

investigated in this field of study. 

In the realm of time series modelling, it is a 

common practice to account for monthly or 

quarterly seasonal effects. Nevertheless, given the 

fluctuations in weather and various environmental 

factors over the course of a year, generating 

electricity demand forecasts solely on a quarterly or 

monthly basis may not adequately support effective 

electricity supply management. Hence, opting for a 

weekly basis can be a more suitable approach. 

The current research landscape on electricity 

demand forecasting has extensively covered various 

models, including SARIMA, Exponential Smoothing 

Models, and Artificial Neural Networks. However, a 

significant gap exists in the exploration of weekly 

peak electricity demand forecasting, as most studies 

have focused on daily, monthly, or yearly predictions. 

Furthermore, previous studies lacked a 

comprehensive procedure tailored for one-step 
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ahead forecasting of electricity demand specifically 

using seasonal Box-Jenkins model, a gap that this 

study aims to fill. There is a need for a dedicated 

investigation into the efficacy of the seasonal Box-

Jenkins model for one-step-ahead forecasting of 

weekly peak demand in the Malaysian context yet 

providing a comprehensive procedure for weekly 

maximum electricity demand produced using the 

proposed model. This study would fill a crucial void by 

providing insights into the model's performance in 

addressing the unique challenges posed by weekly 

variations, ultimately contributing to more effective 

forecasting practices in the field of electricity 

demand prediction. 

 

 

2.0 METHODOLOGY 
 

Seasonal Box-Jenkins Model 

 

The electrical demand pattern exhibits evident 

periodic fluctuations attributed to seasonal changes. 

Addressing these seasonal variations can be 

achieved through the SARIMA model proposed by 

Box-Jenkins. This model incorporates additional 

seasonal terms into the ARIMA framework, resulting in 

a seasonal ARIMA model denoted as 

SARIMA(p,d,q)(P,D,Q)s. Here, p represents the non-

seasonal autoregressive (AR) order, d is the non-

seasonal differencing, q signifies the non-seasonal 

moving average (MA) order, P denotes the seasonal 

AR order, D represents the seasonal differencing, Q 

stands for the seasonal MA order, and  represents 

the seasonal period. The mathematical expression for 

the SARIMA(p,d,q)(P,D,Q)s model is expressed by 

Equation 1: 

 

 

 (1) 

 

where  

 

 

              

The model in Equation 2 is formulated to forecast 

the next observation ( ) based on the historical data 

and error term ( ). Besides, C, represents the 

constant term. 

    (2) 

Let  represents the observed time series data at 

time t. The operator of  

 

 and  

 

 are polynomials in terms of 

 with degrees p and q, respectively. Similarly, the 

operator of  

 

 

and   

 

 

are polynomials in terms of with orders P and Q. 

The term 

 

  

is defined, where  is the backward shift operator, 

and the random errors  are assumed to be 

independently and identically distributed (IID) with a 

mean of zero and constant variance . 

 

Proposed Research Framework of The Seasonal Box-

Jenkins in Forecasting Electricity Demand 

 

The general Box-Jenkins framework includes four 

iterative stages namely Stage I: Model identification, 

Stage II: Parameter estimation, Stage III: Diagnostic 

checking and Stage IV: Forecasting [14]. 

Figure 1 illustrates the proposed research 

framework inspired by Box-Jenkins, outlining the 

systematically organized steps for forecasting 

electricity demand. To assess forecast accuracy, it is 

crucial to consider four stages adopted from Box-

Jenkins modelling: Model Identification, Parameter 

Estimation, Diagnostic Checking, and Forecasting. 

This framework is adapted from Yaziz [15], with a 

modification for this study, which centers on seasonal 

highly volatile time series data, in contrast to Yaziz's 

emphasis on non-seasonal highly volatile time series 

data. 

 

Stages in Modelling and Forecasting using Box-

Jenkins Models 

 

Stage I: Model Identification 

 

To determine the suitable SARIMA parameters, 

various statistical tests can be conducted. The steps 

for constructing a SARIMA model involve the 

following: 

1. Stationarity Test: Utilize the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test to assess 

whether the time series is stationary. If it is not, 

adjustments such as differencing, seasonal 

differences, or transformations are necessary 

to induce stationarity. 

2. ACF and PACF of the Stationary Data (Non-

seasonal part): To determine the ordering of 

AR, Integrated (I), and MA components in 

the SARIMA model, look at the ACF and 

PACF plots of the stationary data. 

3. Seasonality: Look for any seasonal trends in 

the data and identify the appropriate 

seasonal timeframe. 

4. ACF and PACF of the Stationary Data 

(Seasonal part): To determine the ordering of 

the Seasonal Autoregressive (SAR) and 

Seasonal Moving Average (SMA) terms in the 

SARIMA model, examine the ACF and PACF 

plots of the stationary data. 
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Iteration may be required to find the right parameters 

for a SARIMA model and evaluating multiple models 

may be required to determine which model best 

matches the data. 

 

Stage II: Parameter Estimation  

 

Determining the values for the various SARIMA 

components is the process of estimating parameters 

in the SARIMA model. The following is a list of the 

steps that go into parameter estimate in the SARIMA 

model: 

1. Stationarity and Seasonality Analysis: Use 

statistical tests like the ADF test and the 

Seasonal Decomposition of Time Series (STL) 

approach to determine whether the time 

series is stationary and to look for any 

seasonal trends, respectively. 

2. SARIMA Parameter Estimation: To estimate 

the parameters related to the SARIMA 

component of the model, use Maximum 

Likelihood Estimation (MLE). This entails 

determining the proper orders for AR, MA, 

SAR, and SMA components of the model. 

3. Model Selection: Based on the 

recommendations of Akaike [16] and 

Schwarz [17], determine the most suitable 

SARIMA model by evaluating the Akaike 

Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC). In the model 

selection procedure, the model with the 

lowest AIC or BIC value is preferred. 

 

Stage III: Diagnostic Checking  

 

Stage III is a crucial step in the modelling process 

within the diagnostic checking phase, which makes it 

possible to evaluate the suitability of the model and 

spot any possible flaws. In diagnostic checking, the 

residual series is expected to behave like white noise 

after the model is judged adequate [18]. Therefore, 

examinations for serial correlation, heteroscedasticity, 

and normalcy are part of the diagnostic evaluation 

during this stage. Additionally, careful consideration 

of residual plots is necessary to confirm that errors 

behave as white noise. 

To examine serial correlation in model residuals, 

plotting the ACF and PACF of the residuals and 

conducting the Ljung-Box Q-test (LBQ test) on them is 

recommended. If autocorrelation evidence surfaces, 

model revision may be required. Furthermore, to 

detect potential heteroscedasticity within residuals, 

the LBQ test is applied to the squared residuals. 

Model residuals are expected to conform to white 

noise characteristics with no autocorrelation. For the 

normality test, the Jarque-Bera (JB) test has been 

employed. 

 

Stage IV: Forecasting  

 

Forecast accuracy pertains to the extent to which 

the actual results of a forthcoming event align with 

the forecasts generated by a predictive model. It 

serves as an indicator of the model's efficacy in 

foreseeing future outcomes and is often quantified as 

a percentage or a numerical score. Continuous 

evaluation and updating of forecast models are 

crucial to maintaining their accuracy and 

applicability over time. 

Equations 3, 4, and 5 provide common metrics for 

forecast accuracy, namely the MAE, RMSE, and 

MAPE, respectively, 

 

 
 

 

where  and  represent the observed and forecast 

values at time t, respectively, and n is the count of 

out-of-sample data. The most favourable forecasting 

model is the one that minimizes prediction error. 

However, in cases where discrepancies emerge 

among different forecast evaluations, it is 

recommended to MAPE, as it tends to display greater 

stability compared to alternative metrics [19]. Girish 

[20] suggested that a MAPE value of approximately 

5% indicates a relatively good forecasting ability for 

the model. 

 

 
 

Figure 1 Research Framework of Seasonal Box-Jenkins in 

Forecasting 



245                                      Syarranur Zaim et al. / Jurnal Teknologi (Sciences & Engineering) 87:2 (2025) 239–252 

 

 

 
 

Figure 1 Research Framework of Seasonal Box-Jenkins in 

Forecasting (Continued) 

 

 

3.0 RESULTS AND DISCUSSION 
 

Dataset 

 

In this investigation, weekly maximum electricity 

demand data (measured in MW) spanning from 2005 

to 2016 is utilised, obtained from the Single Buyer 

Department (SB) website 

(https://www.singlebuyer.com.my/). SB, authorized 

by the Suruhanjaya Tenaga (Energy Commission), 

oversees electricity procurement and related 

services. The data is classified as secondary data, 

and Table 1 presents the weekly maximum electricity 

demand information. To construct the forecasting 

model, the input data is divided into training and 

testing sets with a standard ratio of 90:10 [21]. 

The preceding techniques for dividing data can 

be applied by defining a splitting ratio. A frequently 

employed ratio is 80:20, signifying that 80% of the 

data is designated for training, and 20% is allocated 

for testing. Alternative ratios like 70:30, 60:40, and 

even 50:50 are also commonly utilized. Determining 

the optimal ratio for a specific dataset lacks clear 

guidance. The justification for the 80:20 split is often 

linked to the familiar Pareto principle, but it is 

essentially a rule of thumb employed by practitioners 

[22]. 

However, given the weekly and seasonal nature 

of the data, a ratio of 92:8 for estimation to forecast is 

employed to enhance cycle accuracy. The in-

sample data comprises 624 observations, while the 

out-of-sample data consists of 52 observations, 

equivalent to one full year, serving as the testing 

data. 

 

Table 1 Weekly Maximum Electricity Demand Data 

 

Duration Number of 

Data 

In-Sample 

Data 

Out-of-Sample 

Data 

2005 - 2016 676 1 - 624 625 - 676 

 

 

Modelling and Forecasting using Box-Jenkins Model 

 

The modelling and forecasting of electricity demand 

in this study are carried out based on the proposed 

SARIMA framework depicted in Figure 1. A discernible 

upward trend in in-sample data for weekly maximum 

electricity demand from 2005 to 2016 is illustrated in 

Figure 2. Despite the overall increasing trend, there 

are periods of fluctuation within, signifying short-term 

variations influenced by factors such as seasonal 

effects, economic cycles, or external events. 

Graphically, Figure 2 highlights the pronounced 

seasonality and a positive upward trend in electricity 

demand data. Consequently, this study leverages 

the historical peak electricity demand data spanning 

from 2005 to 2016 to forecast electricity demand for 

the year 2017. 
 

 
 

Figure 2 In-Sample Data of Weekly Maximum Electricity 

Demand from 2005 to 2016 
 

 

Figure 3 displays the decomposed data for 

weekly maximum electricity demand spanning from 

2005 to 2016. The observed seasonal variation 

appears relatively consistent over time, suggesting 

the suitability of an additive decomposition. The 

additive model is particularly effective when the 

seasonal variation remains relatively constant. The 

plot depicts the original data, the seasonal pattern, a 

smoothed trend line, and the residual part of the 

series. The seasonal pattern exhibits regular, 

repeating trends, and combining these components 

reconstructs the data showcased in the top panel. 

https://www.singlebuyer.com.my/
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Notably, the seasonal component evolves gradually 

over time, resulting in similar patterns for consecutive 

years but potential differences for years far apart. The 

residual component in the bottom panel represents 

the portion remaining after subtracting the seasonal 

and trend-cycle components.  

The corresponding numerical output is presented 

in Table 2, where seasonal effect values are 

repeated for each of the 52 weeks, necessitating 

estimation for weekly data impact. Utilizing R 

statistical software, the evaluation of seasonality in 

the time series identifies a regular pattern of changes 

repeating over 52-week seasonal periods until 

consistent repetition at the same frequency is 

observed. 

Figure 4 depicts the seasonally differenced data, 

revealing clear non-stationarity with pronounced 

seasonality and a nonlinear trend. Consequently, 

seasonal differencing is applied. However, as these 

differentials also appear non-stationary, an 

additional first difference is applied, as shown in 

Figure 5. The resulting stationary data in Figure 5 

reflects the successful application of differencing to 

the seasonal series.  

The KPSS test has been used in this analysis to test 

for data stationarity [23]. The null hypothesis for this 

test is that the data is stationary. According to the 

analysis, at 5% significance level, the value of test 

statistic is 3.1053 at lag 19, which is larger than the 

critical value of 0.4630. This indicates that the null 

hypothesis is rejected, suggesting that differencing is 

required since the data is not stationary.  

Therefore, the KPSS test has been applied again 

and the results show that the value of test statistic is 

0.0976 at lag 19, which is smaller than the critical 

value of 0.4630 at 5% significance level. 

Consequently, the differenced data is stationary.  
 

 
 

Figure 3 Decompose Data of Weekly Maximum Electricity 

Demand from 2005 to 2016 

 

 

 

 

 

 

Table 2 Additive Seasonal Effects on Weekly Maximum 

Electricity Demand Data 

 
 

 
 

 
 

Figure 4 Seasonally Differenced Weekly Maximum Electricity 

Demand Data 
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Figure 5 Double Differenced Weekly Maximum Electricity 

Demand Data 

 

 

The LBQ test has been utilized to ensure the 

absence of serial correlation within the series. In this 

testing procedure, the null hypothesis recommends 

that the series is not serially correlated. Consequently, 

the p-value of 2.2 x 10-16 which is less than 0.05 

suggests that the null hypothesis is disproven at a 

significance level of 5%. It indicates that the series is 

serially correlated and the Box-Jenkins model is 

justified to be considered in this time series data. 

According to Figure 5, ACF and PACF plots of the 

double differenced weekly maximum electricity 

demand data show that there are seven possible 

significant SARIMA models out of 10 at 5% 

significance level, which the specific models are 

presented in Table 3. The other three models, which 

are not significant and thus not included in the table 

are SARIMA(0,1,1)(0,1,1)52, SARIMA(0,1,2)(0,1,1)52, and 

SARIMA(0,1,2)(0,1,0)52. 

In checking whether the data series is highly 

volatile and exist an ARCH effect, the squared 

residuals of the identified SARIMA models have been 

examined. The LBQ test has been utilized on the 

squared residuals of the SARIMA models. Based on 

the results in Table 3, heteroscedasticity does not exist 

in four SARIMA models. Therefore, there are no ARCH 

effects and volatility does not exist in these four 

SARIMA models.  

During the diagnostic assessment phase, it is 

crucial to include tests for serial correlation and 

heteroscedasticity, alongside the examination of 

residual plots, to ensure that the errors demonstrate 

white noise-like behaviour. According to Table 3, all 

of the identified SARIMA models are not serially 

correlated, however, four SARIMA models out of 

seven have no heteroscedasticity with zero mean 

residuals and they literally pass the diagnostic 

checking. The residual plots of the considered 

models support the randomness and no serial 

correlation in the residuals of the SARIMA models as 

shown in Table 3.  

According to Table 3, the mean of the residuals 

for all SARIMA models are close to zero and there is 

no significant correlation in the residuals series. 

Moreover, residuals play a vital role in assessing the 

effectiveness of a model in encapsulating the 

information present in the data. An effective 

forecasting method is characterized by residuals 

exhibiting specific properties. Firstly, the residuals 

should demonstrate uncorrelated behaviour. The 

presence of correlations among residuals suggests 

untapped information that should be incorporated 

into forecast computations. Secondly, an ideal 

scenario involves residuals possessing a mean of zero. 

If the residuals deviate from this, carrying a mean 

other than zero, it implies a bias in the forecasts. 

These criteria serve as benchmarks to gauge the 

performance and reliability of a forecasting model. 

The JB test is a commonly utilized statistical 

measure to assess whether a dataset or the errors 

within it adhere to a normal distribution. This test 

statistic gauges the dissimilarity between the 

skewness and kurtosis of the dataset and those 

expected in a standard normal distribution. In this 

study, a significance level of 0.05 was employed for 

the normality test. The determination of normality is 

based on the probability results derived from the JB 

test. If the p-value exceeds 0.05, it indicates that the 

assumption of normality holds. Conversely, if the p-

value is below 0.05, it suggests that the assumption of 

normality is not met. Examining Table 3, the JB test 

statistics values are 715.1444, 963.0602, 966.8753, 

1022.2090, 1105.5060, 1110.8090, and 1143.2470. 

Significantly, each of p-values for the JB test statistic is 

0.000 for all SARIMA models, falling below the 

specified significance level of 0.05. Consequently, it 

can be inferred that the assumption of normality is 

not satisfied. 

 

Table 3 Diagnostic Checking on Identified SARIMA Models 

 

SARIMA Model Serially 

Correlated 

Heteros-

cedasticity 

 Not serially 

correlated 

up to lag 

1 

Exists 

 Not serially 

correlated 

up to lag 

2 

Exists 

 Not serially 

correlated 

up to lag 

3 

Exists 

  Not serially 

correlated 

up to lag 

4 

Not exist 

at Lag 4 

up to lag 

42, then 

continue 

to not exist 

at lag 45 

up to lag 

49 
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SARIMA Model Serially 

Correlated 

Heteros-

cedasticity 

 Not serially 

correlated 

up to lag 

5 

Not exist 

at Lag 3 

up to lag 

49 

 Not serially 

correlated 

up to lag 

6 

Not exist 

up to lag 

49 

 Not serially 

correlated 

up to lag 

7 

Not exist 

up to lag 

49 

 

Table 3 Continued 

 

SARIMA Model Mean of 

the 

Residuals 

Normality 

Test 

 -0.5432 Yes 

JB: 

715.1444  

p-value: 

0.0000 

 -0.4194 

 

Yes 

JB: 

963.0602 

p-value: 

0.0000 

 -0.5329 

 

Yes  

JB: 

966.8753 

p-value: 

0.0000  

  -0.5126 

 

Yes 

JB: 

1022.2090 

p-value: 

0.0000 

 -0.5218 

 

Yes 

JB: 

1105.5060 

p-value: 

0.0000 

 -0.3944 

 

Yes 

JB: 

1110.8090  

p-value: 

0.000 

 -0.2388 

 

Yes 

JB: 

1143.2470 

p-value: 

0.0000 
 

 

Additionally, Table 4 shows the estimation results of 

the possible SARIMA models. Utilizing the information 

provided in Table 4, the model SARIMA(4,1,0)(0,1,0)52 

has been designated as the preferred model during 

the model estimation phase, as it consists of fewer 

parameters and does not violate the constant 

variance assumption of the Box-Jenkins model. This 

choice is grounded in the observation that its values 

for AIC and BIC, along with its log-likelihood, display 

only marginal differences in comparison to other 

notable models, all while adhering to the principle of 

parsimony. As outlined by McLeod [24], the principle 

of parsimony means that the simplest possible model 

should be chosen. Moreover, the endorsement of the 

SARIMA(4,1,0)(0,1,0)52 model for forecasting weekly 

maximum electricity demand finds additional support 

in the results of the forecasting evaluation, as 

depicted in Table 5. 

According to Table 4, SARIMA(4,1,0)(0,1,0)52, 

SARIMA(6,1,0)(0,1,0)52, SARIMA(7,1,0)(0,1,0)52 are 

denoted as Model 1, Model 2, Model 3, and Model 4, 

respectively. 

 

Table 4 Results of the Possible SARIMA Models 
 

Para-

meter 

Model 1 Model 2 Model 3 Model 4 

   -0.0808 

(0.9929) 

0.0164 

(0.9984) 

0.0565 

(0.9938) 

0.1125 

(0.9862) 

 -0.7312 

(0.0000) 

-0.7521 

(0.0000) 

-0.7671 

(0.0000) 

-0.7824 

(0.0000) 

 -0.6443 

(0.0000) 

-0.6900 

(0.0000) 

-0.7226 

(0.0000) 

-0.7485 

(0.0000) 

 -0.3771 

(0.0000) 

-0.4543 

(0.0000) 

-0.5118 

(0.0000) 

-0.5535 

(0.0000) 

 -0.1734 

(0.0001) 

-0.2609 

(0.0000) 

-0.3475 

(0.0000) 

-0.4094 

(0.0000) 

 - -0.1194 

(0.0172) 

-0.2136 

(0.0000) 

-0.3003 

(0.0000) 

 - - -0.1265 

(0.0188) 

-0.2180 

(0.0013) 

 - - - -0.1207 

(0.0133) 

AIC 15.6480 15.6372 15.6247 15.6137 

BIC 15.6936 15.6905 15.6856 15.6822 

Log-l -4461.4890 -4457.4100 -4452.8580 -4448.7170 

* values in parenthesis denote p-value and Log-l is abbreviated for log-

likelihood 

 
 

The widely recognized criteria, AIC and BIC, are 

employed in this proposed methodology to identify 

the most relevant SARIMA model. These criteria 

penalize models with an excess of parameters, 

emphasizing the selection of the model with the lowest 

AIC or BIC value that still effectively captures the 

essential time series components. In instances where 

models differ in the number of parameters, the 

principle of parsimony guides the preference for a 

simpler model that remains adequate and exhibits 

comparable performance. Therefore, referring to 

Table 4, the model SARIMA(4,1,0)(0,1,0)52 is designated 

as the preferred model during the model estimation 

phase. This choice is justified by its AIC and BIC values, 

as well as its log-likelihood, which exhibit marginal 

differences compared to other noteworthy models 

while adhering to the principle of parsimony.  
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During diagnostic checking, the fit adequacy of the 

models is assessed by scrutinizing the residuals from 

the fitted model. In this context, autocorrelation 

checks have been undertaken, presenting the 

standardized residuals derived from the fitted model 

alongside the estimated autocorrelations of these 

residuals in Figure 6. The residual autocorrelations 

exhibit no indications of lack of fit, as none of the 

values significantly deviate beyond the approximate 

two-standard-error limits, with the exception of lag 0. 

The ACF of the residuals displays no noteworthy 

autocorrelations, marking a positive outcome.  

Furthermore, the p-values for the LBQ statistics 

reveal that the first two lags surpass the dashed line 

denoting the significance level of 0.05. 

Consequently, non-significant values of the residuals 

for this statistic indicate that the residuals are not 

serially correlated. Additionally, the mean of the 

residuals for the SARIMA(4,1,0)(0,1,0)52 model is -

0.5126. This proximity to zero suggests that the mean 

of the residuals is negligible, signifying the absence of 

significant correlation in the residual series. 

The examination of the standardized residuals 

graph and the normal Q-Q plot reveal the continued 

presence of outliers. However, if a majority of the 

residuals cluster around the linear line in the normal 

Q-Q plot, as depicted in Figure 7, it indicates 

adherence to a normal distribution. Despite this, the 

JB test results indicate a departure from normality, 

likely influenced by the presence of outlier data. 

Graphically, in a Q-Q plot, normally distributed data 

typically appears as a roughly straight line, although 

deviations from this line may occur at the ends. As 

per Brys et al. [25], the rejection by the JB test does 

not stem from an overall departure from normal 

distribution but is instead attributed to a few outliers 

originating from a different distribution. Similarly, Brys 

et al. [26] argued that the Jarque-Bera test of 

normality is unable to detect normality in the 

presence of outlying values. 
 

 
Figure 6 Plot of Standardized Residuals, ACF of Residuals, 

and the p-values for Ljung–Box statistics for 

SARIMA(4,1,0)(0,1,0)52  

 
 

Figure 7 The Normal Q-Q Plot of Standardised Residuals of 

SARIMA(4,1,0)(0,1,0)52  

 

Table 5 Forecast Accuracy of Significant SARIMA Models 
 

SARIMA Model Forecast Accuracy (Test Set 

Evaluation) 

RMSE MAE MAPE 

(%) 

 607.2617 477.8067 2.88 

 627.1651 492.4845 2.97 

 622.2790 486.4788 2.94 

 623.3015 488.5673 2.95 

 624.5603 489.3622 2.95 

 632.3441 493.3443 2.98 

 637.8275 496.6446 3.00 

 

 

The one-step-ahead forecast for weekly 

maximum electricity demand from the 

SARIMA(4,1,0)(0,1,0)52 model for the upcoming 52 

weeks is visually represented in Figure 8. In the 

graphical representation, the blue solid line denotes 

the predicted values, while the green solid line 

corresponds to the actual electricity demand values. 

The forecasted values are bounded within a range of 

±2 standard errors, indicated by the red dashed line. 

The plot reveals a fluctuating trend spanning from 

15,471 MW to 18,000 MW over the 52-week out-

sample period, with the predicted values closely 

aligning with the observed trend in the actual data. 

This alignment suggests that the forecasting model 

performs well in capturing the underlying trend in the 

data. Table 6 presents a comparison between the 

real weekly peak electricity demand and the one-

step-ahead forecast values generated by the 

suggested seasonal Box-Jenkins model over the 52-

week out-of-sample simulation period. In this study, 

the chosen 52-week duration adequately represents 

a full year as the testing data, ensuring a 
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comprehensive capture of the underlying trend with 

a year's worth of information. 
 

 
 

Figure 8 Forecast Values of SARIMA(4,1,0)(0,1,0)52  

 
Table 6 The Actual and Forecast Values of 

SARIMA(4,1,0)(0,1,0)52  

 

Week  

(Out-of-Sample 

 Data) 

Actual Forecast Difference 

625 15773.00 15860.76 -87.76 

626 16186.00 16786.80 -600.80 

627 16964.00 16980.21 -16.21 

628 16621.00 16794.07 -173.07 

629 15501.00 16807.48 -1306.48 

630 15407.00 16816.11 -1409.11 

631 16492.00 15471.23 1020.77 

632 16094.00 16794.86 -700.86 

633 16767.00 16690.06 76.94 

634 15926.00 16835.64 -909.64 

635 16600.00 17389.09 -789.09 

636 17126.00 17289.32 -163.32 

637 16849.00 17569.87 -720.87 

638 16641.00 17371.79 -730.79 

639 16701.00 17435.24 -734.24 

640 16914.00 17901.40 -987.40 

641 17144.00 18000.04 -856.04 

642 16749.00 17659.81 -910.81 

643 16922.00 17757.83 -835.83 

644 16782.00 17534.84 -752.84 

645 17571.00 17461.73 109.27 

646 17364.00 17452.60 -88.60 

647 17184.00 17123.52 60.48 

648 17360.00 17032.47 327.53 

649 17180.00 16921.39 258.61 

650 16814.00 16908.30 -94.30 

651 15391.00 16985.21 -1594.21 

652 16862.00 16190.13 671.87 

653 16693.00 16907.06 -214.06 

654 17130.00 16512.97 617.03 

655 17202.00 16475.89 726.11 

656 17157.00 16974.81 182.19 

657 17197.00 17155.73 41.27 

658 16623.00 17324.65 -701.65 

Week  

(Out-of-Sample 

 Data) 

Actual Forecast Difference 

659 17095.00 17176.57 -81.57 

660 16479.00 16851.49 -372.49 

661 17087.00 16895.41 191.59 

662 17190.00 16483.33 706.67 

663 16504.00 16800.25 -296.25 

664 17069.00 17217.17 -148.17 

665 16800.00 17174.08 -374.08 

666 17124.00 17223.00 -99.00 

667 17227.00 17000.92 226.08 

668 17790.00 16715.84 1074.16 

669 16827.00 16766.76 60.24 

670 16662.00 16886.68 -224.68 

671 17108.00 16688.60 419.40 

672 17286.00 16821.52 464.48 

673 15998.00 16378.44 -380.44 

674 17244.00 17118.36 125.64 

675 17000.00 16535.28 464.72 

676 16721.00 16495.19 225.81 

 

 

Modelling and Forecasting using 

SARIMA(4,1,0)(0,1,0)52 Model 

 

The expressions in Equation 6, 7, and 8 describe a 

SARIMA model with autoregressive, differencing, and 

seasonal components, respectively. The coefficients 

of , , , and  determine the influence of 

previous observations on the current observation. In 

addition, the backshift operator (B) indicates the 

lagged values of the time series. For the differencing 

part,  is used to make the time series 

stationary. Since this study used a seasonal data, 

there exists a seasonal differencing part 

where  is applied to address seasonality. 

 

 
 

Equation 9 shows the mathematical expression of 

SARIMA model with a constant term, C, 

 

 
 

From Equation 9, the terms have been expanded 

and rearranged, as can be seen in Equation 10 to 

Equation 18. 
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The substitution of the terms with all the estimated 

values of coefficients has been done in order to get 

the mathematical model of SARIMA, as shown in 

Equation 19 to Equation 21.  

 

 
 

The last expression, Equation 21 provides the 

specific coefficients and structure of the SARIMA 

model, including the autoregressive and lagged 

terms. The normal distribution ∼N(0,357731.2) 

indicates that the error term follows a normal 

distribution with mean 0 and variance 357731.2. 

 

 

 

4.0 CONCLUSION 
 

This study suggests that the SARIMA(4,1,0)(0,1,0)52 

model stands out as the most suitable choice for 

forecasting electricity demand in Malaysia. Its 

parsimonious nature, which does not violate the 

constant variance assumption of the Box-Jenkins 

model, coupled with a low MAPE value of 2.95%, sets 

it apart from other considered models. The accuracy 

achieved, as reflected in the MAPE statistic of less 

than 5%, falls within the range deemed relatively 

good [12], affirming the effectiveness of 

SARIMA(4,1,0)(0,1,0)52 in accurately forecasting 

electricity demand in Malaysia. In conclusion, the 

proposed seasonal Box-Jenkins model demonstrates 

promising performance in the context of Malaysia's 

electricity demand forecasting. With notable 

potential, this model offers a comprehensive 

procedure, particularly for one-step ahead 

forecasting, making it a favourable starting point for 

multistep forecasting considerations, taking into 

account the time series data's period length. The 

methods of prediction using a seasonal component 

of the time series can improve the forecast accuracy 

by leveraging historical seasonal trends. In 

conclusion, using SARIMA(4,1,0)(0,1,0)52  to predict 

future electricity demand has proven to be 

beneficial and, in some cases, effective.  

However, the study is constrained by the fact that 

there is insufficient updated data source of the 

actual electricity demand data from 2017 to 2023 

while implementing the chosen SARIMA model. A 

more compelling presentation of the Box-Jenkins 

technique and the SARIMA model created for 

electricity demand forecast in Malaysia would 

require an improved updating of the electricity 

demand data. Therefore, further investigations in this 

field will concentrate on the application of multistep 

forecasting and consider the updated data. 

In order to enhance the performance, comparing 

the results of Box-Jenkins model with other statistical 

model like generalized autoregressive conditional 

heteroskedasticity (GARCH) can also be considered 

for further improvement. With that, the most 

accurate model for forecasting electricity demand 

will be analysed. 
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