Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

Back

Leveraging EEG and Signal-to-Noise Ratio Augmentation for Advanced Stress Detection

<u>Ath IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics,</u> <u>ICDCECE 2025</u> • Conference Paper • 2025 • DOI: 10.1109/ICDCECE65353.2025.11035392 <u>Hana, Silabdi</u>^a ⊠ ; <u>Hassan, Raini</u>^a ⊠ ; <u>Faizabadi, Ahmed Rimaz</u>^b ⊠ ; <u>Gubbi, Abdullah</u>^c ⊠ ; <u>Bellary, Mohammed Zakir</u>^d ⊠ ; <u>+1 author</u>

^a Kulliyyah of Information and Communication Technology, Iium, Department of Computer Science, Kuala Lumpur, Malaysia

Show all information

0 Citations 2	Ż				
View PDF	Full text	✓ Export ✓	Save to list		
Document	Impact	Cited by (0)	References (26)	Similar documents	

Abstract

Student stress has emerged as a significant concern, requiring prompt identification to avoid serious repercussions. Unlike conventional EEG stress detection approaches that rely on feature extraction, our work introduces a novel combination of SNR-based augmentation with ShallowConvNet recognised for its simplicity and efficiency. Utilising the StressDB-UIA1 dataset, EEG data from 31 subjects were examined under stress and non-stress situations. The research tackles the issue of restricted EEG data availability by utilising Signal-to-Noise Ratio (SNR)-based augmentation, replicating noise levels of 10 dB, 15 dB, and 20 dB. This augmentation strategy improves model robustness and generalisability to real-world situations. The results shows that ShallowConvNet, when trained on SNR-augmented datasets, attains enhanced accuracy and Area Under Curve (AUC) metrics, with peak performance recorded at 20 dB SNR (83.69% accuracy, 0.921 AUC). SNR-based augmentation is apparent in enhancing EEG classification and emphasise ShallowConvNet's capability for real-time stress monitoring, facilitating prompt interventions and mental health support systems. © 2025 IEEE.

Author keywords

augmentation; dataset stressDB-UIA1 I; electroencephalography; non-invasive stress monitoring; raw EEG signal; shallowconvnet; signal-to-noise ratio; stress prediction

Indexed keywords

Engineering controlled terms

Biomedical signal processing; Electrophysiology; Feature extraction; Stresses

Engineering uncontrolled terms

Augmentation; Dataset stressdb-UIA1 I; EEG signals; Noise ratio; Non-invasive stress monitoring; Raw EEG signal; Shallowconvnet; Signal to noise; Stress monitoring; Stress prediction

Engineering main heading

Electroencephalography; Signal to noise ratio

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym

Command Control Communication Laboratory

Funding	sponsor
---------	---------

See opportunities by IIUM 🛛

Acronym

MRC3 Lab

Funding text

This project was partly supported by the Industry@University: 4IR Competence Centre grant, with Ministry Project ID JPT(BHI)1000/016/018/058(32), conducted at the Mixed Reality and Command Control Communication Laboratory (MRC3 Lab), Centre for Unmanned Technologies (CUTe), International Islamic University Malaysia (IIUM). The authors gratefully acknowledge the financial and institutional support that made this research possible.

Corresponding authors

Corresponding	S. Hana
author	
Affiliation	Kulliyyah of Information and Communication Technology, Iium, Department of Computer Science, Kuala Lumpur, Malaysia
Email address	hanasilabdi@gmail.com

© Copyright 2025 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters **Language** 日本語版を表示する **查看简体中文版本** 查看繁體中文版本 Просмотр версии на русском языке Кustomer Service

Tutorials Contact us

ELSEVIER

Terms and conditions **A** Privacy policy **A** Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ¬, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies ¬.

