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Abstract—Vehicle classification offers intelligent solutions for 

road traffic monitoring by enabling future prediction planning 

and decision making. Predictive analytics can be used to predict 

traffic congestion based on the types of vehicles on the road. In this 

research, the reliability of deep learning based models for vision-

based vehicle classification is investigated. Four models of You 

Only Look Once (YOLO) are investigated, namely YOLOv5s, 

YOLOv5x, YOLOv10n, and YOLOv12n. These models were 

trained and evaluated on a vehicle dataset comprising five vehicle 

classes, which are Ambulance, Bus, Car, Motorcycle, and Truck, 

with a total number of 1103 images. From the experiment 

conducted, YOLOv10n achieved the highest performance 

measure of mAP@0.5 with 0.859 across all vehicle classes, 

including per-class evaluation, demonstrating superior detection 

compared to the other models. Finally, the results indicate that the 

YOLOv10n model can be used in vision-based vehicle 

classification. 

Keywords—YOLO; vehicle classification; deep learning; traffic 

monitoring 

I. INTRODUCTION 

Vision-based vehicle classification offers an intelligent 
solution for transportation systems, thus contributing to road 
traffic monitoring for the development of smart cities [1],[2],[3]. 
With the growing number of vehicles on the road, efficient and 
accurate vehicle classification systems are essential for 
managing urban mobility, enhancing public safety, and reducing 
traffic congestion [4],[5],[6]. Vehicle detection technologies 
involve the use of cameras and vision sensors to capture road 
footage, which is then analyzed to detect, classify, and track the 
movement of vehicles [7],[6]. Using these technologies may 
improve traffic control for future planning and decision making 
based on the current vehicle data on the road [8], [9]. Further 
data analytics can also be performed based on the current vehicle 
data on the road for traffic monitoring [10]. The analytics 
process identifies the patterns and learns for future planning and 
prediction, which helps to improve road traffic monitoring. 

For this reason, a vision-based vehicle classification is 
proposed. The vision-based vehicle classifications are designed 
based on a deep learning method. The model of the deep learning 
methods are evaluated to determine the best vision-based 
classification for detecting types of vehicle. The deep learning 
method is chosen in this research due to its ability to detect 
objects in more complex environments under varying 
environmental conditions. In vehicle classification, the detection 
of vehicles especially on this condition is important. Failure to 
detect these may reduce the classification accuracy. 

This research focuses on the detection of suitable methods 
that are able to increase the aforementioned classification 
accuracy in small sample vehicle dataset images. A small 
sample dataset of vehicles (1103 images) was utilized in this 
research as a proof-of-concept to classify vehicle images. To 
suite the problem stated previously, we investigate the deep 
learning based method, particularly Convolutional Neural 
Networks (CNNs). The CNN is chosen as it is able to provide a 
more robust alternative by learning discriminative features 
directly from images, enabling more accurate detection and 
classification. The CNN model has emerged as a powerful 
alternative due to its ability to learn spatial hierarchies of 
features directly from image data [11]. Among the CNN deep 
learning based object detection frameworks, the model You 
Only Look Once (YOLO) is the most suitable method for real-
time vehicle detection tasks as it is able to balance between 
speed and accuracy, making it highly suitable [12]. This research 
investigates deep learning YOLO models, namely, YOLOv5s, 
YOLOv5x, YOLOv10n, and YOLOv12n, for vehicle 
classification. Each of these models are trained using pretrained 
weights to reduce training time while maintaining accuracy 
during the transfer learning. These models are tested using a 
vehicle dataset consisting of five types of vehicles, which are 
Ambulance, Bus, Car, Motorcycle, and Truck. 

The rest of this study is organized as follows: Section II 
presents the related works. Section III describes the materials 
and methods used. The results are presented in Section IV, 
followed by the discussion in Section V. Finally, the conclusion 
and future work are presented in Section VI. 

II. RELATED WORKS 

Vehicle detection plays a vital role in intelligent 
transportation systems to enable intelligent solution for road 
traffic monitoring [13]. The computer vision method is used to 
detect the vehicle on a road traffic. In early research, the 
commonly used methods for vehicle detection are background 
subtraction, edge detection, and Haar Cascades [5,6,14]. 
Although these methods are computationally efficient, they 
were less effective in detecting the images under varying 
environmental conditions, such as changes in illumination, 
shadows, and occlusion, thus limiting their effectiveness in real-
world scenarios [15]. 

In more recent object recognition method, the deep learning 
method have gain attention due to its ability to detect object in 
most classification task. Compared to other methods such as 
edge detection and background subtraction method, the CNN 
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method is one of the most reliable deep learning based method 
which provides more accurate detection and classification. The 
other methods often shown to be less effective in detecting the 
object under varying environmental conditions and in real-time, 
dynamic environments due to their sensitivity to lighting 
conditions and noise [11,16]. In the CNN deep learning based 
object detection frameworks, the YOLO models are widely used 
for object detection due to their ability to balance between speed 
and accuracy. It is also suitable for real-time detection [12]. 
Although the other models of the CNN method, such as R-CNN, 
Fast R-CNN, and Faster R-CNN, demonstrated significant 
improvements in accuracy detection by learning hierarchical 
features from the data, these models rely on region proposals 
that led to slower inference speeds, making them less suitable 
for real-time detection tasks [8,9,17]. On the other hand, the 
YOLO models enable fast and accurate detection in a single pass 
over the image. YOLO is a single-stage object detection 
framework that performs both object localization and 
classification in one forward pass through the network [18]. This 
design makes the YOLO model efficient for real-time 
applications such as traffic surveillance and vehicle monitoring. 
Unlike two-stage detectors like R-CNN, which separate the 
tasks of region proposal and classification, YOLO treats 
detection as a single regression problem, mapping image pixels 
directly to bounding box coordinates and class probabilities. 
This architecture offers faster inference times and smaller model 
sizes, making YOLO ideal for the deployment of edge devices 
and in time-sensitive environments. Different YOLO variants 
offer different unique strengths and limitations. The challenge is 
in selecting the most suitable model that is able to balance 
accuracy with computational time performance while 
maintaining a high classification. 

The YOLO variants, such as YOLOv3 and YOLOv4 
models, strike a balance between speed and precision [19]. 
While YOLOv5 series models improve the limitation by 
architectural optimizations and improved training strategies 
[11,12]. Among the YOLOv5 series, YOLOv5s and YOLOv5x 
provide trade-offs between computational efficiency and 
accuracy, making them ideal for both edge and cloud-based 
deployments. The YOLOv5s model is a lightweight YOLO 
architecture and one of the smallest models in the YOLOv5 
variant. YOLOv5s model offers fast training and inference with 
minimal resource consumption. This makes the model an 
excellent starting point for experimentation and prototyping, 
especially when assessing trade-offs between speed and 
accuracy. On the other hand, YOLOv5x is designed to maximize 
detection accuracy and mean Average Precision (mAP). It 
represents the upper bound of the YOLOv5 variants, with deeper 
architecture and more parameters. However, the YOLOv5x 
model requires a higher computational cost and longer inference 
time. Recent variants such as YOLOv10 and YOLOv12 
continue to improve the YOLO performance by optimizing 
depth, parameter count, and inference speed, especially to be 
implemented in resource-constrained environments [20]. 
YOLOv10 model is a lightweight model but is able to offer high 
performance [20]. The model is optimized for low-latency, high-
efficiency deployment, particularly on edge devices. It offers 
better performance-per-FLOP than earlier nano-scale models 
such as YOLOv5s. The YOLOv10 is built to deliver real-time 
performance without reducing its accuracy performance. 

Compared with the other earlier YOLO model such as 
YOLOv5s, YOLOv10 model improve the model architecture 
and enhance the efficiency and accuracy even in a compact 
model. The latest generation nano-scale model in YOLO variant 
is the YOLOv12n model. This model been designed as a 
compact real-time model that able to offer high efficiency and 
competitive accuracy. The YOLOv12n model incorporating 
attention-centric modules for smarter and more selective feature 
extraction [21]. 

Despite all these improvements, object recognition remains 
challenging, particularly in scenarios involving large and 
complex object images. The detection accuracy often drops 
significantly for large objects under poor lighting conditions, 
especially in large object images taken during night conditions, 
due to increased noise and reduced contrast in large object 
images [22]. 

From the above review, the YOLO model is seen to be the 
most suitable model for vision-based vehicle classification due 
to its capability to perform both object localization and 
classification in one forward pass through the network. This 
design makes YOLO model suitable and efficient for real-time 
applications such as traffic surveillance and vehicle monitoring. 
Therefore, in this research, the YOLO variants are investigated 
to detect and classify the vehicle, particularly for large vehicle 
images. 

III. MATERIALS AND METHODS 

Generally, the proposed work can be divided into two 
phases: detection and classification. In this research, four YOLO 
models are evaluated, which are YOLOv5s, YOLOv5x, 
YOLOv10n, and YOLOv12n. The overall scheme for the 
vehicle classification models evaluated is shown in Fig. 1. Each 
of these models is selected due to its popularity and stability for 
the object classification task. The YOLOv5s is selected as it 
offers fast training and inference with minimal resource 
consumption. The YOLOv5s is the smallest model in the 
YOLOv5 variant. This makes an excellent starting point for 
experimentation and prototyping, especially when assessing 
trade-offs between speed and accuracy. While the YOLOv5x 
model requires higher computational, and longer inference time. 
The YOLOv5x model represents the upper bound with deeper 
architecture and more parameters. Although it requires higher 
computational resources, YOLOv5x is designed to maximize 
detection accuracy and mean Average Precision (mAP). On the 
other hand, YOLOv10n and YOLOv12n models are chosen due 
to these models are the recent iterations of YOLO variants that 
optimize depth, parameter count, and inference speed in the 
YOLO architecture. 

The model architecture of vehicle classification using 
YOLOv5s, YOLOv5x, YOLOv10n, and YOLOv12n are shown 
in Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d). As shown in Fig. 
2, each of the models consist three main parts which are 
backbone network, neck network and detection head. The 
backbone network is the first step in YOLO model architecture, 
where the features extracted from the vehicle input images. 
Then, the feature fusion in the neck part, where feature maps 
from different scales of the backbone network are fused to a 
neck network to process the detection. The head part completes 
the final prediction which includes the bounding boxes and the 
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associated class labels to obtain the detection result. Three 
different scales of detection heads are used to detect small, 
medium and large vehicles. 

To demonstrate the reliability of the selected model for 
vision-based vehicle classification, a series of comprehensive 
experiments is conducted. All the YOLO models are trained 
using Google Colab with GPU acceleration, and the dataset 
tested is annotated using CVAT.ai and hosted on Roboflow for 
streamlined training and validation. The training environment 
includes dependencies of torch, numpy, opencv, and the official 
YOLO repositories for each YOLO version. 

 
Fig. 1. Overall scheme of the proposed vision-based vehicle classification 

with four different YOLO models (YOLOv5s, YOLOv5x, YOLOv10n, 

and YOLOv12n). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. YOLO model architecture for: (a) YOLOv5s [23], (b) YOLOv5x [24] 

(c) YOLOv10n [25] and (d) YOLOv12n [26]. 

The dataset used in this research consists of 1103 annotated 
images categorized into five vehicle types which are Ambulance 
(161 images), Bus (84), Car (321), Motorcycle (247), and Truck 
(290). These images were manually curated to ensure balanced 
class representation and relevance to real-world conditions. 
Each image was manually labelled with bounding boxes and 
associated class labels using CVAT.ai (Computer Vision 
Annotation Tool), an open-source tool suitable for precise object 
detection annotation. Bounding boxes were drawn around each 
vehicle, and class names were assigned to each types of vehicle 
accordingly. The properties of the dataset used are shown in 
Table I. 

To train and evaluate the models effectively, the dataset was 
divided into training, validation and test set with a ratio of 70%, 
20% and 10% as shown in Table II. 

This dataset is split to ensure all classes are proportionally 
represented in each set, for effective training and accurate 
performance evaluation. There are two processes applied on all 
the images used in the experiment, which are auto-orientation 
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and resize. The auto-orientation is applied to ensure that all 
images are correctly aligned based on EXIF metadata, to avoid 
misalignment issues during the training phase. All the images 
are also resized to fit into the YOLO models, which requires 
fixed size of input. All images were resized to 640×640 pixels 
to fit into the YOLO model input layer while maintaining 
acceptable aspect ratios for object preservation. These pre-
processed datasets allowed uniform input across all models to 
ensure a fair comparison. To ensure a fair comparison in the 
model configuration, the same training parameters settings used 
in all YOLO models tested as listed in Table III. 

TABLE I.  DATASET DISTRIBUTION 

Classes Number of Images 

Ambulance 161 

Bus 84 

Car 321 

Motorcycle 247 

Truck 290 

Total 1103 

TABLE II.  DATASET SPLIT 

Dataset Split 
Training Set Validation Set Test Set 

(70%) (20%) (10%) 

Images 772 221 110 

TABLE III.  PARAMETER SETTING FOR YOLO MODELS TRAINING 

   Model 

 

Parameter 
YOLOv5s YOLOv5x 

YOLOv10n 

(Selected 

Model) 

YOLOv

12n 

Image Size 
640×640 

pixels 

640×640 

pixels 

640×640 

pixels 

640×64

0 pixels 

Epoch Size 50 50 50 50 

Batch Size 15 15 15 15 

Pretrained 

Weights 
Enable Enabled Enabled Enabled 

In this research, Roboflow was used to provide seamless 
dataset integration into the YOLO training scripts. Each model 
was saved as best.pt, representing the model weights with the 
highest validation performance during training. 

IV. RESULTS 

In all the experiments, the performance of each YOLO 
models on the vehicle classification are measured in terms of 
Precision, Recall, Mean Average Precision (mAP), and Training 
Time. Precision measures the proportion of true positive 
detections among all positive predictions and evaluates how 
many vehicles were correctly identified. On the other hand, 
recall evaluates the correctly identify all actual vehicle instances 
in the dataset. It is the proportion of true positive detections out 
of all actual positive instances. While the Mean Average 
Precision (mAP) is also considered in this research since most 
of the work related with object detection from the literature use 
mAP to evaluate performance measure in their work [27,28]. In 
all the experiment conducted, the Training Time had also been 
recorded to measure the suitability of each of the model for the 
deployment under limited time or processing power 

environments. Models with a less Training Time and able to 
maintain high detection accuracy are more practical to be 
implemented in real-time or resource-sensitive applications. The 
classification performance of all models are defined as follows: 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1  

𝐴𝑃𝑘 = 𝑡ℎ𝑒 𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘, 𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠

The models are trained and evaluated on a vehicle dataset 
image that consists of five vehicle classes. The performance of 
each model, namely YOLOv5s, YOLOv5x, YOLOv10n, and 
YOLOv12n, is presented in Table IV. 

TABLE IV.  COMPARATIVE RESULTS (PRECISION, RECALL, TIME, 
MAP@0.5) FOR YOLOV5S, YOLOV5X, YOLOV10N AND YOLOV12N 

Models Precision Recall 
Training 

Time (hrs) 
mAP@0.5 

YOLOv5s 0.823 0.882 0.263 0.763 

YOLOv5x 0.921 0.909 1.222 0.855 

YOLOv10n 

(Selected Model) 
0.912 0.886 0.296 0.859 

YOLOv12n 0.925 0.883 0.350 0.832 

As shown in Table IV, the YOLOv10n model demonstrates 
superior performance among all the models tested with 0.859 of 
mAP@0.5. This is followed by the YOLOv5x model with 0.855 
of mAP@0.5 and the YOLOv12n with 0.832 of mAP@0.5. The 
lowest mAP@0.5 is observed in the YOLOv5s model with 
0.763 mAP@0.5. YOLOv10n model has shown to be the most 
optimum model with highest maAp@0.5 of 0.859 obtain in a 
less Training Time requires to train the models. The lowest 
Training Time among all the models is the YOLOv5s model, 
with 0.263hours. This is followed by the YOLOv10n model 
with 0.296 hours of Training Time. Only a minimal difference 
is observed between the YOLOv10n model with YOLOv5s 
model which less than 0.033 hours Training Time between the 
YOLOv10n model. Despite the YOLOv10n model being 
smaller than the YOLOv5 model variant, the YOLOv10n model 
is able to achieve the highest maAp@0.5 with only 0.263 hours 
of Training Time taken. The YOLOv10n model is superior 
compared to the other models in terms of both maAp@0.5 and 
Training Time. The results show that the YOLOv10n model is 
suitable for use in real-time applications and edge deployments. 
On the other hand, YOLOv12n outperformed the mAP@0.5 of 
YOLOv5s models while maintaining a much smaller size. 
Although YOLOv5s is the fastest model, it shows the lowest 
mAP@0.5 with 0.763. The YOLOv5s model is able to obtain 
faster training time due to its lightweight baseline model, 
making it able to train the model faster. However, the lowest 
mAP@0.5 is observed in the model. 

To further investigate the performance of each models, the 
models are further evaluated on the specific class performance 
for each of the five vehicle classes which are Ambulance, Bus, 
Car, Motorcycle and Truck. Their results of precision, recall and 
map@0.5 are presented in Table V. 

mailto:mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
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TABLE V.  COMPARATIVE RESULTS PER-CLASS PERFORMANCE 

(PRECISION, RECALL AND MAP@0.5) FOR YOLOV5S, YOLOV5X, 
YOLOV10N AND YOLOV12N 

Class Models Precision Recall mAP@0.5 

Ambulance 

YOLOv5s 0.771 0.882 0.916 

YOLOv5x 0.908 0.971 0.987 

YOLOv10n 

(Selected Model) 
1.00 0.932 0.979 

YOLOv12n 0.967 0.864 0.933 

Bus 

YOLOv5s 0.835 0.954 0.929 

YOLOv5x 0.928 0.954 0.984 

YOLOv10n 

(Selected Model) 
0.890 0.969 0.979 

YOLOv12n 0.914 0.985 0.986 

Car 

YOLOv5s 0.765 0.938 0.910 

YOLOv5x 0.859 0.837 0.927 

YOLOv10n 

(Selected Model) 
0.902 0.822 0.928 

YOLOv12n 0.922 0.849 0.920 

Motorcycle 

YOLOv5s 0.904 0.846 0.947 

YOLOv5x 1.00 0.911 0.984 

YOLOv10n 

(Selected Model) 
0.937 0.846 0.966 

YOLOv12n 0.958 0.873 0.971 

Truck 

YOLOv5s 0.840 0.789 0.897 

YOLOv5x 0.909 0.873 0.929 

YOLOv10n 

(Selected Model) 
0.829 0.860 0.952 

YOLOv12n 0.863 0.842 0.917 

From Table V, the YOLOv5x model give the best 
performance in Ambulance class with 0.987 of mAP@0.5. This 
is followed by YOLOv10n model with 0.979 of mAP@0.5, 
YOLOv12n model with 0.933 of mAP@0.5. The lowest 
mAP@0.5 for Ambulance class is observed in YOLOv5s model 
with 0.916. While in Bus class, YOLOv12n model is 
outperformed the other models with 0.986 of mAP@0.5. This is 
followed by YOLOv5x model with 0.984 of mAP@0.5, 
YOLOv10n model with 0.979 of mAP@0.5. The lowest 
mAP@0.5 for Bus class is observed in YOLOv5s model with 
0.929 of mAP@0.5. For Car class, YOLOv10n models is 
outperformed the other models with 0.928 of mAP@0.5. This is 
followed by YOLOv5x model with 0.927 of mAP@0.5, 
YOLOv12n model with 0.920 of mAP@0.5. The lowest 
mAP@0.5 for Car class is observed in YOLOv5s model with 
0.910 of mAP@0.5. On the other hand, for Motorcycle class, 
YOLOv5x models is outperformed the other models with 0.984 
of mAP@0.5. This is followed by YOLOv12n model with 0.971 
of mAP@0.5, YOLOv10n model with 0.966 of mAP@0.5. The 
lowest mAP@0.5 for Motorcycle class is also observed in 
YOLOv5s model with 0.947 of mAP@0.5. Lastly, for the Truck 
class, the highest performance of mAP@0.5 is YOLOv10n 
model. This is followed by YOLOv5x with 0.929 of mAP@0.5, 
YOLOv12n model with 0.917 of mAP@0.5. The lowest 
mAP@0.5 for Truck class is also observed in YOLOv5s model 
with 0.897 of mAP@0.5. Among all the models tested across all 
five vehicle classes, YOLOv10n model is seen to be the most 

optimum models as it is able to achieve the highest mAP@0.5 
for the two classes which are Car and Truck classes. While the 
lowest model which can be observed for all the five tested 
vehicle class is the YOLOv5s model. 

V. DISCUSSION 

Overall, YOLOv10n model demonstrate superior 
performance of mAP@0.5 among all the models for all 
evaluation including the per-class performance evaluation from 
the experiments conducted. While the lowest mAP@0.5 results 
are observed in YOLOv5s for all performance evaluations. The 
highest performance can be seen on YOLOv10n model due to 
its improvement in the model architecture that enhance both 
efficiency and accuracy. The model is able to balance trade-off 
between speed and accuracy while retaining its compact 
versions. Although the YOLOv10 model is a lightweight, the 
model able to obtain high-performance due to the model 
architecture that is optimized for low-latency, better 
performance-per-FLOP than earlier nano-scale models like a 
YOLOv5s. The YOLOv10 model is built to deliver real-time 
performance without reducing its accuracy performance [20]. 
From the experiment conducted, the lowest performance is 
observed in YOLOv5s models due to its lightweight, simplicity 
and it is the smallest YOLO architecture, thus reducing its 
recognition performance. The YOLOv5s and YOLOv5x model 
is shown to be less effective especially on detecting the large 
vehicle images such as Truck vehicle. YOLOv5x model obtain 
low confidence score detection on truck that is clearly present in 
the image. On the other hand, the YOLOv10n model able to 
obtain high confidence score detection and able to detect most 
of the truck. This is followed by the YOLOv12n model. The 
comparison models for the confidence score detection on Truck 
is shown in Fig. 3. 

 
(a)   (b) 

 
(c)   (d) 

Fig. 3. Comparison models for confidence score detection on Truck: (a) 

YOLOv5s, (b) YOLOv5x, (c) YOLOv10n (d) YOLOv12n. 

mailto:mAP@0.5


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

572 | P a g e  

www.ijacsa.thesai.org 

Despite YOLOv10n able to detect most of the vehicles 
including large vehicle and various conditions, the low 
confidence score detection still can be observed on some of the 
dark colour truck, occluded motorcycle images and bus are 
shown in Fig. 4. 

 
Fig. 4. Examples of the low confidence score detection on YOLOv10n. 

VI. CONCLUSION AND FUTURE WORK 

A vision-based vehicle classification is proposed as it is able 
to offer intelligent solution for transportation systems, thus 
contribute to road traffic monitoring for the development of 
smart cities. Four models of YOLO are investigated, namely 
YOLOv5s, YOLOv5x, YOLOv10n, and YOLOv12n are 
evaluated on a multi-class vehicle dataset. From the experiment 
conducted, the YOLOv10 able to obtain the highest detection 
performance of mAP@0.5 with 0.859 across all vehicle classes 
compared to the other model. Although, YOLOv10n is able to 
achieve high performance, low confidence can be observed on 
the images as shown in Fig. 4. It can be seen that the models are 
less effective in detecting the dark colour truck, occluded 
motorcycle and bus images. The lighting variations, especially 
in the detection of large, visually complex vehicles like trucks 
or bus may affected the detection and recognition. Thus, 
reducing the performance of the models. In the future, we will 
concentrate on improving these drawbacks by optimized the 
anchor box and modified the loss function to improve the 
detection especially on a large vehicle such as bus and truck. 
Increasing the diversity of the vehicle images dataset will also 
be considered by using data augmentation techniques for more 
advanced deep learning models to optimize the performance. 
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