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ABSTRACT This study explores the development of a 28 GHz array antenna with beam-steering capability,
consisting of four elements with dual linear polarization at ±45 degrees. We propose a method for
synthesizing the array antenna’s radiation pattern using an active element pattern-deep neural network (AEP-
DNN). Beam-steering has become an attractive feature for researchers, as it enables users to move freely
without affecting signal strength. An array analysis was conducted using a feedforward deep neural network
(DNN) to generate a radiation pattern that achieves the desired steering angles. The proposed method takes
radiation patterns as inputs and outputs the corresponding phase values for the antenna elements. The training
dataset for the array antenna consisted of 6,859 radiation patterns, generated by adjusting the antenna element
phases, which were then used to train the DNN model with minimal complexity. The radiation pattern was
computed using AEP method since it is faster and less complex compared to full-wave modelling methods.
The DNN model was initially tested using radiation patterns from an ideal square shape. After training, the
model was evaluated by inserting desired beam-steering angles of 5 and 10 degrees, and it was found that
the radiation pattern produced by the DNN closely matched the intended input pattern. The DNN learning
process takes approximately 2 to 3 minutes in terms of processing time. The training and validation Root
Mean Square Error (RMSE) and loss values converge to a minimum range of 1.3 to 2.3. Furthermore, the
AEP-DNNmethod was successfully validated using the pattern multiplication method, full-wave modelling,
andmeasurement methods to verify the feasibility and reliability of the training and validation data, as well as
the resulting radiation pattern. This antenna, incorporating AEP-DNN technology, holds significant potential
for various applications, particularly in mobile communications.

INDEX TERMS Dual-polarized antenna arrays, millimeter-waves, beam-steering, 28 GHz frequency, active
element pattern, deep neural network, 5G wireless communication.

I. INTRODUCTION
The expected advantages of 5G include enhanced economic
development, education, employment, transportation, power
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networks, healthcare facilities, various industries, and more,
significantly improving our daily lives [1]. Relying on 4G
is no longer sufficient for tasks such as streaming videos
on YouTube or storing data in the cloud, creating a demand
for 5G services. While 2G was designed primarily for voice
communication, 3G introduced both voice calls and data
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FIGURE 1. Frequency bands for millimeter waves.

usage, and 4G enabled fast internet browsing, 5G is the first
technology that supports widespread computing capabilities
for the Internet of Things (IoT). 5G wireless technologies
offer significant benefits, including reduced latency (in the
millisecond range), data transfer speeds of up to 10 Gbps, and
the ability to connect 100 billion wireless devices [2]. Fig. 1
illustrates possible frequency bands of millimetre waves.

To achieve the maximum potential data rate for 5G,
expanding the bandwidth of beams is crucial. This research
addresses this challenge by utilizing higher frequencies, such
as 28 GHz. However, millimeter-wave frequencies are known
for their high free-space loss and penetration loss, which can
be mitigated using high-gain antennas. A high-gain antenna
can help reduce these losses [3]. However, narrow beams
may limit the propagation of millimeter-wave multipath
components, highlighting the importance of beam-steering
capabilities in phased array antennas.

Recent research has focused extensively on developing
reliable millimeter-wave antennas for wireless communica-
tion systems. For instance, a study [4] demonstrates the
potential of small antennas for use in millimeter-wave appli-
cations, particularly at 28 GHz. This design measures 16 ×

39 mm2 and operates within the frequency range of 27.089 to
28.856 GHz. A tree-shaped design, tilted at a 30◦ angle,
enhances the gain and reduces the antenna size, achieving a
9.04 dBi gain and 76.01% radiation efficiency when arranged
in a linear formation with a single feeding port. Earlier
research by [5] describes what was initially thought to be a
flat array but is a linear array antenna with 16 elements fed
in series. This design is well-suited for modern technologies
such asmassiveMIMO andmillimeter-wave communication,
supporting data rates of up to 10 Gbps. The 1 × 16-element
antenna array uses tapered microstrip lines and bending lines,
resulting in a gain of 17.9 dBi and a bandwidth of 1 GHz.
The twisted transmission lines among the patch antenna com-
ponents improve gain, return loss, bandwidth, and radiation
efficiency.

5G also offers significant advantages in providing broader
coverage compared to 4G, which is limited by beam cov-
erage. The use of polarization diversity techniques, such as
Dual Polarization Arrays (DPAs), can significantly improve
signal coverage. DPAs are ideal for meeting the demands
of 5G. However, the rapid expansion of wireless technology
has introduced new requirements for DPAs, such as higher
bandwidth, better isolation, and lower back lobe levels [6].
One common method to incorporate dual polarization into
an antenna is through a stacked antenna technique. In [7],

capacitive coupling feeding is used to operate a dual-
polarized, dual-band antenna with three stacked patches.
This configuration generates both vertical and horizontal sig-
nals through the feed, achieving a simulated gain exceeding
8.5 dBi in the 27.48-28.50 GHz band.

Additionally, proximity-feeding techniques have been
applied to achieve dual-polarization capabilities. Refer-
ence [7], reports on a stacked patch antenna with dual bands
and dual polarization, designed for 5G smartphones operat-
ing at 28 GHz and 39 GHz, with a simulated gain ranging
from 11 to 12 dBi.

Another design [8] integrates a Ka-band folded transmit-
array antenna with an X-band Fabry-Perot cavity antenna to
enable dual polarization, achieving a 2.5 GHz bandwidth and
a 23.6 dBi gain. Further developments in substrate-integrated
cavity antennas also provide dual polarization capabilities.
For example, [9], describes a substrate-integrated cavity for
a stacked patch antenna with 8 elements and 12 PCB layers,
resulting in a simulated bandwidth of 4 GHz and a gain of
16.5 dBi, with minimal gain variation across the frequency
band. The study suggests implementing vertical beam steer-
ing for active antenna base stations. Most of the experiments
mentioned involve multiple layers, and incorporating dual-
polarization capability often requires sophisticated structures.
In contrast, this study proposes achieving dual polarization
using both +45◦ and -45◦ slanted radiating patch elements in
a single layer, simplifying the design.

In [10], a dual-circularly polarized MIMO antenna was
designed for a broad frequency range of 24.6 to 32.1 GHz,
using just one layer. The highest gain achieved was 10.3 dBi,
with an ECC (Envelope Correlation Coefficient) of 0.01 to
minimize interference among ports. While the antenna pro-
vides a consistent radiation pattern when facing forward, its
lack of adaptability may limit its usefulness in tasks requiring
flexible or dynamic beam steering.

Research by [11] also created a dual-polarized antenna for
millimeter-wave frequencies, intended for automotive radar
and 5G communication. However, polarization switching
relies on precise phase control across multiple ports, neces-
sitating complex feeding networks or high-performance RF
chips with phase-switching capabilities. This added complex-
ity could increase costs, particularly for designs requiring
basic circuitry.

Another study by [12] suggested a dual-polarized antenna
operating in the frequency range of 29.5-30.5 GHz, relying
heavily on accurate phase control to achieve the desired
±45◦ dual-polarized radiation. Manufacturing tolerances,
material inconsistencies, or environmental conditions could
disrupt polarization stability, reducing performance if phase
alignment is not maintained, which could complicate imple-
mentation in real-world scenarios.

To achieve beam steering and wider spectrum coverage
cost-effectively, this study aims to create a dual-polarized
antenna using a single layer with potential gain at 28 GHz.
The arrangement of antenna elements requires careful plan-
ning, as improper spacing between elements can lead to high
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mutual coupling, negatively impacting performance. More-
over, designing a dual-polarized antenna with beam steering
requires careful consideration and the use of machine learn-
ing techniques to meet 5G specifications for lightweight,
low-cost, low-profile, compact design, easy fabrication, and
high isolation for mobile terminals [13].

Another study [14] investigates a compact 4 × 4 passive
phased array antenna-in-package (AiP) with a low profile,
consisting of patch antennas coupled with slots emitting left-
handed circularly polarized (LHCP) radiation. Phase tuning
is achieved using microelectromechanical systems (MEMS),
allowing the primary beam to be directed across a range
of ±30◦ in both vertical and horizontal planes between
28-30 GHz, with a gain of approximately 15 dB.

The primary goal of this study is to assess whether a neural
network algorithm can effectively steer the main beam of the
proposed dual-polarized antenna toward a desired direction.
Various methods exist for redirecting the main lobe direction,
with one popular approach involving the use of a Butler
matrix, a beamforming network that directs signals to phased
array antenna elements.

Research by [15] demonstrates a small 4 × 4 antenna
system using a Butler matrix, printed on a two-layer Rogers
Duroid substrate at the Ka-band, achieving beam-steering
angles of ±4◦ and ±29◦ with gains of 14.5 dB and 13 dB,
respectively. The demonstration shows the utilization of a
field programmable gate array (FPGA) for a beam steering
system, providing an alternative method for directing primary
beams to a specific location. The system is abundant in
resources, utilizes FPGA chips, and featuresmultiple external
connectors.

Mechanical and electronic phased arrays have been used to
alter the radiation pattern of antennas, but they are generally
considered unfavorable due to their weight, size, susceptibil-
ity to weather conditions, high costs, and mechanical failure
due to fatigue and wear. In this study, phase control is the
primary technique used to shape and scan themain beam radi-
ation pattern for beam steering. Many studies have explored
antenna arrays using various optimization techniques, such
as hybrid methods and evolutionary algorithms [16]. How-
ever, as the number of antenna array elements increases, the
computational time required to determine optimal weights
grows. Thus, for time-sensitive tasks and large datasets, deep
neural networks (DNNs) are an essential tool due to their
computational efficiency.

DNNs are advanced neural networks with enhanced depth,
complexity, and numerous layers and neurons, making them
well-suited for large, complex systems. They can process
multiple layers simultaneously, select features, and manage
numerous parameters [17].

DNNs provide an effective computational method for
expediting pattern synthesis while maintaining high accu-
racy, minimizing errors and processing time, and fore-
casting antenna performance. Researchers in [18] used a
deep neural network to synthesize radiation patterns for a

4 × 1 patch antenna array, using the radiation pattern as
input and the amplitude and phase of the antenna elements
as output. The DNN generated radiation patterns that closely
resembled the input, demonstrating the viability of deep
learning for generating antenna radiation patterns.

In [19], a bone-shaped patch antenna (BSPA) for 5G appli-
cations at 28 GHz and 38 GHz was designed using a DNN
model. The model was trained on 150 BSPA data points using
a hybrid PSO and MGSA optimization technique, adjusting
the learning rate to optimize the main beam shape and reduce
sidelobe levels.

Research by [20] explored how deep neural machine learn-
ing can be used to develop radiation patterns for 8-element
Active Electronically Scanned Array (AESA) antennas. The
DNN model used 181 points of a specified radiation pattern
as input and produced the phases of the array elements as
outputs, significantly reducing dataset size and improving
processing speed for real-time applications.

The study conducted by [21] suggests using the AEP
method for a DNN database model, effectively directing
the main beam in four different directions, though the
approach has not been verified for larger array sizes. The
Active Element Pattern (AEP) method offers several notable
advantages, such as reduced complexity and computationally
efficient. It enhances beam steering by accounting for mutual
coupling effects, requires less data compared to full-wave
modeling techniques, and is highly effective for large antenna
arrays.

Previous studies in [22] explore the design of linear sparse
arrays with varying sizes, including small-scale (4)-element)
and large-scale (16-element) arrays, operating at a frequency
of 5 GHz. The authors introduce the AEP technique for
synthesizing both ideal arrays and arrays affected by mutual
coupling. In [20], the AEP-DNN approach is applied to
synthesize radiation patterns for 8-element antenna arrays
at 10 GHz. Similarly, as investigated in [23], the feasibility
of using DNNs for both direct and inverse modeling of 16-
element antenna arrays at 3.5 GHz is examined. Additionally,
the research in [24] includes a comparative analysis of three
distinct DNN architectures using 8-element antenna arrays.
In [25], the authors provide a comparative evaluation of
various neural network (NN) architectures for implementing
beamforming in 16-element antenna arrays. The demonstra-
tion of AEP and DNN across different array scales and
frequencies highlights their scalability and adaptability for
deep learning-based modeling.

This study proposes an AEP-driven method for generating
training and validation radiation pattern data, whichwill serve
as inputs for pattern synthesis using DNNs and compared to
the other previous works shown in Table 4. The AEP-DNN
approach employs a simple multilayer perceptron (MLP) and
backpropagation network structure for model training. The
primary focus of this research is beam-steering through the
AEP-DNN approach, optimizing the phase of the array while
keeping the amplitudes constant at 1. The study explores a
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1 × 4 array antenna with ±45◦ dual linear polarization, four
feed source ports, and 15.06 mm inter-element spacing, using
dual-polarized radiating patch elements to evaluate beam-
steering performance at 28 GHz.

The first section introduces the challenges at high fre-
quencies, existing dual-polarized antenna designs, and the
implementation of beam steering. Section II details the
array antenna design using full-wave software and the fabri-
cated array antenna. Section III describes the array antenna
configuration, the AEP-based data collection method, the
implementation of the AEP-DNN approach, and the exper-
imental procedure for measuring beam steering using a
built-in beamformer. Section IV discusses the results of
beam-steering performance using the AEP-DNNmethod and
the measured performance of the steered main beam. Finally,
Section V summarizes the study’s findings.

II. ARRAY ANTENNA DESIGN
To meet the 5G requirements, antenna design plays an impor-
tant role. The size of the antenna depends on the operating
frequency, substrate’s dielectric constant, and height. The
transmission feeding line and feeding method also need
attention as they can affect the antenna performance. The
material chosen is Rogers RT 5880 with a dielectric constant
of 2.2 and a loss tangent of 0.0009. The substrate thickness
used is 1.575 mm. The width and length of the radiating patch
antenna, as well as the width and length of the substrate and
ground plane, are calculated as follows [26]:

Calculation of the width of the patch:

W =
λ0

2
√
0.5(εr + 1)

(1)

Calculation of the effective dielectric constant:
For (W/h>1)

εeff =
εr + 1

2
+

εr − 1
2

(
1

√
1 + 12h/w

)
(2)

where h is the thickness of the substrate.
Calculation of the length extension due to fringing:

1L = 0.412 × h

((
εeff + 0.300

) (W
h + 0.264

)
(εeff − 0.258)

(W
h + 0.813

) ) (3)

Calculation of the length of the patch:

L =
c0

2fr
√

εeff
(4)

Leff = L − (2 × 1L) (5)

where L is the length of the patch before fringing correction
and Leff is the length of the patch after fringing correction.

Calculation of the width of the substrate and ground plane:

Wg = W + (6 × h) (6)

Calculation of the length of the substrate and ground plane:

Lg = Leff + (6 × h) (7)

TABLE 1. The array antenna dimension.

FIGURE 2. The illustration of 1 × 4 ±45◦ dual linearly polarized array
antenna.

FIGURE 3. The fabricated array antenna.

In this work, the inset feeding method and edge coaxial
feeding are chosen. The possible factor in choosing a feeding
method is the efficient transfer of power between the radiating
structure and the feeding structure [27]. The characteristic
impedance, the input resistance, the conductance of the patch
in its transmission line model, and the notch width are cal-
culated based on [28]. The element spacing for a 1 × 4 array
antenna is greater than 0.5 λ (2.159λ); which is approximately
15.60 mm. The 2.92 mm SMA connector is relatively large,
requiring us to arrange the antenna element to accommodate
its size. Table 1 shows the dimensions of the array antenna.
Fig. 2 shows the illustration of a 1 × 4 ±45◦ dual linearly
polarized array antenna (DLPAA) design using full-wave
modelling software (CST). Fig. 3 shows the fabricated array
antenna.

Before applying the proposed AEP-DNN method, the S-
parameters of the array antenna have been simulated and
measured. Fig. 4 and 5 show the results of the reflection
coefficient and mutual coupling of the array antenna.
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FIGURE 4. The reflection coefficients of the array antenna for each port.

As shown in Fig. 4, the simulated reflection coefficient at
28 GHz for port 1, port 2, port 3, and port 4 is −13.44 dB,
−13.66 dB, −13.67 dB, and −13.43 dB. The measured
reflection coefficients at 28 GHz for port 1, port 2, port 3,
and port 4 are −15.05 dB, −11.57 dB, −12.69 dB, and

FIGURE 5. The mutual coupling of the array antenna.

−35.23 dB respectively. Both the simulated and measured
reflection coefficients show good performance; however, the
frequency is shifted slightly upwards at 28.15 GHz for the
simulated reflection coefficient and downwards and upwards
within the range of 27.00 GHz to 28.01 GHz for the measured
reflection coefficient. A slight difference between the shifted
frequencies and the desired resonant frequency of 28 GHz
might be due to fabrication errors.

III. DEEP NEURAL NETWORK
Machine learning and deep learning have many similarities,
but the main difference is that deep learning integrates fea-
ture gathering and regression/classification, involves a higher
quantity of neurons, operates on data simultaneously through
various layers, extracts feature essentially, and assesses
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FIGURE 6. The proposed 6-layer DNN framework.

optimal network hyperparameters. The information is trans-
mitted to the neurons in the multi-layered hierarchy, which
then pass this processed data to subsequent layers to construct
a more useful learning framework.

Multilayer perceptions, also known as MLPs, consist of
multiple hidden layers within a deep neural network struc-
ture. MLPs have been utilized in diverse applications and
incorporated in this study. Several algorithms like Levenberg-
Marquardt (LM), back-propagation, and others are utilized
for training the learning model. Adaptive Moment Estima-
tion (ADAM) optimizer is utilized for model training in this
research. ADAM is the latest algorithm that is computation-
ally efficient and faster, as it computes learning rates for each
parameter. This algorithm is particularly valuable when deal-
ing with optimization problems that involve large volumes
of data or high numbers of parameters [29]. Fig. 6 illustrates
a DNN framework architecture of an MLP model that has
6 layers; an input layer, two hidden layers, two dropout layers,
and an output layer.

The neurons in the hidden layer only act as buffers for
distributing input signals xi, not performing any actual com-
putations. In every hidden layer neuron j, the input signals
xi are added together with their corresponding input layer
connections wji, and the outputs yj are calculated based on
this sum [30];

yj = f
(∑

wji×x i
)

(8)

In this study, the linear activation function of a ReLU layer
is used instead of a simple threshold function f(·). Neural
output is generated from every layer. ADAM is a common
tool utilized for adjusting the weights of MLP networks
during the training process. The ADAM learning process
outputs the change in weight between neurons i and j in a net-
work. The weights are modified using the formula suggested
by [19].

The number of epochs in the training network is 2000.
Furthermore, the input layer, hidden layer, and output
layer all used the SequenceInputLayer, ReLU, and fullyCon-
nectedLayer functions respectively. The neurons containing
information are then placed into the input layer and all

of these neurons operate independently. The Multilayer
Perceptron (MLP) network used in the learning process is
a feed-forward neural network where each hidden node’s
activation is controlled. This repetitive procedure utilizes the
back-propagation technique.

A. ARRAY ANTENNA CONFIGURATION
Fig. 2 illustrates the antenna design structure for the radiation
pattern simulation corresponding to the input signal of each
antenna element. The 1 × 4 ±45◦ dual linearly polarized
array antenna was designed using full wave software. The
substrate material used was Rogers RT5880 with a relative
permittivity of 2.2 and a thickness of 1.575 mm. The patch
antenna has a length and width of 2.4 mm and 4.2 mm,
respectively. The edge feeding method used is a transmission
line model using an SMA connector of 50 � for each port.
The operating frequency of the antenna is 28 GHz. The
mutual coupling between antenna elements was chosen with
the distance inter-elements being equal to 15.60 mm.

B. TOTAL ELECTRIC FIELD USING AEP METHOD
Importantly, the beam-steering capability depends on the
direction of the main beam signals. These main beam signals
are directed to the desired location by controlling the antenna
phase value [31]. AEP calculation was used to calculate the
training and validation data for the DNN inputs. The total
electric field is the AEP of the array antenna for each number
of ports (AEPn) as shown in Eqs. 9 and 10 [32]. In this study,
the amplitude (In) was fixed to 1, and phases (∅n) were varied
for each port [33].

Etotal =

∑4

n=1
In×AEPn × (θ, ϕ)ejk×an×cos(∅n)×sinθ (9)

an =

(
n−

N + 1
2

)
d, n = 1, 2, 3, 4. (10)

In is the complex value of feed current applied to the nth

element, AEPn(θ, ϕ) is the electric field value at each nth

port within the θ range −175◦ to 180◦ at cut angle phi, ϕ

of 90◦ which is obtained from the full wave model. k is the
constant wavenumber, k = 2π f

√
DE

/
c, (c = 3x108m/s,

f = 28GHz, DE = 2.2); d is the inter-element spacing,
d = 15.60mm,∅ is the phase; θ is the theta range −175◦ to
180◦ with a step size of 5◦. The average time taken to generate
one sample of radiation pattern using the AEP method is
approximately 1 sec/frame.

The ASCII files of the electric field were exported in
post-processing columns for each port (port 1 to port 4).
These ASCII files contain real absolute numbers in 5◦ theta
intervals. The extracted ASCII file for port 1 is the absolute
E-field at port 1, called AEP1. Similar steps were taken for
other ports resulting in AEP2, AEP3, and AEP4. The total
number of absolute E-field values at each port is 72, covering
72 theta angles from −175◦ to 180◦.

All extracted AEP values for each port were then imported
into an Excel file named ‘‘AEP.xlsx’’. This Excel file
was intended to serve as input variables for MATLAB
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TABLE 2. The amplitude and phase input signals for the training data set.

TABLE 3. The amplitude and phase input signals for the validation data
set.

programming to analyze the radiation pattern of training and
validation data using Eqs. 9 and 10. The training, validation,
and test datasets were carefully kept separate to ensure data
reliability, accuracy, and unbiased results.

The phase of Port 1 was set to 0◦, and the phases of the
other ports were compared with it. By incrementing the phase
input signals by 20◦, the training data was processed. This
resulted in 19 cases being generated for the training data,
so the total number of radiation patterns is 1 × 19 × 19 x
19 = 6,859. The validation data and training data were kept
distinct to validate the network.

Data collection for the initial phase of validation began
at 10◦, increased by 40◦, and ended at 130◦. This produced
4 cases, so the total number of radiation patterns is 1 × 4 ×

4 × 4 = 64. Tables 2 and 3 illustrate the amplitude and
phase input signals of the array antenna for each training and
validation dataset.

For the test phase dataset, the amplitude (In) was set to
1 and the port’s phase was determined by the phase shift
difference between adjacent ports. The desired main beam
direction, θ , was set at 5◦, and 10◦ and inputted into Eq. 11
to obtain the phase value, β. The desired pattern is an ideal
square-shaped radiation pattern that could not be generated
from the array antenna but was used as the desired input
pattern.

β = k × d × cos(θ ) (11)

The collection of radiation pattern data by AEP computa-
tion, which consists of the collected training and validation
data, was in complex integer values and serves as the input
to the DNN model. These inputs would go through prepro-
cessing data to be converted into a scalar value ranging from
0 to 1with a total of 72 input data. The preprocessing data was
carried out by taking the absolute value of collected training
and validation data, then dividing by its maximum value of
data at each θ◦ interval (−175◦:5◦:180◦) to normalize the
input variables ranging from 0 to 1.

FIGURE 7. AEP-DNN algorithm for beam-steering.

C. FEEDFORWARD-MLP AEP-DNN-BASED METHOD OF
MODELLING, TRAINING, VALIDATING, AND TESTING
NETWORK
Fig. 6 displays the architecture of the DNN framework, which
includes the input and output of the DNN. The type of input
and output is essential as the learning algorithm depends on
these types of inputs and outputs. The radiation pattern of
training and validation data obtained from the AEP method
was in units of 5◦ ranging from -179◦ to 180◦. These data
were inputted into the DNN model. The DNN output data of
predicted phases were expressed in radians.

The DNN framework consists of 6 layers. The input, hid-
den, and output layers are ‘‘sequenceInputLayer’’, ‘‘ReLU’’,
and ‘‘fullyConnectedLayer’’. The ‘‘dropoutLayer(0.5)’’ was
also used to avoid overfitting learning data, with 0.5 being set
by default. Each layer employs a dense layer that connects
input and output neurons completely. The number of neurons
in each hidden layer was 40 and 10, respectively. To analyze
the performance of the AEP-DNN-based method, root-mean-
squared-error (RMSE) and loss performance were obtained.
The ADAM optimizer was used. The number of epochs was
set to 2000. The batch size was set to 50. Fig. 7 shows the
AEP-DNN algorithm for the whole process.

To observe the effect of the number of neurons and epochs
on the DNN model performance including training and vali-
dation RMSE and loss plots, a few sets of selection samples
of neurons and epochs have been investigated and discussed
in Section IV (part C). The selection sample of the number
of neurons in the first and second hidden layers are 50 and
10, and 100 and 10, respectively, and the number of epochs
is 2500, and 3000.
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FIGURE 8. Flowchart for AEP-DNN method.

MATLAB version 2024a was used for the computation
of the AEP-DNN-based method. It took approximately 2 to
3 minutes to train the AEP-DNN model when using the
hardware specification of the AMD Ryzen 3 3200U with
Radeon Vega Mobile Gfx 2.60 GHz and a memory of 8GB.

The DNN model was developed through a computational
approach using a few sets of hyperparameters, and the input
variables were assigned to the DNN model. The input train-
ing dataset was assigned as the ‘‘XTrain’’ and ‘‘YTrain’’
variables, the input validation dataset was assigned as the
‘‘XValidate’’ and ‘‘YValidate’’ variables, and the input test
dataset was assigned as the ‘‘XTest’’ and ‘‘YTest’’ variables.
The ‘‘X’’ variable indicates the input radiation pattern, while
the ‘‘Y’’ variable indicates the input phases.

In general, the whole AEP-DNN process has been summa-
rized in the flowchart of Fig. 8. It is applicable for any size
of arrays. However, different size of antenna array requires
a slight modification at the initial stage as the AEP patterns
need to be imported from full wave software into Matlab.
Then, the dataset can be generated using eq. 9. Neverthe-
less, the AEP pattern becomes increasingly accurate with an
increasing number of arrays [33].

D. CALIBRATION PROCEDURES
Before conducting any experiments, a calibration procedure
must be carried out to ensure accurate beamforming. For
the antenna array, a standard calibration process has been
performed using open, short, load, and through (SOLT) cali-
bration with a Keysight VNA to measure S-parameters. This
measurement has been conducted separately in the anechoic
chamber, UTM Semarak.

On the other hand, the pattern measurement was calibrated
first using a standard antenna array, and the measured radia-
tion pattern was validated using a lookup table provided by
the manufacturer. Then, the standard antenna array has been
replaced with an antenna under test (AUT). The measurement
procedure was conducted at the RF Station due to the avail-
ability of the beamformer and anechoic chamber.

E. S-PARAMETERS AND PATTERN MEASUREMENT
To verify the proposed AEP-based method, a beamformer is
used to excite and tune the input phases of the Dual-linearly
polarized array antenna (DLPAA). TMYTEK 5G FR2 beam-
former with 1 × 4 RF ports [34] is used for array antenna
verification. It is equipped with a software-controllable phase
shifter which offers 5.625 deg resolution and makes the board
a versatile beamformer. Four independent RF channels syn-
thesize beams by adjusting the phase and amplitude of each
channel. The intuitive GUI TMXLAB Kit (TLK software)
connects the beamformer via the LAN port to control the
phase and amplitude of each RF port to form the beams. Fig. 9
shows the top view of the built-in beamformer, the connection
of DLPAA with the built-in beamformer, and the chamber.

The R2 Compact Antenna Test Range (CATR) chamber is
a light type provided byAtenlab [35] which operates from 10-
80 GHz. The interior is lined with RF absorbers to minimize
reflections during testing. A Device Under Test (DUT) posi-
tioner allows for movements in 0.1◦ increments, facilitating
precise measurements. It is equipped with Atenlab’sMaxwell
and Maxwell Lite software that automates the measurement
process and can present collected data in 2D and 3D formats.

IV. RESULTS AND DISCUSSION
This section discusses the results obtained using the AEP-
DNN method. This includes verification of AEP with PMM
and full-wave methods, AEP-DNN algorithms, sensitivity
analysis, computational complexity, environmental factors,
and verification with measurement method.

A. VERIFICATION OF AEP WITH PMM AND FULL WAVE
METHODS
It is crucial to verify the reliability of the AEP method by
the Pattern Multiplication Method (PMM) using MATLAB
and the full-wave model. Therefore, one sample dataset was
chosen. The amplitude (In) was fixed at 1. The phase of the
array antenna in the validation data was selected as follows:
antenna port 1: 10◦, antenna port 2: 50◦, antenna port 3: 90◦,
and antenna port 4: 10◦.
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FIGURE 9. The beam former and array antenna setup for measurement.

The radiation pattern for the given data was derived using
the AEP method before implementing DNN. The AEP (with
coupling) was obtained from the 3D Simulation tool and
calculated based on Eq (9)-(10) using identical amplitude and
phase values. The array radiation pattern (no coupling) was
computed based on the pattern multiplication method (PMM)
using fixed amplitude and varied phase values, calculating the
array factor for each phase input [36] and then multiplying it
with the single element pattern.

Fig. 10 displays the PMM, AEP, and numerical patterns
for the phase dataset that was chosen. The peak gain and
radiation pattern shape for the above methods are in good
agreement with each other. Hence, this AEP technique has
been confirmed as effective and subsequently integrated into
the AEP-DNN approach. The verification of the method is
also plotted in a finer step size of 1◦ of theta angle.

B. AEP-DNN FOR BEAM-STEERING METHOD
Two test datasets with the target main beam angles of 5◦

and 10◦ were chosen for testing the network. An ideal

FIGURE 10. Verification of the AEP with PMM and numerical method sat
phases of 10◦ 50◦ 90◦10◦.

square-shaped input pattern with a gain of 1 was fed into
the DNN model, having a 10◦ beamwidth and -5 dB side
lobe level. The data pattern AEP-DNN was generated by
including the predicted phases in the AEP calculation using
MATLAB. The AEP-DNN, PMM, and numerical designs
were generated by utilizing the estimated phase DNN results
as their input phases. Fig. 10 displays the radiation pattern
based on the desired, the predicted AEP-DNN, the PMM,
and the numerical methods in normalized forms where the
maximum value of 1 represents the main beam location.

Fig. 11 shows that the main beams of predicted AEP-DNN,
PMM, and full wave patterns are matched and fall within the
main beam of the desired pattern. The plotted graphs are also
in a finer step size of 1◦ theta angle.
The elapsed processing time for learning the DNN

algorithm is approximately 2 to 3 minutes. Based on Fig. 12,
the training and validation RMSE and loss converge to a
minimum value of 1.3 to 2.3. The closer the minimum RMSE
and loss values are to ’0’, the better the convergence rate
of both training and validation performances. The selection
sample of the number of neurons in the first and second
hidden layers are 50 and 10, and 100 and 10, respectively,
and the number of epochs is 2500 and 3000.

The AEP-DNN method accurately predicts the required
main lobe direction phases, outperforming array factor theory
in terms of accuracy and good agreement with the numerical
study. The rise in accuracy suggests that the neural network
considers the impact of coupling when predicting phases.

C. SENSITIVITY ANALYSIS
To evaluate the impact of the number of neurons and epochs
on the performance of the DNN model, including training
and validation RMSE as well as loss plots, various selected
neuron and epoch configurations were analyzed, as shown in
Fig. 13.
Additionally, the influence of neurons and epochs on the

model’s convergence performance was examined to justify
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FIGURE 11. The comparison between desired, AEP-DNN,PMM, and
numerical radiation patterns.

the selection of 40 and 10 neurons and 2000 epochs for this
study, as illustrated in Figs. 13 and 14. It shows that the
varying number of neurons lowers the convergence of both
RMSE and loss training plots from the original set of neurons
of 40 and 10 meanwhile the convergence of both RMSE
and loss validation plots are not affected. However, there is
a minimal difference in convergence performance between
those sample sets and the chosen set of neurons except that
the processing time to execute the outputs is much longer
with an increasing number of neurons. The varying number
of epochs is also set to 2500 and 3000 based on Fig. 12. It is
essential to carefully monitor training and validation RMSE
and loss plots when increasing the number of epochs, as this
may lead to underfitting or overfitting. The figure indicates
that increasing epochs from 2000 to 2500 moves closer to the
intercept point at the final iteration. However, when the num-
ber of epochs reaches 3000, the model exhibits overfitting,
as evidenced by validation plots exceeding training plots at
the end of the iteration. Given the specific hyperparameters
and dataset, using 3000 epochs poses a significant risk.

The optimal number of epochs should be determined based
on the initial training and validation data, along with other

FIGURE 12. The training and validation RMSE and loss.

hyperparameters. A higher number of epochs may be more
suitable for larger datasets. It is essential to carefully select
the appropriate sets of neurons and epochs, as previously
outlined in this study.

D. COMPUTATIONAL COMPLEXITY
The AEP-DNN training process requires approximately
2-3 minutes, while inference time per sample is less than
10 milliseconds, making it feasible for real-time beam-
steering applications. The memory footprint of the trained
model is ∼5MB, 4.89% of CPU utilization indicates low
power consumption using the command prompt tool pro-
viding energy report analysis, and the CPU priority level is
8 reported by Sysinternals Process Explorer which indicates
the normal level. CPU Priority and Power Consumption are
related because higher-priority processes demand more CPU
time, which can lead to increased power usage.

E. ENVIRONMENTAL FACTORS ON PHASE PREDICTIONS
Nevertheless, there is no way to fully avoid other potential
noise and environmental factors, such as receiver thermal
noise that decreases the signal-to-noise ratio (SNR), resulting
in inaccurate phase estimations [37]. Inaccurate phase esti-
mations could also be caused by environmental factors such
as multipath effects, atmospheric conditions, and electro-
magnetic interference [38], [39], [40]. For this reason, every
possible precaution is taken when measuring to ensure that
all the factors that may adversely affect the reliability of the
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FIGURE 13. The RMSE and loss convergence plots on different number of
neurons.

phase prediction are minimized. Measurement is conducted
without anyone using the experimental setup firsthand to
reduce the prolonged temperature coming from the receiver.
A nearby object like metal or electronic devices that can
interfere with the signals is also taken into consideration.

This suggested that the AEP-DNN method is effective.
The DNN displays excellent learning, generalization, parallel
processing, and error endurance capabilities, making it the
perfect choice for modeling nonlinear mappings of intricate
data in various applications.

F. VERIFICATION OF AEP WITH MEASUREMENT
This approach utilizes an AEP-DNN that can be taught to
deal with various quantities of elements, spacing, and exci-
tation. The beamformer’s input phases are tuned to steer
the main beam into a desired location. The input phases
for each desired angle at 0◦, 11◦, and 25◦ for ports 1-4 are
{0◦,0◦,0◦,0◦}, {130◦,85◦,45◦,0◦}, and {250◦,170◦,85◦,0◦}
respectively. The measured pattern after tuning the phases
is compared to the numerical and AEP patterns as shown in
Fig. 15.

Based on Fig. 15, the array antenna has been successfully
steered into the desired main beam angle given the input
phases using the beamformer. The measured radiation pattern
of the desired angle matched with the numerical and AEP
patterns, even though the sidelobes are different from each
other. It might be caused by the placement of the array

FIGURE 14. The RMSE and loss convergence plots on different number of
epochs.

antenna on the antenna holder, the interference losses, and
the experimental surroundings of the half-wave chamber. The
discrepancies between sidelobes of measured, numerical, and
AEP pattern might be also influenced by the computation
of AEP is more accurate for the large arrays. However, this
method focuses on the implementation of a neural network for
beam-steering purposes. In future work, the AEP computa-
tion can be upgraded to include the ground edge effects [41].
In addition to the abovementioned factors, several other

reasons could be the potential sources that lead to measure-
ment discrepancies such as due to the chamber conditions
such as some residual reflections that can cause unwanted
interference, affecting sidelobe levels. Other than that, mis-
alignment of the antennas (feed and array antennas-DUT)
that are not centered properly can affect sidelobe levels
and pattern distortion. Variations in RF cable bending, loss,
or movement can also lead to amplitude and phase variations,
affecting sidelobe consistency.

Moreover, the AEP method becomes increasingly accurate
as the number of elements in the array increases. However,
since the beamformer provided by TMYTEK has 4 output
ports, we only developed the system for a 1×4 antenna array.
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TABLE 4. Comparison of this work and previous works.

Table 4 elaborates on the comparison of this work with the
previous work.

The significance of this work states the need for a more
accurate optimization technique over conventional methods.
Conventional optimization methods like full-wave modelling
require a large processing time and are impractical for han-
dling large amounts of data. On the other hand, an array
analysis using the pattern multiplication method (PMM) is
simpler yet does not include mutual coupling which might
be inaccurate for small dimensions of arrays. This could lead
to significant errors in antenna pattern synthesis, especially
at higher frequency bands of 5G. The AEP-DNN method

can steer the beam in the desired direction with training and
validation loss between 1.3 to 2.2, which is considered a low
convergence rate.

V. CONCLUSION
The AEP-DNN approach was created to generate the radi-
ation pattern for a 28 GHz ±45◦ dual linearly polarized
array antenna with 4 radiating patch elements. A deep neural
network was built with the radiation pattern as input and the
antenna phases as output. The suggested approach, which
was trained and validated with 6859 and 64 pattern data
respectively, demonstrates strong performance in creating the
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FIGURE 15. The comparison between measured, PMM, and numerical
radiation patterns.

desired patterns. The findings confirmed that the radiation
pattern obtained from the pattern multiplication and numer-
ical/full wave method closely matched the input radiation
pattern calculated by AEP. The test results of the AEP-DNN
method with low complexity show that it is suitable for the

ideal square radiation pattern. To summarize, the AEP-DNN
model was used to steer the main beam of the array antenna
towards a specific angle. The findings indicate that the desired
patterns align with the synthesized ones. This showed that
deep learning is a dependable method for radiation pattern
synthesis. The antenna pattern synthesis has been conducted
using a combination of the DNN model and AEP-based
method which considers of mutual coupling effect. Instead
of using the same approach of applying the full wave model
to get the initial approximation of input phases to the DNN
model, this study suggests an alternative method using the
AEP approach for better reliability and feasibility in pattern
synthesis performance. The main benefit of the DNN-based
method compared to the traditional analytical method is faster
computation time, as the dataset has already been trained.
When combined with the AEP method, it not only enhances
efficiency but also maintains the same level of accuracy as
full wave modelling and other analytical techniques, as it
includes a mutual coupling effect between antenna elements.
In addition, the measurement of the array antenna to observe
its beam-steering capability using the beamformer to validate
the AEP method has been successfully achieved. In future
research, the potential of the AEP-DNN method could be
further explored for MIMO antenna usage.
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