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ABSTRACT Speech quality and intelligibility are often severely degraded by background noise in
communication systems such as hearing aid (HA) and speech recognition technologies, compromising
their effective use. In low Signal-to-Noise Ratio (SNR) conditions, various approaches and algorithms
are applied to improve speech quality and intelligibility. This study introduces a novel hybrid speech
enhancement framework that synergistically integrates Spectral Subtraction (SS) and Discrete Wavelet
Transform (DWT) to address limitations of traditional noise reduction techniques. Traditional SS methods
generate musical noise artifacts due to static noise estimation, while standard DWT approaches struggle
with selective thresholding and static coefficient processing. To overcome these challenges, the proposed
SS method incorporates iterative noise estimation, Voice Activity Detection (VAD), minimum statistics
for dynamic noise adaptation, Spectral Smoothing and phase-aware spectral reconstruction. Concurrently,
in the enhanced DWT method adaptive noise refinement with phase-aware soft thresholding is employed
to detail coefficients, and the Spatial and Intensity filter is adapted to the approximation coefficients to
improve low-frequency features and retain structural integrity while reducing distortion. The integrated
SS-DWT framework significantly improves noise suppression, reduces musical noise artifacts, and enhances
signal clarity as it leverages the strengths of both phase-aware spectral reconstruction in improved SS
and phase-aware soft thresholding in DWT, particularly in adaptive noise refinement and thresholding.
Proposed speech enhancement network evaluated and experimental results show that the hybrid SS-DWT
method outperforms existing systems, achieving up to 34.15 dB in SDR, 0.98 in STOI, and 3.84 in PESQ,
demonstrating significant improvements in speech quality under various noisy conditions.

INDEX TERMS Speech enhancement, adaptive noise refinement, DWT, spectral subtraction, phase-aware
construction, music noise.

I. INTRODUCTION

Noise-induced intelligibility is an unavoidable problem with
communication technologies like hearing aids. Hearing clear
speech in noisy situations is a challenge for many hearing
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aids users. During a hearing sequence, these devices pick
up excess or unnecessary speech impulses and amplify each
one of them. In that scenario, the candidate may grow weary
and attempt to take off the hearing aid, choosing not to
hear his or her surroundings rather than hear everything [1].
Thus, improving speech that has been distorted by ambient
noise presents a problem for hearing aid applications [2].
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One of the main concerns of HA users is noise-induced
hearing impairment, which speech enhancement (SE) may
help to solve [3], [4]. Hearing aid technologies need to
amplify sounds and eliminate background noise in order
to improve speech intelligibility [5]. Several SE techniques
were invented to enhance the clarity of distorted speech
signals in communication platforms such as HA devices,
where the desired signal is received without distorting the
informative signal [6], [7]. Trade-off between noise reduction
and voice distortion, however, limits its performance [8].
The most typical situation is a single channel framework,
in which the voice and noise originate from different sources
and are difficult for the microphone to record and control.
A correlation between the recorded signal, noise, and speech
gives rise to such a circumstance. Computing complexity and
implementation cost are essential considerations for putting
recommended speech enhancement algorithms into practice
in real-time applications such as mobile communications,
hearing aids, and intelligent hearing protection. Most popular
technique for improving speech is the wavelet transform [9].
The wavelet thresholding technique exclusively splits signals
into low-frequency ranges and works on the assumption that
the processed data are independent, uniformly distributed
Gaussian noise inputs [10]. Among commonly used methods
for enhancing speech is Discrete Wavelet Transform (DWT),
which works incredibly well for processing non-stationary
signals [11], [12]. To be more precise, DWT is used in
conjunction with thresholding and spectrum subtraction
techniques for noise suppression applications. In particular,
DWT is used in combination with spectrum subtraction
and thresholding techniques to improve speech in many
applications. Choosing appropriate threshold values is one
of the challenges in DWT-thresholding approaches. In recent
applications, several decision-making technologies are used
for the process of estimating noise within signal’s sub-bands,
and either thresholding or spectral subtraction is used to
clean the voice signal [13], [14], [15]. Furthermore, spectral
subtraction has been the subject of a tremendous deal of
research in recent times due to its ease of use and abstraction
for portable devices like mobile phones and hearing aids [16],
[17].

The remaining paper is arranged in sections as follows:
Related work is discussed in Section II. The methodology for
the proposed speech enhancement approaches is explained
in Section III. Details on Speech Signal Collection and
Pre-processing are discussed in Section IV. The Analysis of
Experimental Results is shown in Section V. In Section VI
Comparisons with recent methods based on SS-DWT com-
bination are evaluated. The conclusions are contained in
Section VII.

II. RELATED WORK

Spectral Subtraction (SS) and wavelet transform (WT) are
filtering techniques that have been used for Background
noise reduction in audio signals in many recent works.
Several technologies were developed to reduce the various
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categories of non-stationary noise present in original signals
and attempts were made to improve understandability of
the audio signal. However, because traditional methods are
unable to remove the noise associated with audio frequency,
maintaining the unique characteristics of the original audio
remains difficult. This section provides a summary of some
important research in this field that has been done by various
teams.

A. WAVELET TRANSFORM

When analyzing non-stationary noisy signals, the discrete
wavelet transform (DWT) is utilized because it produces
a signal with a higher frequency resolution and a time-
frequency representation [18]. A noisy signal is broken down
by the DWT into detail and approximation coefficients at
each level, with level of decomposition determined by an
input signal. Moreover, choosing the appropriate mother
wavelet [19] and decomposition level [20] determines how
well the DWT denoising performs. The formulation of
the DWT [21] takes into account both the temporal and
frequency aspects of the signal to be studied, in contrast to
Fourier transform (FT), that only considers the frequency
portions. Wavelet transform is used in Wavelet Thresholding
Denoising (WTD) [22] to divide time-domain data into
sub-bands. Subsequently, the generated wavelet coefficients
(subbands) undergo thresholding. In [23], data reduction and
noise robustness in recognition were achieved concurrently
by applying the DWT [24] to audio signals and merely
conserving generated approximation fraction. The authors
of [25] produced a clear signal by removing noise from
the signal using DWT semi-soft thresholding. Recently,
a few hybrid approaches have been devised to enhance
Wavelet-based speech enhancement performance [26], [27],
[28].

B. SPECTRAL SUBTRACTION

Adaptive filtering, wavelet transform, spectral subtraction,
Kalman filtering, Wiener filtering, etc. are some of the
currently popular speech improvement techniques [29], [30],
[31]. Due to its ease of calculation and strong real-time
performance, spectral subtraction is frequently employed
in speech noise reduction processing research [36]. How-
ever, at low SDRs, it tends to produce music noise and
it directly decreases intelligibility of speech signal [32],
[33]. Researchers have suggested enhancements to the
conventional spectrum subtraction method in response to
this issue. These include the adaptive gain average spectral
subtraction proposed by Gustasson [35], the multiband
spectral subtraction offered by Berouti [34], and others.
Spectral subtraction filters have been employed by numerous
studies recently to enhance the quality of speech that is
deteriorated in real time [37], [38]. This is why using DWT
and SS approaches to obtain effective Speech Enhancement
methods with an enhanced SDR value for loud speech signals
in hearing aids is motivated by the above-mentioned factors.
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C. PROBLEM STATEMENT

In communication systems like speech recognition and hear-
ing aids in low SNR situations, noise reduction frameworks
such as Spectral Subtraction (SS) and DWT approaches
are used to minimize background noise. However, the
intrinsic issue with the creation of musical noise involves
Spectral Subtraction. Nevertheless, SE employing DWT-
based thresholds might not be suitable for all kinds of
non-stationary noise because of different frequencies and
time-based scales. Such concerns may result in insufficient
noise reduction in real-time communication systems which
could impact speech signal de-noising evaluation metrics.

D. AIMS OF CURRENT STUDY

In order to get improved speech quality and intelligibility
in terms of SNR, SDR, MSE, PESQ, and STOI and
reduce noise for audio signals in communication networks
like wireless communication and hearing aid systems, this
investigation provides speech enhancement methods based on
a combination of SS and DWT algorithms. Unlike traditional
methods, in proposed SS filter tools like iterative Spectral
Subtraction procedure, Voice Activity Detection (VAD),
minimum statistics for adaptive noise tracking, Spectral
Smoothing and phase-aware spectral reconstruction are used
whereas in DWT phase-aware soft thresholding applied to
the detail coefficients, along wit spatial and intensity filters
adapted to the approximation coefficients are integrated to
enhance speech quality and intelligibility in terms of SNR,
SDR, MSE, PESQ and STOI. This removes the inefficiency
of DWT while handling noise throughout varying frequencies
and time scales, as well as the music noise in SS.

E. OUR CONTRIBUTION

This paper introduces a novel hybrid approach that combines
Spectral Subtraction (SS) with Discrete Wavelet Transform
(DWT), addressing key limitations of traditional methods
like musical noise artifacts and insufficient noise reduc-
tion across varying frequencies and time scales. Initially,
an iterative Spectral Subtraction procedure with dynamic
noise estimation, Voice Activity Detection (VAD), minimum
statistics for adaptive noise tracking, Spectral Smoothing and
phase-aware spectral reconstruction is applied to reduce the
noise spectrum and minimize musical noise artifacts. After
applying SS, DWT is employed for adaptive noise refinement
with phase-aware soft thresholding applied to the detail
coefficients, along with spatial and intensity filters adapted to
the approximation coefficients to enhance low-frequency fea-
tures and retain structural integrity while reducing distortion.
The proposed hybrid method significantly improves speech
enhancement performance, as evidenced by experimental
results showing superior metrics in SDR (up to 34.15 dB),
STOI (0.98), and PESQ (3.84), compared to existing
systems. We assessed each filter’s de-noising performance,
including the wavelet types, proposed hybrid noise reduction
techniques, and the Spectral Subtraction filter.
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lll. METHODOLOGY

A. DISCRETE WAVELET TRANSFORM (DWT)

One of most important temporal-frequency analysis methods
that has a big impact on Speech Enhancement is Discrete
Wavelet Transform (DWT). Because DWT can break down
an input signal into its component sub-signals over a wide
range of scales and frequency ranges, it can effectively extract
and amplify relevant information from the signal. During
decomposition phase, a signal is defined as a collection
of orthonormal wavelet functions that comprise a wavelet
basis [39]. It was reported that the better performances were
achieved by employing mother-wavelet functions such as
Symlets while addressing problems related to enhancing
voice signals [40].

1) DISCRETE WAVELET TRANSFORM (DWT) WITH
PHASE-AWARE SOFT THRESHOLDING

The proposed framework uses the Discrete Wavelet Trans-
form (DWT) to decompose noisy signals into corresponding
components such as approximation and detail coefficients,
to reduce noise and enhance speech quality and intelligibility.
Unlike the fixed thresholding and simple filtering that is
commonly employed in traditional approaches, the proposed
DWT framework incorporates adaptive noise refinement
together with efficient complex phase-aware soft thresh-
olding techniques to enhance the detail coefficients. The
spatial and intensity are also applied on the approximation
coefficients for enhancing the low-frequency detailed and
reducing the artifacts of noise, and it makes the design
framework more flexible and effective for noise reduction.
The proposed DWT incorporates two different methods for
DWT thresholds which are as follows:

This framework comprises two different base threshold
methodologies:

a. Discrete Wavelet Transform - Constant Threshold (DWT-
CT)

b. Discrete Wavelet Transform - Adaptive Threshold (DWT-
AT)

Both of the methods discussed here apply wavelet
decomposition first and then process the detail coefficients
employing their specific thresholding method. An innovative
adaptive phase-aware soft thresholding procedure is then
used to further optimize these thresholds by modifying
threshold values concerning the magnitude and phase of the
coefficients to further enhance signal quality. In addition,
Spatial and Intensity filtering is used for the approximation
coefficients, as well as a residual refinement and fusion
process, which is overlooked to some degree in standard
denoising methods. The detailed methodology incorporated
in this paper for the proposed DWT SE method is shown
below in Figure 1, which consists of the following steps:

2) WAVELET DECOMPOSITION
The noisy signal x,isy(#) is decomposed using the Discrete
Wavelet Transform (DWT) into: Approximation coefficients
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FIGURE 1. Illustration of proposed Discrete Wavelet Transform (DWT) speech enhancement scheme.

A(.x) which represents low-frequency, large-scale features
of the signal and Detail coefficients D(; ) which represents
high-frequency, fine-scale components where noise is typi-
cally concentrated. The decomposition can be expressed as:

L
Xnoisy(£) = ZA(L,k)¢(L,k)(t) + Z ZD(I,k)I/f(z,k)(t) (D
k I=1 &k

where in the decomposition phase, ¢ )(¢) is scaling func-
tions representing low-frequency components and v «)(t)
is the wavelet basis functions representing high-frequency
components respectively, both depend on the selected mother
wavelet. In this study, Symlet-5 (Sym5), Symlet-10 (Sym10),
and Biorthogonal-1.1 (Biorl.1) wavelets are employed for
decomposition due to their distinctive characteristics in noise
suppression and signal preservation. The decomposition level
L is set to 2 for both proposed DWT-CT and DWT-AT
methodologies. The choice of wavelet family influences both
the decomposition and the denoising process, as each wavelet
has unique properties of smoothness, symmetry, and local-
ization. This decomposition enables multi-resolution analysis
of the signal, separating noise from signal components
across scales. Unlike traditional wavelet-based methods, this
framework refines both low-frequency and high-frequency
components for superior noise suppression.

3) BASE THRESHOLDS

a: DISCRETE WAVELET TRANSFORM - CONSTANT
THRESHOLD (DWT-CT)

This methodology employs a constant global base threshold
named DWT-CT for noise suppression, followed by adaptive
phase-aware soft thresholding to refine detail coefficients.
The DWT-Constant Threshold (DWT-CT)Tonstant 1S calcu-
lated using statistical properties of the detail coefficients
D ) at first decomposition level:

Teonstant = +/210g N - MAD getail (2)

where N represents length of the signal (or the number
of coefficients) and MADyge,i represents Median Absolute
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Deviation of detail coefficients denoted by D x) which is
used to estimate level for the noise in the noisy mixture signal.
The Median Absolute Deviation is computed as:

MADgeqit = median (|Dg x) — median(D x))|)  (3)

This measure provides an estimate of the noise energy in the
signal which is then used to determine the constant threshold.
This threshold is chosen by determining the noise level of
the signal from this measure. Unlike other methods that use
rigid thresholding or simple noise elimination techniques, this
threshold provides a uniform noise elimination method across
all levels of decomposition. This is however done by employ-
ing phase-aware adaptive soft thresholding which learns from
the local noise characteristics and signal structures. By this
combination, the framework obtains the merits of the existing
approach to achieve both global and local contexts at the same
time.

b: DISCRETE WAVELET TRANSFORM - ADAPTIVE
THRESHOLD (DWT-AT)

This work employs a base threshold named DWT-Adaptive
Threshold (DWT-AT) with L1-L2 norms to suppress noise
and achieve sparse and smooth results. An adaptive base
threshold 7 x)is derived to well balance the sparseness and
smoothness of the high-frequency detail coefficients Dy )
with the help of L1-L2 regularization. The expression for
regularizing coefficients is as follows:

max (|D(1,m)| — T, m), O)
1+5

In above eq. (4), « is L1 penalty for sparsity control, which
controls signal to shrink toward zero, where larger value
increases sparsity and small values retains more coefficients.
The second parameter is 8 L2 smoothness penalty: It provides
a balance between removing noise from the signal and
retaining the signal, with higher values leading to smoother
signals but a potential loss of important details. So an
empirical tuning of alpha («) and beta (8) or cross validation

b(l,m) = “)
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is applied to balance sparsity and smoothness. In proposed
DWT-AT the Adaptive threshold is computed as:

T(,m) = 0.4/210gN (®)]

where Noise standard deviation is computed as:

median (|D(1’m)|)
T 0.6745 ©
In this approach, some modifications have been applied
such as through adaptive thresholding which adjusts itself
adaptively to the local noise variance to enhance noise
suppression while phase-aware adaptive soft thresholding
is used in order to preserve both magnitude and phase
for enhanced structural details. L1-L2 regularization also
allows for a proper balance between noise elimination and
information retention. It can handle non-stationary noise
as compared to other techniques while at the same time
maintaining adaptively as well as signal quality.

4) ADAPTIVE PHASE-AWARE SOFT THRESHOLDING FOR
DETAIL COEFFICIENTS

In the proposed DWT SE method the adaptive phase
aware soft thresholding is subsequently applied to the
detail coefficients D ) at each decomposition level [
after base thresholding (adaptive or constant). In this soft
thresholding step, the threshold gets set depending on the
local rate of noise, and the signal’s structural information is
maintained through using the phase along with magnitude
of the coefficients. Adaptive phase aware soft thresholding
is then applied to the detail coefficients D ) at each
decomposition level [ after base thresholding (constant or
adaptive). In this step, the threshold is adjusted to the local
noise characteristics, and the structural integrity of the signal
is preserved by taking into account both magnitude and phase
of the coefficients. It undergoes the following steps:

a: THRESHOLD ADJUSTMENT BY VARIANCE

The base threshold Tconstant OF T(7,m) is adjusted adaptively
at each decomposition level according to the variance of the
coefficients:

T(1,k) = Toaseliney/ Var(D x)) @)

where Thaseline 1S the initial base threshold (either constant
or adaptive) and Var(D( x)) is the variance of the detail
coefficients D k) at each level [, capturing the noise
characteristics in that region of the signal.

b: MAGNITUDE AND PHASE EXTRACTION

The next step involves extracting the magnitude and phase of
each detail coefficient D ). These coefficients are expressed
in polar form:

D] = /RO 10)? + 1D ®)
1 {1Da.p)

Phase(D(; 1)) = tan ‘(—’ )
0 R(D x))
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Here |Dg)| is the Magnitude of the coefficient,
Phase(D(; x)) is the Phase of the coefficient, and R(D x))
and /(D x)) represent the real and imaginary parts of the
coefficient, respectively.

c: SOFT THRESHOLDING ON MAGNITUDE

Now apply soft thresholding to the magnitude of the
coefficients to suppress noise. Soft thresholding is a form
of shrinkage that reduces the magnitude of coefficients that
are smaller than the threshold, and leaves larger coefficients
unchanged (or shrunk proportionally). The soft thresholding
rule is:

.y = max (|Dq x| — Tk, 0) (10)

where 711z ) is the enhanced magnitude of the coefficient after
thresholding, | D x| is the original magnitude and 7|; x) is the
threshold applied at each decomposition level, adjusted by the
variance.

d: RECOMBINE MAGNITUDE WITH ORIGINAL PHASE

Once the magnitude has been thresholded, we recombine the
adjusted magnitude with the original phase to obtain the final
enhanced coefficient. The enhanced coefficient b([‘ k) 18t

Dty = iy - € PPR) (11)

Here 7 ) is the thresholded magnitude. This process
ensures both magnitude and phase are preserved, maintaining
the temporal and structural alignment of the signal while
suppressing noise effectively.

5) SPATIAL AND INTENSITY FILTERING FOR
APPROXIMATION COEFFICIENTS

The approximation coefficients Az k), often overlooked in
traditional methods, are refined using Spatial and Intensity
filtering. This process enhances the signal by removing
some of the low-frequency noise but still retains some
important features. The refinement for each coefficient
A(L‘k)is computed as:

Awpli]
_ jean @s(— 1) - i (ALoll —Ac.olil - Awwnlil)
= > ican @G — 1) - o; (Aol —Awplil)

(12)

where w;(j — i) represents spatial proximity weights, which
ensure that closer coefficients have a higher influence
and ®; (A xljl — A plil) represents Intensity similarity
weights. These weights make it possible to filter out noise
whilst avoiding over-smoothing and distortion of edges and
transitions in the signal. The coefficients Az x, which are
obtained after the refinement process help to improve the
structure of the denoised signal, particularly in the low
frequency features of the signal.
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6) RECONSTRUCTION OF DENOISED SIGNAL USING IDWT
The denoised signal Xgenoised(?) is then reconstructed from
the refined approximation coefficients A(L,k) and detail
coefficients l/\)(l,k) using the process of Inverse Discrete
Wavelet Transform (IDWT):

L
Xdenoised () = ZA(L,k)@L,k)(I) + Z Zb(l,k)lﬁu,k)(l)
k

I=1 k
13)

This step aims at reconstructing the denoised signal from
the refined wavelet coefficients.

7) RESIDUAL PROCESSING AND FUSION
Residual noise R is calculated as the difference between the
noisy signal and the initially denoised signal:

R = Xnoisy — Xdenoised (14)

This residual contains high-frequency noise components
that were not eliminated in the first step of the de-noising
process. The residual R undergoes wavelet decomposition
and adaptive soft thresholding as follows:

D E?,Sli()jua] = SOftdenoised (DE??]i()iual’ T) (15)

The threshold T could be either a constant or adaptive.
The refined residual R,efined is then reconstructed and
this involves both approximation (low-frequency) and detail
(high-frequency) coefficients:

L
Rrefined = D Aw.k)bw. )0 + D D DM 1)
k =1 &

(16)

Finally, the refined residual Ryefineq is then fused with the
initially denoised signal Xgenoised to get the final signal s(t):

$(t) = Xdenoised + Rrefined (17)

This step ensures that the fine details (those that are not
well captured in the initial denoising) are restored by
adding the residual back to the denoised signal. This fusion
helps preserve signal integrity while effectively suppressing
noise. The scheme with the proposed DWT-based framework
is capable of eliminating noise while retaining signal
quality with phase-aware adaptive soft thresholding, Spatial
and Intensity filtering for low-frequency enhancement, and
Residual fusion for fine details enhancement. In this way, the
method produces high-quality denoising without requiring
any additional normalization, which shows the stability of the
proposed approach for further tasks.

B. PROPOSED SPECTRAL SUBTRACTION (SS) FILTER

The proposed Spectral Subtraction (SS) filter intends to
improve the quality of noisy audio signals through noise
estimation and accurate phase reconstruction. Contrary to
many techniques based on standard spectral subtraction for
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noise attenuation that works with a fixed estimate of noise
and very simple reconstruction, the developed approach
deals with non-stationary noise, takes into account the phase
information and employs multiple iterations to improve
speech estimation. Thus, overcoming these limitations allows
the framework to provide higher signal fidelity, better
intelligibility, and a decrease in the degree of perceptive
artifacts. The detail methodology for proposed SS filter is
shown in below Figure 2 which involves the following steps:

1) FRAME DIVISION AND SHORT-TIME FOURIER
TRANSFORM (STFT)

Being inherently non-stationary, speech signals require local-
ized processing in the time-frequency domain. To specify
a noisy signal xyisy, the signal is divided into overlapping
frames of size N with a frameshift M. Each frame i is
extracted as:

Xi(t) = Xnoisylt +i-M], t=0,1,....N—1 (18)

where i represents the frame index. Each frame is decom-
posed into a signal splitting into its magnitude and phase
components using the Short-Time Fourier Transform (STFT):

X(f) = IXi(f)| - £ (19)

Here |X;(f)| is the iy frame, the magnitude spectrum,
corresponds to the energy distribution of frequencies, ¢;(f)
is the temporal alignment of signal components encodes in
the phase spectrum of iy, frame and X;(f) is the Complex
spectrum at frequency f of the iy, frame. Frequency domain
manipulation is performed using the STFT, and this allows
specific noise to be suppressed, without modifying the phase
of the underlying signal.

2) NOISE ESTIMATION

Accurate noise estimation is critical for effective spectral sub-
traction. To identify noise-dominant regions, Voice Activity
Detection (VAD) is first applied, followed by a Minimum
Statistics approach.

a: VOICE ACTIVITY DETECTION (VAD)

VAD distinguishes speech and non-speech frames based on
their energy levels. The energy for each frame E; is computed
as:

E = > IX()I? (20)
f

If the energy E; is below a certain threshold Ey,, the frame
is classified as non-speech (noise), and its corresponding
magnitude spectrum |X;(f)| is used for the noise estimate. The
VAD output is a binary decision:

1 if E; > Ey (Speech)

. 21
0 if E; < Ey, (Non-Speech)

VAD(i) = [

Frames classified as non-speech (noise) (i.e., VAD() =
Oare used to compute the noise spectrum.
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b: PRELIMINARY NOISE ESTIMATED SPECTRUM
The noise spectrum N (f) is computed as the average of the
magnitude spectra from the non-speech frames VAD(i) = 0:

R 1 &
N() = 2 21Xl - [VAD(K) = 0] (22)
k=1

where N(f) is preliminary Estimated noise spectrum at
frequency f, K is the Number of non-speech frames, (Xx(f)
is the ky frame non-speech frame and VAD(k) is the
Indicator function that selects only non-speech frames for
noise estimation.

¢: MINIMUM STATISTICS

To refine this noise estimate over time, a minimum statistics
approach is used. This approach tracks the minimum value of
the noise spectrum across a sliding time window, capturing
low-energy variations and avoiding overestimations of noise.
The refined noise spectrum is calculated as:

Bin(/) = min (Rmin(). N 7)) 23)

where Nmin(f ) is the Minimum noise spectrum estimate at fre-
quency f and N (f) is the Preliminary noise spectrum estimate
at frequency f, computed from non-speech frames identified
by VAD. This equation updates Nimin(F) by retaining the
smaller of its current value and the newly estimated N().
This dynamic refinement ensures the framework adapts to
varying noise profiles, maintaining accuracy across diverse
conditions.

3) SPECTRAL SUBTRACTION WITH PHASE-AWARE
RECONSTRUCTION

a: PRELIMINARY NOISE SUPPRESSION

After estimating the Preliminary Estimated Spectrum N (3
and refining it using the minimum statistics approach ﬁmin(f )
the actual spectral subtraction is applied. To enhance the
performance of spectral subtraction, this process is repeated
iteratively. In each iteration, the residual noise is computed
and further refined by applying spectral subtraction to the
residuals, progressively improving noise suppression. For
the iy, frame of noisy signal’s magnitude spectrum |X;(f)|
is processed by subtracting the minimum noise spectrum
Nmin(f ) to reduce noise. The formula for spectral subtraction
for iy, frame is:

|Xpre1im—denoised,i(f)| = max (|Xt(f)| —a- Nmin(f)a 6) (24)

where |Xprelim-denoised,i(f)| is the preliminary denoised mag-
nitude spectrum for iy, frame, |X;(f)| is magnitude spectrum
of the noisy signal for iy frame, « is the Subtraction
factor controlling the level of noise suppression and € is
the small constant to prevent negative or zero magnitudes.
This subtraction ensures that the noise is attenuated while
preventing over-subtraction, which could distort speech
components.
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b: PHASE-AWARE RECONSTRUCTION

Once the magnitude spectrum has been denoised, it is
combined with the original phase spectrum ¢;(f)from the
noisy signal for accurate signal reconstruction. For the iy
frame, the phase-aware reconstruction is given by:

|Xreconstructed,i(f)| = |Xprelim—denoised,i(f)| 'ej¢i(f) (25)

where Xreconstructed,i(f ) is the reconstructed complex spectrum
for the iy, frame (combining the preliminarily denoised
magnitude and the original phase).

4) ITERATIVE REFINEMENT
a: ADAPTIVE SUBTRACTION FACTOR
The subtraction factor «; is updated adaptively with each

iteration to improve noise suppression. The update is given
by:

a1 =0y, v>1 (26)

where 7 is the increment rate that controls how the subtraction
factor evolves in each iteration.

b: RESIDUAL NOISE CALCULATION

After the initial spectral subtraction, the residual noise R;(f)
is calculated as the difference between the noisy signal X;(f)
and the denoised signal f(reconstmcted,i(f ):

Ri(f) = Xz(f) - Xreconstructed,i(f)~ 27
This residual noise represents the part of the signal that was
not effectively suppressed by the initial subtraction process.

c: RESIDUAL NOISE REFINEMENT

In each iteration, the refined residual noise spectrum
Rrefined,i(f) is obtained by applying spectral subtraction to the
residual noise spectrum. This iterative process progressively
refines the residual noise in each step, ensuring that noise
components that were missed in the earlier iterations are

suppressed more effectively. The updated spectrum is given
by:

Rrctneai(/) = max (IR()] = o - Nin(f)v€)  (28)

where «; is the updated subtraction factor. The residual
spectrum is refined using the same subtraction process, and
the refined residual is integrated with the denoised signal:

Xfinal,i(f) = Xreconstructed,i(f) + Rrefined,i(f) (29)

5) SPECTRAL SMOOTHING

Artifacts such as “musical noise” can result from abrupt
changes in the spectrum across frames. To mitigate this,
spectral smoothing is applied:

w
Xsmoothed,i(f) = Z Xfinal,i+w(f) (30)
=W

2W +1
w:

where W is the Smoothing window size. This step ensures
temporal and spectral coherence, enhancing the perceptual
quality of the output.
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6) INVERSE SHORT-TIME FOURIER TRANSFORM (ISTFT)

The smoothed speech signal in the time domain is obtained
using the Inverse Fourier Transform (IFFT) after performing
spectral smoothing given by:

xsmoothed,i(t) =iSTFT [Xsmoothed,i(f)] 31

7) RECONSTRUCTION USING OVERLAP-ADD SYNTHESIS
The final enhanced signal is synthesized in the time domain
using overlap-add synthesis, a technique that combines
overlapping frames while preserving continuity:

S(t) = Xsmoothed.i(t) - w(t — iM) (32)

1

where S(t) is the enhanced synthesized signal (after overlap-
add in the time domain), the iy smoothed frame is
Xsmoothed,i(f) and M is the frameshift. In above eq. (32)
component w(t-iM) which is windowing function is utilized
in order to do smooth synthesis frame wise. This process is
used to blend the overlapping regions more smooth to avoid
artifacts in combining the enhanced frames achieved from
proposed SS filter.

C. PROPOSED HYBRID SS-DWT SE APPROACHES

The SS-DWT frame work is proposed in this paper to address
the music noise challenge Spectral Subtraction (SS) filter
and in addition to it, this method provides solution for
DWT thresholds to reduce background noises of varying
frequencies with respect to time scale. In this paper, Hybrid
Speech Enhancement methods are proposed which combine
Spectral Subtraction (SS) and Discrete Wavelet Transform
(DWT) to improve the quality and the intelligibility of
noisy mixture speech signals corrupted with non-stationary
background noises. Iterative noise estimation, Voice Activity
Detection (VAD), minimum statistics for dynamic noise
adaption, spectral smoothing, and phase-aware spectral
reconstruction are all used in the suggested SS method,
in contrast to the conventional approach. In the suggested
DWT methods Spatial and Intensity filter is adjusted to
the approximation coefficients to enhance low-frequency
features and maintain structural integrity while lowering
distortion and adaptive noise refinement with phase-aware
soft thresholding is used to detail coefficients. In proposed
SS-DWT framework to remove any remaining noise from the
speech signals, SS filter is applied to lower the average noise
intensity. Afterward, we use proposed DWT with its threshold
to enable the reduction of musical noise and enhance the
speech quality and intelligibility.

Our approach is depicted in Figure 3 below, where we
introduce two primary threshold approaches: SS-DWTAT
(Adaptive thresholding) and SS-DWTCT (Constant Thresh-
olding). These approaches result in more reliable and
consistent noise reduction, yielding improved speech quality
in noisy environments.
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IV. SPEECH SIGNAL COLLECTION AND EVALUATION
METRICS

A. SPEECH SIGNAL COLLECTION

A 7-second speech signal recorded in a quiet setting makes
up the clean audio signal. Additionally, this speech signal was
distorted for various conditions using noise signals captured
in the actual environment. Aircraft engine noise, white noise,
pink noise, siren noise, café ambience noise, and engine
idle noise are the noise signals that are used. All these
audio signals, including the pink noise were sourced from
the website “www.freesound.com”. This website provides
audio signals captured in natural settings, without copyright
issues, specifically for scientific research and application
development [41]. In other experiments to compare proposed
SE methods with other baseline methods clean speech signals
are sourced from TIMIT dataset [42] and CASIA dataset,
whereas Gaussian noise is sourced from Noisex-92 database
and babble noise from AURORA-2 dataset.

B. INSTRUMENTAL EVALUATION METRICS

In this study assessing the efficiency of proposed SE
methods employing SS and DWT, a number of commonly
used metrics are calculated including Signal-to-distortion
ratio (SDR) [43], Mean Square Error (MSE) [44] b45,
perceptual evaluation of speech quality (PESQ) [46] and
Short-time objective intelligibility (STOI) [47]. Although a
lower Mean Square Error (MSE) score indicates higher levels
of resemblance in the original and compressed audio signals,
indicating superior compressed quality, SDR is employed to
demonstrate the effects of the algorithms on noise isolation
and reduction. During the experiments, we conduct and
employ perceptual evaluation of speech quality (PESQ)
[46] to generate a mean opinion score for listening quality
objective (MOS-LQO).

For real-time speech quality improvement, the recom-
mended framework uses PESQ as a metric to assess
performance and provide approximation values to MOS,
a human listening subjective measure. The enhanced speech
is evaluated for readability using the Short-time Objective
Intelligibility (STOI) measure. With a value within a range of
[0, 1], the STOI measure is specifically designed to evaluate
noise suppression strategies; high scores are strongly corre-
lated with superior intelligibility. Additionally to compare
results with baselines the speech quality metrics such as
segmental SNR (segSNR) [48] and Signal-to-Noise Ratio
(SNR) [43] of the enhanced speech are measured. To evaluate
the Speech Quality MOS predictions were evaluated by
20 male listeners and 20 female listeners of age between 20 to
40 years. Listeners rated the enhanced speech signals on scale
of 1 to 5 used for poor and excellent speech signal quality.

Here are the results of the investigation and experi-
mentation with real-world noise reduction algorithms for
communication systems.
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FIGURE 2. Methodology of spectral subtraction speech enhancement.
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FIGURE 3. Data flow diagram for the hybrid SS-DWT speech restoration scheme.

V. ANALYSIS OF EXPERIMENTAL RESULTS
In this section, we present the results of the investigation and
experimentation with real-world noise reduction algorithms.
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We investigated the effects of employing Discrete Wavelet
Transform (DWT) and Spectral Subtraction (SS) noise
reduction methods to make promising quality and clarity
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TABLE 1. Proposed speech enhancement methods assessment using MSE and SDR.

Method Noise Wavelets Ini-MSE Final-MSE Ini-SDR (dB) Final-SDR (dB)
sym5 826 x107* 290x107° 88x10715 -0 25.42
Pink  syml0 826 x107% 281 x107% 88x1071%-0 28.35
DWTAT biorl.1 826 x 107* 295 x 107> 88 x 107 -0 25.10
symS5 8.26 x 1074 259 x 107> 2.22.8 x 10715 -0 28.14
Siren  symI0 826 x 10~* 2.64 x 107° 2.22.8 x1071° -0 29.77
biorl.I  8.26 x 107% 2,55 x 1075 2.22.8 x 10715 — 0 28.10
symS5 826 x10~* 3.11x107° 88x10715 -0 24.19
Pink  syml0 826 x107% 291x107° 88x10715-0 27.01
DWLCT biorl.1  8.26 x 10™* 325 x107%> 88x 1071 -0 23.00
sym5 826 x 107% 295x107° 2228 x 10715 -0 26.04
Siren  syml0 826 x 10~* 2.88x 107° 2.22.8x 10715 -0 29.11
biorl.I  8.26 x 1074 3.02x 1075 2.22.8 x 10715 — 0 25.90
Ss Pink - 8.26 x 107* 280 x 107> 88x 10715 -0 30.01
Siren - 8.26 x 1074 264 x107° 2228 x 10715 -0 31.11
sym5 826 x107* 277x107° 88x10715 -0 28.27
Pink  syml0 826 x 107% 259x 1075 88x 10715 -0 32.14
SS_DWTAT biorl.1  8.26 x 10~* 281 x 105 88 x 101> -0 28.01
symS5 8.26 x 1074 236 x 107> 2.22.8x 10715 -0 32.71
Siren  symI0 826 x 10~* 2.11 x 107° 2.22.8 x 1071° -0 34.15
biorl.1 826 x 107% 243 x 1075 2228 x 10715 -0 31.88
sym5 826 x107* 257x107° 88x10715 -0 29.85
Pink  syml0 826 x107% 250x107° 88x 10715 -0 32.10
SS.DWTCT biorl.1 826 x 10~* 270 x 107> 88 x 107 -0 28.91
sym5 826 x 107% 247 x107° 2.22.8 x 10715 -0 32.65
Siren  symI0 826 x 10~* 2.38x 107° 2.22.8x1071° -0 34.07
biorl.I  8.26 x 107% 251 x 1075 2.22.8 x 10715 -0 30.04

of speech samples affected by background noise. Following
provides an explanation of outcomes of using these speech
enhancement algorithms.

A. MSE AND SDR MEASURES FOR PROPOSED SE
METHODS

Considering non-stationary background noises like Pink and
Siren noise types the proposed SE methods are evaluated
under same noise conditions as in [11] and the Mean
Square Error (MSE) and Signal-to-Distortion Ratio (SDR)
are measured in Table 1. The experimental results show
that wavelet family Symlet-10 (Sym10) outperforms Symlet-
5 (Sym5) and Biorthogonal-1.1 (Biorl.1) in the DWT-AT
method, achieving the lowest MSE 2.81 x 107> and highest
SDR (28.35 dB), compared to MSE of 2.90 x 107
and SDR of 25.42 dB for Sym5, and MSE of 2.95 x
107> and SDR of 25.10 dB for Biorl.l. For the Sym10
wavelet family, the proposed DWT-AT SE method achieves
SDR improvements of 28.35 dB and 29.77 dB for Pink
and Siren noise respectively, and surpassing the proposed
DWT-CT which achieves SDR improvements of 27.01 and
29.11 respectively. The proposed Spectral Subtraction (SS)
filter outperforms both DWT-AT and DWT-CT in MSE
reduction achieving 2.80 x 107> and 2.64 x 10~ for noisy
mixture audios degraded with Pink and Siren background
noises, respectively. In Table 1 it is observed that proposed
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SS-DWT hybrid methods (SS-DWTAT and SS-DWTCT)
yield higher performance in terms of MSE reduction and SDR
improvement compared to other methods. For Sym10 SS-
DWTAT and SS-DWTCT achieve the highest MSE reduction
of 2.11 x 1073 and 2.38 x 107 respectively, and also achieve
the highest improvement in SDR of 34.15 dB and 34.07 dB
respectively against the non-stationary siren noise type. This
suggests that integrating spectral subtraction with wavelet
thresholding effectively enhances both speech quality and
noise suppression, addressing the issue of musical noise
associated with SS and non-stationary variations across
frequencies and time scales encountered in DW'T.

B. STOI AND PESQ MEASURES FOR PROPOSED SE
METHODS

To evaluate the proposed methods SE performance STOI
and PESQ scores are measured for noisy signals degraded
with non-stationary background noises like Pink and Siren
noise types as shown in Table 2. Using the sym10 wavelet
family Proposed DWT-AT SE method improves STOI score
from 0.86 to 0.96 and 0.68 to 0.93 for Pink and Siren noise
respectively and surpassing the proposed DWT-CT which
achieves STOI scores of 0.93 and 0.94 respectively. Similarly
DWT-AT SE approach PESQ improvement of 3.41 for speech
signal degraded with Pink noise and 3.61 for Siren noise
sample. Furthermore, proposed Spectral Subtraction (SS)
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TABLE 2. Proposed speech enhancement methods assessment using STOI and PESQ.

Method Noise Wavelets Initial STOI Final STOI Initial PESQ Final PESQ
Pink symS5 0.68 091 1.92 3.22
DWT-AT syml10 0.68 0.93 1.92 3.41
biorl.1 0.68 0.91 1.92 3.15
Siren sym5 0.86 0.95 2.26 3.58
syml10 0.86 0.96 2.26 3.61
biorl.1 0.86 0.94 2.26 3.53
Pink symS5 0.68 0.92 1.92 3.27
DWT-CT syml10 0.68 0.92 1.92 3.30
biorl.1 0.68 0.91 1.92 3.09
Siren sym5 0.86 0.92 2.26 3.47
syml0 0.86 0.96 2.26 3.53
biorl.1 0.86 0.92 2.26 3.30
ss Pink - 0.68 0.95 1.92 3.59
Siren - 0.86 0.96 2.26 3.61
Pink symS5 0.68 0.96 1.92 3.50
SS-DWTAT sym10 0.68 0.97 1.92 3.67
biorl.1 0.68 0.94 1.92 3.42
Siren sym5 0.86 0.97 2.26 3.68
syml10 0.86 0.98 2.26 3.84
biorl.1 0.86 0.95 2.26 3.61
Pink symS5 0.68 0.95 1.92 3.38
SS-DWTCT syml0 0.68 0.96 1.92 3.53
biorl.1 0.68 091 1.92 3.11
Siren sym5 0.86 0.97 2.26 3.49
syml10 0.86 0.98 2.26 371
biorl.1 0.86 0.95 2.26 3.42

filter outperforms both DWT-AT and DWT-CT in STOI
improvements achieving 0.95 and 0.96 for noisy mixture
audios degraded with Pink and Siren background noises,
respectively. In Table 2 it is observed that proposed SS-DWT
hybrid methods (SS-DWTAT and SS-DWTCT) yield higher
performance in terms of STOI and PESQ improvement
compared to other methods. Compared to other wavelets
sym5 and biorl.1, the Sym10 for both SS-DWTAT and SS-
DWTCT achieved highest STOI of 0.98, and also achieved
highest improvement in PESQ of 3.84 and 3.71 respectively
against the non-stationary siren noise type. This suggests
that integrating spectral subtraction with wavelet threshold-
ing effectively enhances speech quality and intelligibility,
addressing the issue of musical noise associated with SS and
non-stationary variations across frequencies and time scales
encountered in DWT.

C. TIME-AMPLITUDE AND TIME-FREQUENCY GRAPHICAL
ANALYSIS

Improved speech achieved from the proposed Spectral
Subtraction (SS) and Discrete Wavelet Transform (DWT)
methods were investigated using Time-Amplitude Graphs
and spectrograms as shown in Figure 4. To better understand
the fundamental reasons for the quality improvements
observed with the proposed Hybrid SS-DWT, an investigation
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of a clean audio signal corrupted by Pink noise considering
the 0 dB SNR level was conducted. Using Improved Spectral
Subtraction and Discrete Wavelet Transform, Figure 4
displays the spectrograms for denoised audio signals and
clean audio signals along alongside their corresponding
noisy audio signals. Spectrogram enhancement shows that
considerably more noise suppression is feasible with the
suggested approaches when looking at the outputs. Due
to sophisticated processing of audio, enhanced audios are
achieved by having both phase and magnitude information
of the speech, and it helped to reconstruct better audio
signals. When DWT-CT and DWT-AT SE approaches are
applied to 0 dB SNR noisy audio signal the average noise
level across speech signal decreased, however, residual noise
remains as shown in graphs in Figure 4 (e - h). Similarly,
when Spectral Subtraction (SS) is applied to a noisy mixture
signal, a reduction in background noise is observed but some
music noise persists in the signal as shown in Figure 4 (k
- 1). To address these limitations in proposed hybrid SS-
DWT, SS is first applied to noisy speech signals and then
followed by the application of proposed DWT-AT and DWT-
CT approaches. The time-amplitude and time-frequency plots
in Figure 4 (k - n) show a significant reduction in noise
addresses the problem of musical noise within SS filter as
well as the lower frequency noises in DWT method.
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D. DISCUSSION ON PERFORMANCE OF SPEECH
ENHANCEMENT METHODS

Table 3 shows our solutions for speech signals affected
by different background noises correlating the proposed
Speech Enhancement algorithms for AWGN noise types with
previous approaches. SS-DWTAT (Sym10), our suggested
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technique, outperforms all other Speech Enhancement
Techniques, with a maximum SNR improvement of 34.15 for
0 dB SNR speech signals. From SNR scores for estimated
clean signals, it is suggested that the suggested noise
reduction performance provides high SNR values for
assistive technology. In addition, all of our suggested
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TABLE 3. Quality measures analysis of speech improvement procedures exploiting different background noise types.

Methods Noise Type Frequency of Audio Signals Initial-SNR (dB) Final-SNR (dB)

5.0 10.190

DWT-thresholds [14] AWGN 8K 5.0 7.510

5.0 8.440
0.0 19.930
WTD-LMS [28] . . 8K 5.0 21.360
Aircraft Engine 15 27.01

30 34.03

Pink Noise — 0 32

WTD-NLMS [11] AWGN 8K Siren — 0 34.03

Pink Noise — 0 28.35

Proposed DWT-AT (sym10) AWGN 8K Siren — 0 29.77
Pink Noise — 0 27.01

Proposed DWT-CT (sym10) AWGN 8K Siren — 0 29.11
Pink Noise — 0 30.01

Proposed SS AWGN 8K Siren — 0 31.11

Pink Noise — 0 32.14

Proposed SS-DWTAT (Sym10) AWGN 8K Siren — 0 34.15
Pink Noise — 0 32.10

Proposed SS-DWTCT (Sym10) AWGN 8K Siren — 0 34.07

methods—DWT-AT (sym10), DWTCT (syml0), SS-
DWTAT (syml10), SS-DWTCT (sym10), and SS—show
significant gains in SNR over previous approaches.

V. COMPARISON WITH RECENT METHODS BASED ON
SS-DWT COMBINATION

To evaluate the Speech Enhancement performance proposed
Hybrid SS-DWT methods are compared with traditional
methods and wavelet family selected in these experiments is
Sym10, the experimental results are as follows:

A. SPEECH ENHANCEMENT EVALUATION USING TIMIT
AND GAUSSIAN NOISE

The proposed hybrid SS-DWT methods namely SS-DWTAT
and SS-DWTCT speech enhancement algorithms have been
tested on the spoken English sentence chosen from TIMIT
database against a baseline method proposed in [49]. The
sentence used is “‘Please shorten this skirt for Joyce” with
a sampling rate of 16 kHz and spoken by a male and female
speaker. The clean speech is corrupted with white Gaussian
noise resulting in global SNR levels ranging from -10db
to 20db. Compared to baseline method proposed methods
achieve highest SNR improvement as shown in Table 4.
The SS-DWTAT surpasses all its counterparts and improves
the noisy signal up to 11.42 dB in challenging SNR like
—10 dB for female speakers and 11.64 dB for male speakers.
It is observed that proposed SS-DWTAT has better Speech
enhancement performance for all noisy conditions.

B. SPEECH ENHANCEMENT EVALUATION USING PURE
RECORDED VOICE SIGNAL AND GAUSSIAN NOISE

The proposed speech enhancement (SE) methods are further
evaluated with a pure recorded speech signal against baseline
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methods [33]. The experiments are conducted with the
sampling frequency of 8 kHz, length of frame set to 1024,
and 50% overlap between frames. The pure speech signals
are degraded with Gaussian white noise at different SNRs
(-5, 0, 5, and 10 dB) to obtain noisy audio signals for
processing. As given in Table 5 that in comparison to baseline
spectral subtraction (SS), the output SNR of proposed
spectral subtraction and DWT are enhanced keeping varied
input noisy circumstances. Proposed SS-DWTAT method
achieves highest SNR improvement of 16.06 dB 17.84 dB,
21.1 dB, and 22.05 dB for SNR levels of -5 dB, 0 dB,
5 dB, and 10 dB, respectively. The rationale behind this
improved performance is due to the suggested SS-DWTAT
approach further improves the output SNR by processing the
speech through wavelet transform after it has been processed
by improved spectral subtraction. Whenever the given input
SNR is lower, the speech enhancement impact is more
noticeable and all suggested methods perform better than
traditional methods.

C. SPEECH ENHANCEMENT EVALUATION USING CASIA
DATABASE

The Hybrid SS-DWTAT and SS-DWTCT methods are
evaluated against methods recently developed in [50] using
Clean audio signals sourced from CASIA dataset which is
based on Chinese Mandarin speech data produced by Institute
of Automation of Chinese Academy of Science. The Chinese
female speaker leverages 8 kHz sampling and 8-bit coding to
pronounce the chosen utterance as “xing zheng qi yu”. The
Noisex-92 database is the source of the white Gaussian noise.
At the condition of 0 dB SNR, the noise is added to the clean
speech signals to create the noisy speech signals. As shown
in Table 6 the proposed SS-DWTAT obtains improvements up
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TABLE 4. SNR score comparison between proposed and referenced SE methods using TIMIT dataset and gaussian noise.

Method Female Male
Noisy SNR (dB) -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
Spectral ~ Subtraction in 2.3 49 75 10.7 14 18.1 223 32 5.5 8.7 11.7 14.9 18.3 224
Wavelet Domain [49]
DWT-AT 9.55 13.6 16.83 21.82 224 2311 2691 1035 14.16 172 21.16 23.03 24.18 27.05
DWT-CT 9.22 13.1 1601 19.17 21.3 22.04 25.11 1001 1394 16.84 20.05 2251 239 2642
SS 10.01 1373 17.11 2251 2251 2384 27.13 1077 14.84 17.57 21.66 23.78 2444 2730
SS-DWTAT 1142 1459 18.61 23.75 24.02 2517 2843 11.64 1534 18.37 22.65 24.11 2538 28.19
SS-DWTCT 11.05 1425 1833 23.18 2396 2487 2786 11.18 15.02 18.14 2224 2389 2517 2795
TABLE 5. SNR comparison considering recoded pure voice signal and degraded with gaussian white noise.

Method SNR (dB)

Noisy SNR (dB) -5 0 5 10

Traditional spectral subtraction [33] 2.355 4314 8.390 11.770

Improved spectrum subtraction [33] 3.690 5252 9250 12.482

Improved speech enhancement algorithm [33] 5.569 6.553 9925 12936

DWT-AT 1440 16.17 20.73 21.53

DWT-CT 13.53 16.04 2041 21.38

SS 14.66 1652 21.10 22.05

SS-DWTAT 16.14 18.06 22.62 24.58

SS-DWTCT 16.06 17.84 22.13 2427

TABLE 6. SegSNR comparison of various methods.

TABLE 7. Evaluation of proposed methods with TIMIT dataset and babble
noise against baseline SE methods.

Methods SegSNR
heursure [50] 9.8442
rigrsure [50] 9.8442
sqtwolog [50] 2.5925
minimaxi [50] 4.4048
SS-DWTAT 15.2801
SS-DWTCT 15.2106

Methods PESQ (MOS points)

SNR (dB) -5 0 5 10 15
Noisy .35 1.52 1.77 211 253
MMSE-LSA [51] 139 164 197 236 276
SG-JMAP [51] 1.38° 1.63 198 241 287
DCCNN [52] 2.87 295 3.01 327 3.65
SS-DWTAT 291 297 315 331 374
SS-DWTCT 290 295 3.13 328 3.69

to 15.2801 dB segSNR, the highest improvement compared
to best baseline method. The proposed SS-DWTCT method
achieves a SegSNR of 15.2106, indicating its superior
performance compared to the baseline methods, such as
Heursure (9.8442), Rigrsure (9.8442), Sqtwolog (2.5925),
and Minimax (4.4048).

D. SPEECH ENHANCEMENT EVALUATION USING MOS
MEASURES

To further evaluate proposed Hybrid Spectral Subtraction-
Discrete Wavelet Transform (SS-DWT) SE methods clean
speech data from TIMIT is mixed with babble noise from
AURORA-2 dataset and its PESQ in terms of MOS points
is compared with baselines MMSE-LSA and SG-JMAP [51]
and DCCNN [52] method in Table 7. The results show that
proposed SS-DWTCT network is able to improve quality
of noisy mixture by 0.03 MOS points (2.90) for lower
SNR conditions such as -5 over the best baseline method
DCCNN. The proposed SS-DWTAT approaches improve
quality of noisy mixture by 1.56 MOS points (2.91) over
noisy speech and surpass all the other SE methods. The
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proposed SS-DWT consistently outperforms the minimum
setting of PESQ with 1.34 MOS points (2.97) as well as
1.33 MOS points (2.95) for SS-DWTAT and SS-DWTCT,
correspondingly, whereas conventional MMSE-LSA and SG-
JMAP only slightly improve PESQ across unprocessed noisy
speech for the challenging O dB condition. Across all noisy
conditions with improved Spectral Subtraction (SS) filter and
Discrete Wavelet Transform (DWT), the proposed hybrid
SS-DWTAT and SS-DWTCT methods highly suppress
the background noise compared to baseline methods and
achieve highest improvements in PESQ in terms of MOS
points.

E. EVALUATION OF COMPUTATIONAL COMPLEXITY

To evaluate the computational complexity the proposed
SS-DWT methods are evaluated with a testing speech signal
sp26.wav (female) corrupted by babble noise at 5 dB taken
from the NOIZEUS speech corpus (NOIZEUS) having a
sampling frequency of 8 kHz. In Table 8, the scores for
evaluation metrics like processing time and SNR achieved
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TABLE 8. Computational efficiency in terms of processing time and SNR.

Methods Processing Time (s) SNR (dB)

Noisy 5.00 10.00 5.00 10.00
DFT [53] 138.60 115.09 5.45 6.32
DCT [53] 59.56 57.49 7.03 797
DWT (dbl) [53] 10.10 9.80 10.89 11.37
Proposed SS-DWTAT 7.83 7.52 16.59 1741
Proposed SS-DWTCT  7.71 7.39 15.35 16.86

from proposed SE methods are compared against baselines
DFT, DCT, and DWT [53]. It is observed that proposed
SS-DWTAT achieved processing times of 7.83 seconds and
7.52 seconds under 5 dB and 10 dB SNR conditions,
respectively, resulting in SNR improvements of 16.59 dB
and 17.41 dB. These performance metrics, coupled with
significantly reduced computational power requirements
compared to traditional methods like DFT (138.60 s and
115.09 s) and DCT (59.56 s and 57.49 s), highlight its
efficiency and effectiveness for real-time applications. The
processing times for proposed SS DWTCT were 7.71 sec
and 7.39 sec in 5 dB and 10 dB SNR conditions, with
SNR improvements of 15.35 dB and 16.86 dB. With less
computational demand than traditional approaches (DFT,
DCT, and DWT (dbl)), it achieves better efficiency and noise
reduction efficacy than other methods.

VII. CONCLUSION

In this study, a hybrid speech enhancement framework was
proposed which integrates both the Spectral Subtraction
(SS) and Discrete Wavelet Transform (DWT) effectively to
reduce nonstationary background noise in low Signal-to-
Noise Ratio (SNR) environments. The proposed SS DWT
methods overcome limitations of traditional SS and DWT
methods by integrating iterative noise estimation, Voice
Activity Detection (VAD), dynamic noise adaptation, and
phase aware spectral reconstruction within the SS component
and, adaptive noise refinement and phase aware soft thresh-
olding within the DWT module. Experimental results indicate
that the presented hybrid SS DWT techniques dramatically
improve noise suppression and reduce musical noise artifacts
resulting in the subjective noticeable improvement of speech
clarity and intelligibility. The SS-DWT model is consistently
shown to produce superior performance, according to metrics
including Mean Square Error (MSE), Signal-to-Distortion
Ratio (SDR), Short-Time Objective Intelligibility (STOI),
and Perceptual Evaluation of Speech Quality (PESQ) in
different noise types and datasets. These results confirm
the applicability of this integrated approach for real-time
applications in communication systems that require hearing
aids and speech recognition systems. However, the proposed
method has certain limitations: it depends heavily on detailed
ambient noise knowledge and needs a dual-channel setup
(which could lead to a cost increase and added complexity).
Future work will explore integrating machine learning
algorithms to enhance noise estimation without prior noise
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information and developing robust denoising techniques for
single-microphone systems. Additionally, implementing the
hybrid SS-DWT framework in multi-channel systems and
communication technologies such as mobile devices and
hearing aids will be pursued to enhance versatility and cost-
effectiveness.

REFERENCES

[1] A. Keshavarz and M. Divandari, “Improving speech quality in hear-

ing aids using fuzzy complex and wavelet,” in Proc. 8th Int.

Conf. Control, Instrum. Autom. (ICCIA), Mar. 2022, pp.1-6, doi:

10.1109/ICCIA54998.2022.9737161.

H. B. Vanjari and M. T. Kolte, “Comparative analysis of speech

enhancement techniques in perceptive of hearing aid design,” in Proc.

3rd Int. Conf. Inf. Manage. Mach. Intell., Singapore, D. Goyal, A. Kumar,

V. Piuri, and M. Paprzycki, Eds., Cham, Switzerland: Springer, Aug. 2022,

pp. 117-125.

1. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell, Y. Gan,

M. Mattina, and P. N. Whatmough, “TinyLSTMs: Efficient neural speech

enhancement for hearing aids,” 2020, arXiv:2005.11138.

H. Vanjari and M. Kolte, “Comparative analysis of compressive sensing

methods for speech enhancement in hearing aid applications,” in Proc. 7th

Int. Conf. Signal Process. Commun. (ICSC), Nov. 2021, pp. 137-141.

[5] G. Park, W.-H. Cho, K. Kim, and S. Lee, “Speech enhancement
for hearing aids with deep learning on environmental noises,”
Appl. Sci., vol. 10, no. 17, p. 6077, Sep. 2020. [Online]. Available:
https://www.mdpi.com/2076-3417/10/17/6077

[6] M. Brahim, “Denoising and enhancement speech signal using wavelet,”

J. Inf. Syst. Telecommun., vol. 9, no. 33, pp. 3744, Apr. 2021.

P. G. Patil, T. H. Jaware, S. P. Patil, R. D. Badgujar, F. Albu, I. Mahariq,

B. Al-Sheikh, and C. Nayak, ““Marathi speech intelligibility enhancement

using I-AMS based neuro-fuzzy classifier approach for hearing aid users,”

IEEE Access, vol. 10, pp. 123028-123042, 2022.

R. McAulay and M. Malpass, “Speech enhancement using a soft-decision

noise suppression filter,” IEEE Trans. Acoust., Speech, Signal Process.,

vol. ASSP-28, no. 2, pp. 137-145, Apr. 1980.

[9] S. Sahu and N. Rayavarapu, ‘“Compressive speech enhancement using
semi-soft thresholding and improved threshold estimation,” Int. J. Electr.
Comput. Eng. (IJECE), vol. 13, no. 3, p. 2788, Jan. 2023.

[10] C. Venkatesan, P. Karthigaikumar, and R. Varatharajan, “A novel
LMS algorithm for ECG signal preprocessing and KNN classifier
based abnormality detection,” Multimedia Tools Appl., vol. 77, no. 8,
pp. 10365-10374, Apr. 2018.

[11] E. Ozen Acarbay and N. Ozkurt, ‘“Performance analysis of the speech
enhancement application with wavelet transform domain adaptive filters,”
Int. J. Speech Technol., vol. 26, no. 1, pp.245-258, Mar. 2023, doi:
10.1007/s10772-023-10022-3.

[12] M. Talbi and M. S. Bouhlel, “A new speech enhancement technique based
on stationary bionic wavelet transform and MMSE estimate of spectral
amplitude,” Secur. Commun. Netw., vol. 2021, pp. 1-11, Dec. 2021.

[13] S.R. Chiluveru and M. Tripathy, “Speech enhancement using a variable
level decomposition DWT,” Nat. Acad. Sci. Lett., vol. 44, no. 3,
pp. 239-242, Aug. 2020.

[14] S. Ozaydin and 1. K. Alak, “Speech enhancement using maximal overlap
discrete wavelet transform,” Gazi Univ. J. Sci. A, Eng. Innov., vol. 5, no. 4,
pp. 159-171, Dec. 2018.

[15] M. S. E. Abadi, H. Mesgarani, and S. M. Khademiyan, “The wavelet
transform-domain LMS adaptive filter employing dynamic selection
of subband-coefficients,” Digit. Signal Process., vol. 69, pp. 94-105,
Oct. 2017.

[16] M. Gupta, R. K. Singh, and S. Singh, “Analysis of optimized spectral
subtraction method for single channel speech enhancement,” Wireless
Pers. Commun., vol. 128, no. 3, pp.2203-2215, Feb. 2023, doi:
10.1007/s11277-022-10039-y.

[17] R. Kumar, M. Tripathy, and R. S. Anand, “Iterative thresholding-based
spectral subtraction algorithm for speech enhancement,” in Advances in
VLSI, Signal Processing, Power Electronics, IoT, Communication and
Embedded Systems. Cham, Switzerland: Springer, 2021, pp. 221-232.

[18] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11,
no. 7, pp. 674-693, Jul. 1989.

2

3

[t

[4

[l

[7

—

[8

—

39779


http://dx.doi.org/10.1109/ICCIA54998.2022.9737161
http://dx.doi.org/10.1007/s10772-023-10022-3
http://dx.doi.org/10.1007/s11277-022-10039-y

IEEE Access

Y. Igbal et al.: Hybrid Speech Enhancement Technique Based on DWT and SS

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. Rafiee, P. W. Tse, A. Harifi, and M. H. Sadeghi, “A novel technique
for selecting mother wavelet function using an intelli gent fault diagnosis
system,” Expert Syst. Appl., vol. 36, no. 3, pp. 4862-4875, Apr. 2009.

M. Srivastava, C. L. Anderson, and J. H. Freed, ““A new wavelet denoising
method for selecting decomposition levels and noise thresholds,” IEEE
Access, vol. 4, pp. 3862-3877, 2016.

O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal
Process. Mag., vol. 8, no. 4, pp. 14-38, Oct. 1991.

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Trans. Image Process., vol. 9,
no. 9, pp. 1532-1546, Sep. 2000.

S.-S. Wang, P. Lin, Y. Tsao, J.-W. Hung, and B. Su, “Suppression
by selecting wavelets for feature compression in distributed speech
recognition,” IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 26, no. 3, pp. 564-579, Mar. 2018.

D. Huang, L. Ke, B. Mi, G. Wei, J. Wang, and S. Wan, “A cooperative
denoising algorithm with interactive dynamic adjustment function for
security of stacker in industrial Internet of Things,” Secur. Commun. Netw.,
vol. 2019, pp. 1-16, Feb. 2019.

S. Pradeep Kumar, A. Daripelly, S. M. Rampelli, S. K. R. Nagireddy,
A. Badishe, and A. Attanthi, “Noise reduction algorithm for speech
enhancement,” in Proc. Int. Conf. Signal Process., Comput., Elec-
tron., Power Telecommun. (IConSCEPT), May 2023, pp.1-5, doi:
10.1109/IConSCEPTS57958.2023.10170204.

G. Tejaswini, “Speech enhancement using discrete wavelet transform with
long short-term memory algorithm,” Nanotechnol. Perceptions, vol. 20,
pp. 18-32, May 2024.

P. Cherukuru and M. B. Mustafa, “CNN-based noise reduction for multi-
channel speech enhancement system with discrete wavelet transform
(DWT) preprocessing,” PeerJ Comput. Sci., vol. 10, p. €1901, Feb. 2024.
E. Ozen and N. Ozkurt, “Speech noise reduction with wavelet
transform domain adaptive filters,” in Proc. Global Congr. Electr.
Eng. (GC-ElecEng), Dec. 2021, pp.15-20, doi: 10.1109/gc-
eleceng52322.2021.9788190.

M. Parchami, W.-P. Zhu, B. Champagne, and E. Plourde, “Recent develop-
ments in speech enhancement in the short-time Fourier transform domain,”
IEEE Circuits Syst. Mag., vol. 16, no. 3, pp. 45-77, 3rd Quart., 2016, doi:
10.1109/MCAS.2016.2583681.

H. Pardede, K. Ramli, Y. Suryanto, N. Hayati, and A. Presekal,
“Speech enhancement for secure communication using coupled spectral
subtraction and Wiener filter,” Electronics, vol. 8, no. 8, p.897,
Aug. 2019.

M. Balasubrahmanyam, R. S. Valarmathi, and C. H. M. S. Kumar,
“A comprehensive review of conventional to modern algorithms of speech
enhancement,” in Innovations in Electrical and Electronic Engineering.
Singapore: Springer, 2024, pp. 633-648.

N. Upadhyay, “Tterative-processed multiband speech enhancement
for suppressing musical sounds,” Multimedia Tools Appl., vol. 83,
no. 15, pp.45423-45441, Oct. 2023, doi: 10.1007/s11042-023-
17336-z.

Y. Yang, P. Liu, H. Zhou, and Y. Tian, “A speech enhancement algorithm
combining spectral subtraction and wavelet transform,” in Proc. IEEE
4th Int. Conf. Autom., Electron. Electr. Eng. (AUTEEE), Nov. 2021,
pp. 268-273, doi: 10.1109/AUTEEES52864.2021.9668622.

T. Yadava, B. Nagaraja, and H. Jayanna, “A spatial procedure to spectral
subtraction for speech enhancement,” Multimedia Tools Appl., vol. 81,
no. 17, pp. 23633-23647, Jul. 2022.

H. Gustafsson, S. E. Nordholm, and I. Claesson, ‘“‘Spectral subtraction
using reduced delay convolution and adaptive averaging,” IEEE Trans.
Speech Audio Process., vol. 9, no. 8, pp. 799-807, Nov. 2001.

M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech
corrupted by acoustic noise,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Apr. 1979, pp. 208-211.

G. Vinothkumar and M. Kumar, “Speech enhancement with back-
ground noise suppression in various data corpus using bi-LSTM
algorithm,” Int. J. Electr. Electron. Res., vol. 12, no. 1, pp. 322-328,
Mar. 2024.

G. Ioannides and V. Rallis, “Real-time speech enhancement using
spectral subtraction with minimum statistics and spectral floor,” 2023,
arXiv:2302.10313.

W. Huang, “Wavelet transform adaptive signal detection,” Dept. Comput.
Eng., North Carolina State Univ., Raleigh, NC, USA, Tech. Rep., 1999.

39780

(40]

(41]

[42]

(43]

(44]

(45]
[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

R. Bendoumia and M. Djendi, “Two-channel variable-step-size forward-
and-backward adaptive algorithms for acoustic noise reduction and speech
enhancement,” Signal Process., vol. 108, pp. 226-244, Mar. 2015.

T. L. Kumar and K. Rajan, “Noise suppression in speech signals using
adaptive algorithms,” Int. J. Eng. Res. Appl., vol. 2, no. 1, pp. 718-721,
2012.

J. W. Lyons, “DARPA TIMIT acoustic-phonetic continuous speech
corpus,” Linguistic Data Consortium, Nat. Inst. Standards Technol.
(NIST), Gaithersburg, MD, USA, Tech. Rep. LDC93S1, 1993. [Online].
Available: https://catalog.ldc.upenn.edu/LDC93S1

E. Vincent, R. Gribonval, and C. Fevotte, ‘Performance measurement in
blind audio source separation,” IEEE Trans. Audio, Speech Lang. Process.,
vol. 14, no. 4, pp. 1462-1469, Jul. 2006.

U. Jjaz, F. Gillani, A. Igbal, M. S. Sharif, M. F. Anwar, and A. Ijaz, “Fine-
tuning audio compression: Algorithmic implementation and performance
metrics,” Int. J. Innov. Sci. Technol., vol. 6, no. 1, pp. 220-236, 2024.

S. S. Haykin, Adaptive Filter Theory. London, U.K.: Pearson, 2002.
Perceptual Evaluation of Speech Quality (PESQ): an Objective Method
for End-to-end Speech Quality Assessment of Narrow-band Telephone
Networks and Speech Codecs, Standard ITU-T P.862, ITU, 2001.

C. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted noisy
speech,” in Proc. ICASSP, Mar. 2010, pp. 4214-4217.

A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “‘Perceptual
evaluation of speech quality (PESQ)-A new method for speech quality
assessment of telephone networks and codecs,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 2, May 2001, pp. 749-752.

M. Hassani and M. K. Mollaei, “Speech enhancement based on spectral
subtraction in wavelet domain,” in Proc. IEEE 7th Int. Colloq. Signal
Process. Appl., 2011, pp. 366-370.

G.-Y. Wang, X.-Q. Zhao, and X. Wang, “Speech enhancement based on
the combination of spectral subtraction and wavelet thresholding,” in Proc.
Int. Conf. Apperceiving Comput. Intell. Anal., Oct. 2009, pp. 136-139.

H. Yu, Dept. Post-filter optimization for multichannel automotive speech
enhancement,” Ph.D. dissertation, Technische Universitit Braunschweig,
Braunschweig, Germany, 2013.

Y. Igbal, T. Zhang, M. Fahad, S. U. Rahman, A. Igbal, Y. Geng, and
X. Zhao, “Speech enhancement using deep complex convolutional neural
network (DCCNN) model,” Signal, Image Video Process., vol. 18, no. 12,
pp. 8675-8692, Dec. 2024.

S. Sahu and N. Rayavarapu, ‘‘Performance comparison of sparsifying basis
functions for compressive speech enhancement,” Int. J. Speech Technol.,
vol. 22, no. 3, pp. 769-783, Sep. 2019.

YASIR IQBAL received the master’s degree in
electrical engineering from Bahria University,
Islamabad, Pakistan, in 2020. He is currently
pursuing the Ph.D. degree with the School of
Electrical and Information Engineering, Tianjin
University, China. His research interests include
digital signal and image processing and machine
and deep learning networks.

TAO ZHANG received the M.S. degree from
the School of Electronic Information Engineering,
Tianjin University, Tianjin, China, in 2001, and
the Ph.D. degree from Tianjin University, in 2004.
He is currently an Associate Professor with Texas
Instruments DSP Joint Laboratory, School of
Electrical and Information Engineering, Tianjin
University. His current interests include intelli-
gent audio and video processing and intelligent
computing.

VOLUME 13, 2025


http://dx.doi.org/10.1109/IConSCEPT57958.2023.10170204
http://dx.doi.org/10.1109/gc-eleceng52322.2021.9788190
http://dx.doi.org/10.1109/gc-eleceng52322.2021.9788190
http://dx.doi.org/10.1109/MCAS.2016.2583681
http://dx.doi.org/10.1007/s11042-023-17336-z
http://dx.doi.org/10.1007/s11042-023-17336-z
http://dx.doi.org/10.1109/AUTEEE52864.2021.9668622

Y. Igbal et al.: Hybrid Speech Enhancement Technique Based on DWT and SS

IEEE Access

TEDDY SURYA GUNAWAN (Senior Member,
IEEE) received the B.Eng. degree (cum laude)
in electrical engineering from Institut Teknologi
Bandung (ITB), Indonesia, in 1998, the M.Eng.
degree from Nanyang Technological University,
Singapore, in 2001, and the Ph.D. degree from
the University of New South Wales (UNSW),
Australia, in 2007. He is a Professor with the
Department of Electrical and Computer Engi-
neering, International Islamic University Malaysia
(ITUM). He has held esteemed roles, including Visiting Research Fellow
at UNSW (2010-2021) and an Adjunct Professor at Telkom University
(2022-2023), previously chairing the IEEE Instrumentation and Mea-
surement Society — Malaysia Section. Recognized for his contributions
to speech and audio processing, biomedical signal processing, image
and video processing, and parallel computing, he received IIUM’s Best
Researcher Award in 2018 and is listed among the World’s Top 2%
Scientists in Artificial Intelligence and Image Processing by Elsevier for
2023 and 2024. In addition to his academic and research accomplishments,
he holds multiple professional engineering certifications, including CEng
(IET, U.K., 2016), Insinyur Profesional Utama (PII, Indonesia, 2019),
ASEAN Engineer (2018), ASEAN Chartered Professional Engineer (2020),
APEC Engineer (2023), CPEng (Australia, 2024), and PEng (Malaysia,
2025), reflecting his commitment to professional excellence. Within [ITUM,
he has also served as Head of Department (2015-2016) and Head of
Programme Accreditation and Quality Assurance (2017-2018) at the Faculty
of Engineering, reinforcing his leadership and expertise in the field.

AGUS PRATONDO (Senior Member, IEEE)
received the bachelor’s degree in informatics engi-
neering and the master’s degree in electrical engi-
neering from the Institut Teknologi Bandung, and
the Ph.D. degree in electrical and computer engi-
neering from the National University of Singapore.
He is currently a Professor with the Department
of Multimedia Engineering, Telkom University,
was recognized in 2024 among Elsevier’s World
Top 2% Scientists in Artificial Intelligence and
Image Processing. His research interests span artificial intelligence, machine
learning, computer vision, data analytics, and multimedia applications. His
notable contributions and expertise make him a distinguished Al research
and innovation figure.

XIN ZHAO received the Ph.D. degree from
Tianjin University, Tianjin, China, in 2020. He is
currently an Associate Professor with the School
of Electrical and Information Engineering, Tianjin
University. His current research interests include
evolutionary computation, machine learning, opti-
mization, and image processing.

dsh

YANZHANG GENG received the M.S. degree
from the School of Mechanical and Power
Engineering, North University of China, China,
in 2017, and the Ph.D. degree from the School
of Electrical and Information Engineering, Tian-
jin University, China, in 2023. He is currently
a Research Fellow at Tianjin University. His

research interests include speech signal processing
and microphone array signal processing.

A )

VOLUME 13, 2025

MIRA KARTIWI (Member, IEEE) is currently
a Professor with the Department of Information
Systems, Kulliyyah of Information and Commu-
nication Technology, and the Deputy Director
of e-learning with the Centre for Professional
Development, International Islamic University
Malaysia (ITUM). She is an experienced consultant
specializing in the health, financial, and manu-
facturing sectors. Her current research interests
include health informatics, e-commerce, data min-
ing, mformatlon systems strategy, business process improvement, product
development, marketing, delivery strategy, workshop facilitation, training,
and communications. She was one of the recipients of Australia Postgraduate
Award (APA), in 2004. For her achievement in research, she was awarded the
Higher Degree Research Award for Excellence, in 2007. She has also been
appointed as an editorial board member in local and international journals to
acknowledge her expertise.

NASIR SALEEM received the B.S. degree in
telecommunication engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, in 2008, the M.S. degree in electrical
engineering from CECOS University, Peshawar,
in 2012, and the Ph.D. degree in electrical
engineering with a specialization in digital speech
processing and deep learning from the University
of Engineering and Technology, in 2021. Fol-
lowing the Ph.D. degree, he was a Postdoctoral
Fellow with Islamic International University Malaysia (ITUM), where he
researched modern artificial intelligence-based speech processing algo-
rithms. From 2008 to 2012, he was a Lecturer with the Institute of
Engineering Technology (IET), Gomal University, engaging in both teaching
and research. Currently, he is an Assistant Professor with the Department
of Electrical Engineering, Faculty of Engineering and Technology (FET),
Gomal University. He also holds the position of the Deputy Director
of the Quality Assurance Directorate with Gomal University. He has
published several research papers in renowned journals and conferences,
including those by Elsevier, Springer, and IEEE. In addition to his research,
he actively participates in academic activities, such as guest editing and paper
reviewing. His research interests include human—machine interaction, speech
enhancement, speech recognition, speech and video processing, and machine
learning applications.

SAMI BOUROUIS received the Engineering,
M.Sc., and Ph.D. degrees in computer science
from the University of Tunis, Tunisia, in 2003,
2005, and 2011, respectively. He is currently a
Professor at the College of Computers and Infor-
mation Technology, Taif University, Saudi Arabia.
His research interests include data mining, image
processing, statistical machine learning, cyberse-
curity, and pattern recognition applied to several
real-life applications.

39781



