International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

Vol 11, Issue 1 (2025)

Perceptive Computing for Android Threats:
Unveiling Jekyll and Hyde Syndrome in Scareware

Andi Fitriah Abdul Kadir, Hairul Nizam Balalo (@ Bolalan®

‘Department of Computer Science, International Islamic University Malaysia, 53100, Kuala Lumpur, Malaysia
*Commercial Crime Investigation Department (CCID), Level 27, Digital Forensic Investigation Section, Royal Malaysia Police, Menara KPJ, Jalan Tun Razak,
50400 Kuala Lumpur, Malaysia

*Corresponding author andifitriah@iium.edu.my
(Received: 30t December, 2024; Accepted: 10t" January, 2024; Published on-line: 30" January, 2025)

Abstract— This paper spotlights Android scareware, relating its deceptive behavior to the dual personality
syndrome of Jekyll and Hyde, as described in The Strange Case of Dr. Jekyll and Mr. Hyde. Modern scareware
employs sophisticated evasion techniques, including metamorphic and polymorphic obfuscation, enabling it
to alter its code structure during propagation. Additionally, anti-emulator techniques allow scareware to
detect emulation environments and conceal malicious activities. To address these challenges, we propose a
hybrid approach that combines static and dynamic analysis, leveraging features derived from unreferenced
strings and network flow. This method enhances detection by uncovering scareware's dual behaviors. Using
five classifiers, we construct models to address three detection scenarios: identifying malicious Android
apps, categorizing apps by scareware type, and classifying apps into scareware families. Tested on a dataset
of 1,350 samples, the proposed method outperforms existing approaches, achieving over 9o% accuracy
across all scenarios with an average false positive rate of just 0.04.

Keywords— Android, dynamic, scareware, static analysis, malware analysis, machine learning

. INTRODUCTION

Recently, scareware has ultimately become an effective
attack method for cybercriminals in getting funds; the
cybercriminals make money from the malicious application
(app) by threatening victims to download the apps or
convincing them to pay some amount of money for the fake
service. Scareware is a malicious software that poses as
legitimate application and falsely claims to detect a variety
of threats on the affected mobile devices (i.e., battery
issues, files corrupted, account hacked). In scareware
attacks, the actual target is the human where it aims to
exploit human emotion, which can cause panic, shock,
anxiety, or the perception of a threat in order to persuade
users into purchasing the app (malware) [1]. In fact, the
behavior of Android scareware is like the Jekyll and Hyde
syndrome [2], exhibiting dual personalities or behaviors.
According to malware reports [4, 5], Android scareware was
able to bypass the detection system on the app market, i.e.,
Google Bouncer, for three consecutive years since 2014.
Before Google removed the app from the store, Android
scareware with a fake antivirus app named Virus Shield had
been downloaded 30,000 times from Google Play at a price
of $3.99 in 2014. A similar incident occurred in 2015, where
another malware variant, AntiVirus for Android, was
downloaded over a million times at $4.99.

In 2016, Android.Spy.277.origin was hidden in more than 100
applications on Google Play, infecting 2.8 million Android

50

devices. Furthermore, another variant, Street Stick Battle,
saw between one million and five million downloads. More
recently, between 2020 and 2024, malware attacks have
become increasingly sophisticated. For instance, in 2020,
Joker malware managed to infiltrate hundreds of apps,
compromising millions of devices worldwide. In 2022,
Facestealer spyware emerged, stealing sensitive user data
through fake social media apps, while SharkBot in 2023
targeted banking credentials via malicious apps disguised as
legitimate financial tools. By 2024, the surge of polymorphic
malware such as Xenomorph demonstrated advanced
evasion techniques, highlighting the persistent threat to
Android ecosystems [3].

In the past decade, most of the studies have focused on
detecting the mobile malware. According to the survey of
securing Android devices [6], the researchers have
proposed various techniques such as via app-hardening
systems (Appink), through entrusted app or app-market
analysis (RiskRanker, SCanDroid, FlowDroid, DroidScope,
DroidRanger, Pegasus, DNADroid, DroidMOSS, Stowaway,
CombDroid, ContentScope), by continuous runtime
monitoring (TaintDroid, BayesDroid, MockDroid, Apex,
FlaskDroid, SEAndroid, Porscha), and based on the install-
time checking (Kirin, Pyandrazzi).

However, these studies have focused on the binary
detection (malware or non-malware) and not specifically
detecting scareware. This general detection mechanism is
not enough in detecting the sophisticated malware with

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

metamorphic and polymorphic. The fact that scareware
appear as a legitimate program (i.e. contain an actual AV)
makes it more difficult for the current detection system to
identify it as malicious. Although many studies on Android
malware [7, 9, 10, 11] are being actively developed recently,
research efforts focused on Android scareware are still
inadequate. This is due to the lack of understanding of
mobile scareware. Without understanding the behavior of
scareware, the detection systems are not capable of
providing an accurate recognition of an advanced mobile
scareware. A simple illustration to that is the detection rate
of current AVs and malware detection tools towards
scareware.

A quick scan of one of scareware samples called Fake AV
with a Mdssum: e46a87522cdb53248c8805880d7a6108 by
VirusTotal [8] shows the poor performance of AVs in
detecting scareware. VirusTotal is a web-based service that
aggregates over 70 antivirus products and online scan
engines for analyzing suspicious malware. However, only
about 40 products (63% of detection rate) are able to detect
this scareware sample. Particularly, there are five
submissions available for this sample (scanned history from
January 2016 until April 2018). In addition, we re-uploaded
this sample to VirusTotal in December 2024. However, the
results show no insignificant different; about 63% of samples
are detected by AVs in 2016, 66% in 2017, and 48% in 2024.
Even after three consecutive years, the detection rate of the
AV products for this particular sample has notimproved. The
results indicate that the current AVs have some limitations
in detecting scareware.

To further evaluate the performance of AV products, we
scanned 150 samples of scareware that we have collected
from multiple sources [12, 13, 8] with three popular AV
products named AVG, Avast, Bitdefender. About 15% of the
samples are not detected or in other words seen as
legitimate apps by AVG and Avast; and about 12% are not
detected by Bitdefender as shown in Table I. We labelled
these samples as Undetected. The result shows a low
detection rate with only 1.3%. Out of 150 scareware samples,
HelDroid is only able to detect two samples as scareware.
The low performance of the current detection systems has
led us to perform an in-depth exploration of scareware. Our
research aims to tackle this problem by focusing on the
hybrid approach of malware detection, which employs both
the static and dynamic analysis methods in order to increase
the accuracy of detection. A hybrid approach, specifically
utilizing features derived from string analysis and network
flow patterns, can effectively detect behavior in scareware.

51

Vol 11, Issue 1 (2025)

TABLEI
EXAMPLE OF SCAREWARE SAMPLES DETECTED BY AV
AV AV Detection Total | Detection
Rate (%)
AVG#Android/G3P.GP.390306F 35
D2DEC#20160621#16.0.0.4604
AVG#ARdroid/G2P.B.DAE4F9C2 24
8F18#20160816#16.0.0.4647
AVG AVG#ANdroid/G2M.W.895675B 20 85
6B0C1#20160807#16.0.0.4627
Others 48
Undetected 23
Avast#Android:Penetho-AA 43
[PUP]#20160621#8.0.1489.320
Avast#Android:Provar-A 24
[Trjl#20160816#8.0.1489.320
Avast Avast#Android:FakePlayer- 22 85
D[Trjl#20160811#8.0.1489.320
Others 38
Undetected 23
BitDefender#Android.Hacktool. 44
Pentr.B#2016122347.2
BitDefender#Android.Trojan.Fak 39
Bit elnst. AX#20160807#7.2
Defender | BitDefender#Android.Trojan.AV 24 88
Pass.B#20160621#7.2
Others 25
Undetected 18

Analyzing an Android app can be performed in two ways:
static or dynamic. Static analysis refers to any techniques
that are performed without executing the apps, neither on
real devices, nor in emulators or sandboxes. Thus, static
analysis can be performed faster than dynamic analysis as
the latter requires an appropriate execution environment
(i.e. runtime while the apps are executed)in order to extract
the behavior.

Static Analysis. This approach can be performed by
disassembling its source code without execution where
several features are collected from the application itself
such as the code executables (string, bytecode, opcode, API)
and manifest file properties (permission, intent filter, device
and application components). This approach consists of two
types:

1. Signature-based: this method is commonly used by
anti-virus products where it extracts the semantic
patterns and defines a unique signature of malware.
Although this detection method is very efficient for
known malware, it cannot detect the unknown
malware types and the obfuscated and advanced
malware. Most of the malware remain undetected
because of the limited signature database.

BACKGROUND AND RELATED WORK

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

Dalvik Bytecode: this method helps in analyzing the
app’s behavior. e.g., Control and data flow analysis
detect the dangerous functionalities performed by
malicious apps. Android apps are developed in java
language, compiled in java bytecode and then
translated to Dalvik byte code. In Android, Dalvik is a
register-based VM that interprets the Dalvik
Executable (DEX) byte code format.

Dynamic Analysis. In contrast with the static analysis, the
dynamic analysis aims to find any malicious behavior of
Android app while it is running on any platforms including
emulator, sandbox, and smartphone. There are four
methods of dynamic analysis:

1. Anomaly-based: this method relies on machine
learning algorithms in detecting the malicious
behaviors of Android apps. In this case, features that
are extracted from known malware are used to train
the model for predicting an unknown malware.

Taint Analysis: this method typically used for data
flow analysis and leakage detection, where it
automatically labels the data, keeps track of the data,
and records the label of the data.

Emulation-based: this method executes the apps in
sandbox, where it typically uses Monkey tool to
analyze the malicious behavior of app.

On-device: this method runs apps on any devices such
as computers, smartphones, and tablets.

Most studies that employ static analysis have focused on the
manifest file properties (AndroidManifest.xml), which hold
the application’s metadata. For instance, the application
permissions contained in AndroidManifest.xml have been
explored by several studies, including DroidRanger [15] and
Drebin [14]. In addition, static features extracted from code
executables often require additional pre-processing and are
commonly used in studies in the form of n-grams, including
DroidMOSS [16] and DroidKin [17]. In contrast to our
approach, we chose to leverage string as our static feature.
This is due to the hyphothesis by Richard et al. [18], where
they revealed that the unreferenced strings typically carry
hidden information embedded in Android apps. This is
proven by the example of GoldDream Trojan app analyzed in
their work; GoldDream uploaded stolen information to a
remote server with the URL of lebar.gicp.net, this URL

4.

became visible only through analysis of unreferenced strings.

They evaluated their framework on more than 5,000 apps
from 14 different malware families and were able to classify
samples with over 99% accuracy. Like the desktop malware,
the network traffic is one of the dynamic features that is
useful for detecting Android malware. However, due to the
lack of a large-scale malware repository and a systematic
analysis of network traffic features, the existing research

52

Vol 11, Issue 1 (2025)

mostly focuses on static analysis. For that reason, we used
an automated dynamic analyzer for analyzing malware
through network traffic analysis. Instead of using an
emulator, we run our samples on smartphones to cope with
the advanced malware evasion technique. Table Il depicts
the limitation of static and dynamic analysis from the
previous works. The sandboxing term was first introduced
by Wahbe et al. [19] in 1993 but in a different context, .i.e.,
software-based fault isolation. Later, Goldberg et al. in 1996
[20] used the term sandboxing to describe the concept of
confining a helper application to a restricted virtual
environment for security purposes. Today, a sandbox is
often used as a security mechanism for separating running
programs, which is to execute suspicious or unverified
programs, applications, or codes that may contain malicious
code typically from third parties, users or websites, without
risking the host machine or OS. There are many sandboxes
that have been developed for Android applications;
however, the publicly available free sandboxes only offer
basic information. Furthermore, some of the authors
presented their proposed sandbox but unfortunately, they
did not release the sandbox for public use. This includes the
Mobile Apps Assessment and Analysis System or known as
MAS [21] and DroidInjector [24], a process injection-based
dynamic tracking system for runtime behaviors of Android
applications.

Research Gap Summary. The primary research gap
identified in earlier studies is the lack of a focused approach
to detecting scareware specifically, as most existing
methods target binary malware detection and fail to
account for advanced evasion techniques like
metamorphism and polymorphism. Recent advancements
in hybrid malware detection emphasize the integration of
static and dynamic analysis to enhance accuracy and
resilience against obfuscation techniques. However, these
methods largely remain limited to broader malware
categories without delving into scareware's unique
behavioral traits. The proposed study addresses this gap by
combining unreferenced string analysis (static) with
network flow patterns (dynamic) to effectively detect the
dual personality of scareware, similar to the Jekyll and Hyde
syndrome. This integration ensures robust detection of both
overt and covert malicious behaviors, advancing beyond the
capabilities of existing frameworks. By leveraging features
that expose scareware-specific characteristics, the study
provides a targeted solution previously overlooked in hybrid
detection research. Moreover, the adoption of anti-
emulation techniques ensures its applicability against
modern malware variants designed to evade conventional
detection environments.

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

Vol 11, Issue 1 (2025)

TABLEII
LIMITATION OF STATIC AND DYNAMIC ANALYSIS

more battery and memory

Type Method Limitation Related Work

Static Signature-based Cannot detect unknown malware types [26, 27, 28, 29, 30, 31, 32]
Dalvik bytecode More power and memory consumption [15, 16, 19, 33, 34]

Dynamic | Anomaly-based Unreliable if a benign app shows same behaviors and can consume | [22, 35, 37, 38]

Taint analysis

Not suitable for a real-time analysis as its slowdown system

[23, 39, 40, 41]

Emulation-based More resource consumptio

n

[25, 42, 43, 44, 45]

On-device

More power and memory consumption

[35, 36, 46, 47, 48]

I1l. METHOD AND IMPLEMENTATION

With the rapid growth of malware samples, there exist
many solutions that can be used by malware analysts for
correlating the different signs of the malicious behavior.
However, the output of thesesolutions is focusing more on
the malware binary detection (or family) and not directly
applicable for the malware type categorization. Therefore,
we extend the framework outlined in [49], originally
employed for detecting Android financial malware, to
identify scareware. This framework facilitates malware
detection, encompassing a three-tier detection approach:
identifying malicious Android applications, classifying
Android apps based on scareware categories, and

characterizing Android apps according to scareware families.

For the development of the study, a detailed illustration of
our proposed conceptual framework is outlined in Figure 1.
It depicts the major facets of this study, as follows:

1. Collector: responsible for collecting the input data of
Android scareware from various sources.
Filter: acts as a screening filter to check the similarity
of the collected data and to correlate the data with
the external sources and the proposed taxonomy.
Analytics engine: a hybrid of static and dynamic
modules, which involves a process of correlating data
from malware string and network flow.
Detector: consists of three levels of detection; Level
1: malware binary detection; Level 2: malware
category classification; Level 3: malware families
characterization, which is to label scareware families.
Dataset. The dataset comprises 1,350 Android apps,
including 1,200 benign apps sourced from the Google Play
Store based on popularity and 150 scareware samples
obtained from VirusTotal [8], security blog [13], and other
academic datasets [12, 17, 16] as listed in Table 1I. Initially,
over 3,000 APK files were collected from these diverse
sources to ensure coverage of various scareware types,
temporal variations, geographical distributions, and
behavioral patterns.

53

However, several limitations reduced the final dataset size:
1) Sample errors: many collected samples were of poor
quality, including issues like Dex errors, unsigned apps, or
corrupted files. Unsigned apps could not be installed on
emulators or real devices, significantly limiting their usability;
2) Inconsistent malware labeling: variations in malware
naming conventions across academic and industry sources
caused confusion and required time-intensive
reorganization. Malware labels were aligned by comparing
naming conventions from several antivirus vendors and
adopting the majority consensus for each family. Benign
apps were selected from the Google Play Store based on
popularity, while suspicious apps flagged by more than two
antivirus engines on VirusTotal were excluded from the
benign set. This labeling approach ensured a reliable
benchmark for analysis. The dataset’s diversity enhances its
generalizability, allowing the detection model to adapt to
both older and emerging scareware variants, perform
consistently across regions, and recognize a wide range of
malicious behaviors. This variety minimizes the risk of
overfitting and ensures robust performance against novel or
underrepresented threats in real-world scenarios.

TABLE Il

THE BREAKDOWN OF ANDROID SCAREWARE BY FAMILY

Year Malware Number of Number of
Family samples collected | samples analyzed

2011 | FakePlayer 150 0
2012 | Penetho 150 20
2013 | AV Pass 150 20
2013 | FakeAvV 150 22
2013 | FakeFlash 150 6
2013 | FakelobeOffer 9 9
2013 | Android Defender 150 17
2013 | FakeTaoBao 150 0
2013 | Tapsnake 150 9
2014 | Virus Shield 150 10
2015 | AV for Android 83 10
2015 | FakeApp 150 10
2015 | FakeApp. AL 150 11
2016 | Android Spy.277 9 6

Total 1751 150

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

Vol 11, Issue 1 (2025)

AV Report

A4

Metadata
Extractor

Similarity
Scanner

[w3:Famiy]

Feaiure
Hepresentation

COLLECTOR FILTER

[J

[ANALYTICS ENGINE] DETECTOR

Fig. 1 Overview of the proposed Android scareware detection system

System Configuration. In this section, we discuss the various
tools and techniques used for the implementation of the
proposed framework. We implemented our framework by
using UNIX Shell scripting, Python, and Java programming
language. The static analysis implementation of the String
Analyzer employs Apktool to decode APKs and Natural
Language Toolkit (NLTK) to extract string literal features. In
this analysis, we used various Python modules available in
the scikit-learn library. Scikit-learn is a Python-based, open
source library for handling various data mining and analysis
tasks [50]. It provides implementations of a wide range of
machine learning algorithms and functionality to generate
feature vectors from string n-grams extracted from every
APK under the analysis. On the other hand, we used the Shell
scripting and Java programming language in the dynamic
analysis implementation. The network analyzer app’s
installation used Shell scripting to run the samples
automatically. Machine learning tasks including
preprocessing, feature selection, training and testing phases
are carried out through Scikit-learn libraries and Weka data
mining tool.

Learning Parameters. We employed five common machine
learning classifiers including k-Nearest Neighbors (kNN),
Support Vector Machine (SVM), Logistic Regression (LR),
Naive Bayes (NB), and Random Forest (RF). These
algorithms should be calibrated with parameters that
ensure maximum performance, which in our case means the
maximum classification accuracy and the minimum number
of false positives. To avoid over-tuning, we only use 20% of
the dataset for parameter tuning. We perform different
rounds of experiments to decide on the optimal value for
each parameter. Below is the list of parameters that need to
be optimized for each classifier.

a) RF: number of trees (set to 100 trees) and minimum
number of instances per leaf (set to 1 leaf)

b) NB: type of estimator (use kernel density estimator)

¢) kNN: number of neighbors, k (set k to 2 neighbors)

54

d) SVM: kernel function (use Radial basis function)

Evaluation Metrics. In this section, we explain how the
system performance is evaluated. We also discuss various
measures used for evaluating the system such as accuracy,
F1 measure, Receiver Operating Characteristic (ROC)
curve, and false positive rate. The goal of the classification
model is to correctly classify an input sample to one of the
output classes from a set of discrete output categories.
Our Android malware detection framework trains a
classifier over training samples. The classifier then
predicts the category of APKs in the test data. The best
way to represent such output predictions of the
classification model is to use a confusion matrix. A
confusion matrix is an N x N contingency table, where N
is the number of output labels. It shows the number of
samples correctly and incorrectly classified by the model
as compared to the actual target output values. For
example, consider a binary classification model with
output labels as either Positive or Negative.

IV. EXPERIMENT AND RESULT

In this section, we present the results obtained in
detecting scareware statically and dynamically, as described
in Section 4. In our experimental study, we focused on
analysis of binary classification, category classification, and
family classification. In order to evaluate the detection
performance of the proposed systems, we split the datainto
60% of train-set and 40% of testset. We reported three
metrics in each scenario:

a) Accuracy: refers to the overall dassification accuracy
measure, which is given by the percentage of
correctly classified instances.

F-measure: considers class imbalance, which
represents a weighted average of recall and precision.
FPR (false positive rate): defines the ratio between
the number of negative events incorrectly

b)

)

International Journal on Perceptive and Cognitive Computing (1JPCC) Vol 11, Issue 1 (2025)
https://doi.org/10.31436/ijpcc.v11i1.531

categorized as positive (false positives) and the total
number of actual negative events.

TABLE IV
SCAREWARE DETECTION RESULTS WITH 3-GRAM WORD OF STRING
Binary Detection Category Classification Family Characterization
Algorithm (2-classes) (3-classes) (13-classes)
F-Measure Accuracy [FPR | |F-Measure|Accuracy [FPR | |F-Measure| Accuracy |[FPR
NB 55.41 8993 [0.516 68.733 95.00 [0.291 48.31 9431 [D.444
KNN 87.31 98.94 [0.113 78.63 95.99 [0.194 G0.28 9532 |0.262
SVM 90.31 96.46 [0.185 82.98 96.57 [0.165 69,13 06.55 |0.608
LR 91.83 97.14 [0.124 84.27 97.01 |0.148 7117 97.17 |0.505
RF 91.72 9738 [0.014 86.91 97.27 |0.108] T2.87 9712 [0.162
TABLEV
SCAREWARE DETECTION RESULT WITH NETWORK FLOW
Binary Detection Category Classification |[Family Characterization
Algorithm (2-classes) (3-classes) (13-classes)
F-Measure[Accuracy [FPR| [F-Measure| Accuracy | FPR | |[F-Measure| Accuracy | FPR
NB 98.40 48,33 |0.031 94.20 93.67 |0.033 92.40 92,33 |0.031
KNN 98.80 9883 [0.075 95.90 95.83 |0.077 92.50 9283 |0.076]
SVM 85.30 90.00 [0.900 85.30 90.00 |0.900 85.30 90.00 10.900
LR 99.00 99.00 [0.075 95.00 94.67 0,063 90,80 9017 10.046
RF T 90.30 9930 |0.045]] 96.50 97.17 |0.047|| 92.60 9283 [0.046
100

98

96
100 - 94
95 — 92
% a0
NE kNN SVM LR RF
a) Static analysis of all scenarios b) Dynamic analysis of all scenarios

=~ Binary accuracy = Category accuracy ==+ Family accuracy

Fig. 2 Accuracy comparison of static and dynamic analysis for all scenario

55

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

120

100 + 95.00 95,99 96.57 97.01 arzr
r==1 R ol — c—|
. | |
a0 3
|
60] OAccuracy
PR
40 l
¥9.1
19,4 hes
4
20 l 14.8 ks
0 t— ki i] [ity
kNN SVM LR NB RF

Vol 11, Issue 1 (2025)

il i3

#,00 .3

B

ATy
— EPR

w

L

ket S LR

Fig. 3 3-gram scareware detection (left) and netflow scareware detection (right)

For static analysis, we tested up to 3-gram of word token
with all classifers. On average, 3-gram yields the highest
precision. Thus, in this paper, we reported the result of the
3-gram for all three scenarios (Table 1IV). KNN surpasses RF
in the binary detection, but RF performs the best in all
scenarios: 97.38% accuracy with binary detection, 97.27%
accuracy with category detection, and 97.12% accuracy with
family detection with an average of 0.095 FPR.

Similar to the static analysis, RF also performs the best in
all scenarios for dynamic analysis: 99.30% accuracy with
binary detection, 97.17% accuracy with category detection,
and 92.83% accuracy with family detection with an average
of 0.046 FPR (Table V). Since both static and dynamic results
(Figure 2) yield a high accuracy and low FPR, there is no need
for us to have the integrated feature vectors between the 3-
gram unreferenced strings and the 80 nominal network ow
features for the purpose of increasing the accuracy. Our
results demonstrates that the raw features of each analysis
is adequate in detecting scareware, classifying the category,
and characterizing its family accurately with very low
percentage of FPR. Figure 3 presents the result of scareware
for both static and dynamic where RF also outperformed
other classifiers with more than 97% and 99.30% accuracy
respectively.

RF outperformed other classifiers due to its ability to
handle high-dimensional feature spaces and its robustness
against overfitting, especially when analyzing diverse
datasets. By leveraging ensemble learning, RF builds
multiple decision trees and aggregates their predictions,
which enhances accuracy and reduces bias. Compared to
simpler classifiers like NB, RF's capacity to capture non-linear
relationships between features contributed to its superior

! https://andrototal org/
? https://www joesandbox_com/

56

performance in detecting the nuanced behaviors of
scareware.

The strange case of Android.Spy.277. In order to evaluate
our framework, we conducted a case study of one of the
sophisticated malware family in our dataset (AndroidSpy).
Similar to Jekyll's behavior, AndroidSpy first appeared as
legitimate apps that offered services like games, wallpapers,
photo editing apps. But, once installed, the app transforms
into Hyde and becomes malicious through a backdoor.
These apps had been downloaded by almost 3 million users
[5]- The attacker can remotely download a malicious APK
called polacin.io to the victim's device. Once infected, the
Android device sends a wide array of information about the
phone to command and control servers (C&C), including
phone IMEI number, email address, sms messages, and
location. What's more, AndroidSpy performs and additional
malicious act through unwanted advertisements via popups
and notification's bar. Victims are induced into installing
fraudulent apps via fake warning of battery issues that can
be solved by downloading fake utilities. By clicking on these
fake alerts, for example, brings victims to the landing pages
for Android optimization applications such as Turbo Cleaner,
SuperB Cleaner (Boost Clean). This behavior reveals that
AndroidSpy have several layered of attacks to sustain their
malicious behavior. To further analyzed the stealthiness of
this AndroidSpy, we analyzed all 6 samples that we have by
using three malware scanners: AndroTotal’, Joe Sandbox?,
and VirusTotal. The results depict that most of the AV are
not able to detect this type of scareware. Out of 100 AV
deployed on these scanners, only 25 of them are able to
detect AndroidSpy as maliciouss apps (Table VI). With our
approach, we managed to detect AndroidSpy accurately
(detected 5 apps out of 6) with 99.42% of ROC area value
(the area under the ROC curve is a measure of how well a

? https//'www._virustotal. com

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

parameter can distinguish between two groups malicious
and benign. The true positive rate surpasses 80% when the
false positive rate is greater than 60%. Therefore the closer
the ROC curve is to the upper left corner (true positive rate),
the higher the overall accuracy of the test.

TABLEVI
COMPARISON RESULTS OF ANDROIDSPY ANALYSIS
SCANNER AV DETECTED TOTALAV
VIRUSTOTAL 20 61
ANDROTOTAL 3 8
JOE SANDBOX 2 31

V. LIMITATION AND DISCUSSION

The study of Android scareware is stimulating. As this is
the first study of its type to systematically detecting
scareware, researchers not only have a new opportunity for
research but also several challenges:

a) Dataset biases: the study concluded that integrating
static (unreferenced strings) and dynamic (network
flow) feature vectors was unnecessary, as both
feature sets independently achieved high accuracy
and low false positive rates. This simplification
reduces computational overhead, making the
system more suitable for real-world deployment on
resource-constrained devices. However, potential
dataset biases such as the reliance on scareware
samples predominantly flagged by certain antivirus
engines could influence metrics, potentially skewing
detection results toward these engines' strengths.
Scareware labeling: the naming convention for
malware labeling is inconsistent across both
academic and industry fields, leading to confusion
and inefficiencies during reorganization. The
inconsistent labeling practices among different
antivirus vendors and researchers further
complicate the process. For instance, services like
VirusTotal aggregate results from multiple antivirus
engines, and discrepancies in detection can create
ambiguity. Some engines may flag an APK as
scareware, while others classify it as benign,
requiring manual interpretation to resolve conflicts.
To address this, we compare malware labeling from
several antivirus vendors and follow the majority
consensus based on the most frequent label for a
specific malware family. However, this technique is
entirely manual, introducing the risk of human error
due to subjective judgment, inconsistencies in
labeling criteria, or varying levels of expertise. These
errors can impact the accuracy of malware labeling,

b)

57

Vol 11, Issue 1 (2025)

potentially affecting the dataset's reliability and the
model's performance.

Scalability: the proposed system demonstrates
promising scalability for large-scale applications due
to its reliance on lightweight static and dynamic
analysis, avoiding the complexity of integrated
feature processing. Its modular design allows
seamless scaling across distributed detection
infrastructures, where static analysis can filter
benign apps rapidly, while dynamic analysis is
reserved for suspected cases. However, the real-
world deployment would require robust automation
for sample collection and labeling to handle the vast
influx of applications. Additionally, optimizing
computational resources and incorporating cloud-
based processing could enhance throughput and
maintain low latency, ensuring effective operationin
environments like app stores and enterprise security
systems.

VI. CONCLUSION AND FUTURE WORK

The syndrome of Jekyll and Hyde is increasingly adopted
by Android malware especially scareware. In this research,
we presented a novel combination of both static and
dynamic analysis based specifically on features derived from
the unreferenced string and network flow. The key ideaiis to
be able to detect the Jekyll behavior at early stage through
static analysis before transforming into Hyde behavior,
which can later be detected through dynamic analysis. We
demonstrated that this combination could identify three
scenarios: detecting malicious Android apps, classifying
Android apps with respect to scareware category, and
characterizing Android apps according to scareware family.
The experimental results show that the proposed method
achieves high accuracy of over go% for all three scenarios
with a very low false positive rate of 0.04 on average.

The proposed framework effectively detects scareware
using a hybrid approach that combines static and dynamic
analysis, but there are multiple areas for further
enhancement and exploration. First, while the dataset used
in this study is diverse, consisting of 1,350 apps, itis relatively
small compared to the vast number of Android applications
available globally. Future work should prioritize expanding
the dataset by incorporating more samples, including new
and evolving malware families like ransomware, adware,
spyware, and phishing apps. This would not only improve
the robustness of the detection model but also allow it to
adapt to emerging threats. Moreover, creating a publicly
available and standardized scareware dataset could
contribute significantly to research in this domain and
enable consistent benchmarking across studies.

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

Another critical area is automating the labeling process to
address inconsistencies in malware family naming
conventions across different antivirus engines and research
datasets. Advanced machine learning algorithms,
consensus-driven approaches, or natural language
processing techniques could be employed to harmonize
malware labels more efficiently and reduce manual
intervention. Additionally, future research could explore
dynamic labeling systems that update in real-time as
malware evolves, ensuring that datasets remain relevant
and up-to-date.

In terms of scalability, the framework’s computational
efficiency must be optimized for real-world deployment.
While the current approach effectively utilizes both static
and dynamic features, further refinement could focus on
reducing processing time and resource requirements.
Implementing lightweight versions of the framework
tailored for use on mobile devices or integrating cloud-
based or distributed systems would make the solution more
accessible for large-scale applications. For example, app
stores or corporate security networks could use such a
system to analyze vast numbers of apps without significant
delays. The potential integration of federated learning could
also be explored, allowing the framework to continuously
improve and update its detection models using
decentralized data while maintaining user privacy and
reducing bandwidth constraints.

Additionally, future studies should investigate other
advanced evasion techniques employed by scareware and
malware in general, such as anti-debugging, anti-sandboxing,
and advanced anti-emulation behaviors. Understanding and
addressing these techniques would enhance the
framework's ability to detect increasingly sophisticated
threats. It would also be valuable to explore the integration
of additional data sources, such as user reviews, app
metadata, and permissions, to complement the current
static and dynamic features and improve the overall
detection accuracy.

Finally, extending the framework to address other types
of malware beyond scareware could demonstrate its
broader applicability. Experiments on categories like
financial malware, ransomware, and spyware could provide
insights into the model's generalizability and practical
effectiveness across diverse threat landscapes. Real-world
testing in various environments, such as corporate IT
systems, app marketplaces, and government agencies,
would further validate its utility and identify potential areas
for improvement. Addressing these challenges will ensure
the framework remains relevant and adaptable in the rapidly
evolving field of cybersecurity, paving the way for a
comprehensive solution to combat mobile threats on a
global scale.

58

Vol 11, Issue 1 (2025)

ACKNOWLEDGMENT

The authors hereby acknowledge the review support
offered by the IJPCC reviewers who took their time to study
the manuscript and find it acceptable for publishing,.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

REFERENCES

[1] J. Giles, "Scareware: the inside story," *New Scientist*, vol. 205, no.
2753, pp- 38-41, 2010.

[2] R.L.Stevenson,"Strange case of drjekyll and mr hyde," in *Medicine
and Literature, Volume Two®*, CRC Press, 2018, pp. 105-118.

[3] Kaspersky, "Polymorphic Malware on Android: The Rise of
Xenomorph," 2024. [Online]. Available: https:/fwww.kaspersky.com.

[4] "Ad fraud, scareware slinger android.spy. 277.origin found in more
than 100 apps," 2016. [Online]. Available:
https:/jwww.theregister.co.uk/2016/04/26.

[s] "Scareware app downloaded over a million times from google
play," 2015. [Online]. Available:
http://researchcenter.paloaltonetworks.com/2015/01/scareware-
appdownloaded-million-times-google-play/.

[6] D.J.Tan, T. W. Chua, and V. L. Thing, "Securing android: a survey,
taxonomy, and challenges," *ACM Computing Surveys (CSUR)*, vol.
47,N0. 4, p. 58, 2015.

[71 A. I Ali-Gombe, B. Saltaformaggio, D. Xu, and G. G. Richard III,
"Toward a more dependable hybrid analysis of android malware
using aspect-oriented programming,”" *Computers & Security*, vol.
73, Pp- 235—248, 2018.

[8] Virus Total. [Online]. Available: https:/fwww.virustotal.com/en/.

[9] C Lyvas, C. Lambrinoudakis, and D. Geneiatakis, "Dypermin: Dynamic

permission mining framework for android platform," *Computers &

Security®, vol. 77, pp. 472-487, 2018.

Y. Zhuang, "The performance cost of software obfuscation for

android applications,”" *Computers & Security®, vol. 73, pp. 57-72,

2018.

H. Meng, V. L. Thing, Y. Cheng, Z. Dai, and L. Zhang, "A survey of

android exploits in the wild," *Computers & Security?*, vol. 76, pp. 71—

91, 2018.

A. H. Lashkari, A. F. Kadir, L. Taheri, and A. A. Ghorbani, "Toward

developing a systematic approach to generate benchmark android

malware datasets and classification,” in *Proceedings of the s2nd

IEEE International Carnahan Conference on Security Technology

(ICCST)*, 2018.

Virus Total, "Contagio mobile malware mini dump," 2016. [Online].

Available: http://contagiominidump.blogspot.ca/.

D. Arp et al., "Drebin: Effective and explainable detection of android

malware in your pocket," in *NDSS#, vol. 14, pp. 23-26, 2014.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, "Hey, you, get off of my

market: detecting malicious apps in official and alternative android

markets," in *NDSS#, vol. 25, pp. 50-52, 2012.

W. Zhou et al., "Detecting repackaged smartphone applications in

third-party android marketplaces,”" in *Proceedings of the Second

ACM Conference on Data and Application Security and Privacy*, pp.

317-326, 2012.

H. Gonzalez, M. Stakhanova, and A. A. Ghorbani, "Droidkin:

Lightweight detection of android apps similarity," in *International

Conference on Security and Privacy in Communication Systems?, pp.

436-453, Springer, 2014.

R. Killam and N. Stakhanova, "Android malware classification

through analysis of string literals," in *Analytics for Cybersecurity and

Online Safety*, 2016.

[10]

[]

[2]

[13]
[14]
[15]

[16]

[17]

[18]

International Journal on Perceptive and Cognitive Computing (1JPCC)

https://doi.org/10.31436/ijpcc.v11i1.531

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, "Efficient
software-based fault isolation," in *ACM SIGOPS Operating Systems
Review®, vol. 27, pp. 203216, 1994.

I. Goldberg et al., "A secure environment for untrusted helper
applications: Confining the wily hacker," in #*Proceedings of the 6th
Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography*, vol. 6, p. 11, 1996.

C.W. Tien, T.Y. Huang, T. C. Huang, W. H. Chung, and S. Y. Kuo, "MAS:
Mobile-apps assessment and analysis system," in #2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W)#*, pp. 145-148, 2017.

G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra, "MADAM: A multi-
level anomaly detector for Android malware,” in *MMM-ACNS 2012%,
vol. 12, pp. 240-253, Springer, 2012.

W. Enck *et al.*, "TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones," *ACM
Transactions on Computer Systems#, vol. 32, no. 2, p. 5, 2014.

W. Fan, Y. Sang, D. Zhang, R. Sun, and Y. Liu, "DroidInjector: A
process injection-based dynamic tracking system for runtime
behaviors of Android applications," *Computers & Security®, vol. 70,
Pp. 224-237, 2017.

"Android malware toolkit for malware analysis." [Online]. Available:
http://dunkelheit.com.brfamat/analysis/index_en.php

P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,
"AndroSimilar: Robust statistical feature signature for Android
malware detection," in *Proceedings of the 6th International
Conference on Security of Information and Networks*, pp. 152-159,
2013.

Y. Feng, S. Anand, I. Dillig, and A. Aiken, "Apposcopy: Semantics-
based detection of Android malware through static analysis," in
*Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering®, pp. 576-587, 2014.

M. Zheng, M. Sun, and J. C. S. Lui, "Droid analytics: A signature based
analytic system to collect, extract, analyze and associate Android
malware," in *2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications®, pp. 163-171,
2013.

R. Sato, D. Chiba, and S. Goto, "Detecting Android malware by
analyzing manifest files," *Proceedings of the Asia-Pacific Advanced
Network¥, vol. 36, pp. 17-23, 2013.

C. Y. Huang, Y. T. Tsai, and C. H. Hsu, "Performance evaluation on
permission-based detection for Android malware," in *Advances in
Intelligent Systems and Applications—Volume 2%, Springer, 2013, pp.
111—120.

B. Sanz *et al.*, "PUMA: Permission usage to detect malware in
Android," in *International Joint Conference CISIS"12-ICEUTE"12-
SOCO'"12 Special Sessions?*, Springer, 2013, pp. 289—-298.

W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, "Towards formal
analysis of the permission-based security model for Android," in
#2009 Fifth Intemational Conference on Wireless and Mobile
Communications®, pp. 87-92, 2009.

J. Kim, Y. Yoon, K. Yi, and J. Shin, "SCANDAL: Static analyzer for
detecting privacy leaks in Android applications,” in *Proceedings of
the Mobile Security Technologies (MoST)#, 2012.

E. R. Wognsen, H. S. Karlsen, M. C. Olesen, and R. R. Hansen,
"Formalisation and analysis of Dalvik bytecode," *Science of
Computer Programming¥, vol. g2, pp. 25-55, 2014.

59

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[s0]

Vol 11, Issue 1 (2025)

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, "Crowdroid:
Behavior-based malware detection system for Android," in
*Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices*, pp. 1526, 2011.

P. Irolla and E. Filiol, "Glassbox: Dynamic analysis platform for
malware Android applications on real devices," *arXiv preprint
arXiv:1609.04718%, 2016.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, "Andromaly:
A behavioral malware detection framework for Android devices,"
*Journal of Intelligent Information Systems¥#, vol. 38, no. 1, pp. 161—
190, 2012.

M. Zhao, F. Ge, T. Zhang, and Z. Yuan, "AntiMalDroid: An efficient
SVM-based malware detection framework for Android," in
*International Conference on Information Computing and
Applications®, Springer, 2011, pp. 158-166.

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, "Android taint
flow analysis for app sets," in *Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program
Analysis*, pp. 1-6, 2014.

G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar, "On the
effectiveness of dynamic taint analysis for protecting against private
information leaks on Android-based devices," in *SECRYPT 2013%,
2013.

N. Andronio, S. Zanero, and F. Maggi, "Heldroid: Dissecting and
detecting mobile ransomware," in *International Workshop on
Recent Advances in Intrusion Detection®, Springer, 2015, pp. 382—
404.

L. K. Yan and H. Yin, "DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware analysis," in
*Proceedings of the 215t USENIX Security Symposium?, pp. 569-584,
2012.

T. Bldsing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak,
"An Android application sandbox system for suspicious software
detection,” in *2010 sth International Conference on Malicious and
Unwanted Software®, pp. 55-62, 2010.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, "MADAM:
Effective and efficient behavior-based Android malware detection
and prevention," *IEEE Transactions on Dependable and Secure
Computing#, vol. 15, no. 3, pp. 424-436, 2018.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, "CopperDroid:
Automatic reconstruction of Android malware behaviors," in *NDS5%,
2015.

S. Mutti *et al.®, "BareDroid: Large-scale analysis of Android apps on
real devices," in *Proceedings of the 31st Annual Computer Security
Applications Conference®, pp. 71-80, 2015.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, "Emulator vs real phone:
Android malware detection using machine learning," in *Proceedings
of the 3rd ACM on International Workshop on Security and Privacy
Analytics*, pp. 65-72, 2017.

Y. Zhou and X. Jiang, "Dissecting Android malware: Characterization
and evolution,” in *2012 |IEEE Symposium on Security and Privacy®,
Pp. 95—109, 2012.

A. F. Abdul Kadir, *A Detection Framework for Android Financial
Malware*. M.S. thesis, University of New Brunswick, 2018.

F. Pedregosa *et al.*, "Scikit-learn: Machine learning in Python,"
*Journal of Machine Learning Research?, vol. 12, pp. 2825-2830, 2011

