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ABSTRACT Satellite reliability is critical to ensuring uninterrupted operations in aerospace systems, where
anomalies can lead to mission failures and significant economic losses. Existing anomaly classification
methods often lack scalability, interpretability, and adaptability to diverse datasets. This study introduces
the Trade-Space Exploration Machine Learning (TSE-ML) framework, a comprehensive pipeline for
satellite anomaly classification that optimizes preprocessing, transformation, normalization, and machine
learning stages. Leveraging a Seradata dataset spanning 66 years and 4,455 satellite records, the framework
systematically evaluates four data cleaning methods, four data transformation techniques, five normalization
strategies, and seven machine learning algorithms across 480 configurations. The optimal configuration,
comprising Iterative Imputation, FastText, Robust Scaling, and Decision Tree, achieved the highest testing
accuracy of 95.74% with competitive computational efficiency. The Decision Tree model delivered superior
accuracy and provided interpretability, revealing critical factors influencing satellite anomalies, such as
Age Since Launch, Design Life, and Orbit Category. Stratified 5-fold cross-validation ensured robustness
and generalizability of the results. The TSE-ML framework’s transparency and high performance enable
actionable insights for improving satellite design, operational planning, and anomaly mitigation. Future
research will focus on real-time anomaly detection, integrating satellite telemetry data, and extending the
framework to other space applications. This study establishes a robust, interpretable foundation for advancing
anomaly classification in aerospace engineering, addressing the dual challenges of reliability and operational
efficiency.

INDEX TERMS Satellite anomaly detection, satellite reliability classification, trade-space exploration, data
preprocessing techniques, machine learning models, seradata dataset, decision support systems.

I. INTRODUCTION
Satellite systems can be categorized based on their applica-
tion areas, which include communications, earth observation
and remote sensing, navigation, and research. They can also
be classified according to their orbital paths: Low Earth Orbit
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(LEO), Medium Earth Orbit (MEO), Geosynchronous Earth
Orbit (GEO), and High Elliptical Orbit (HEO), as illustrated
in Fig. 1. Satellites vary widely in mass, from less than a
kilogram to several tons, accommodating a diverse range
of missions. Their operational lifespans depend on their
mission objectives, with smaller satellites typically lasting a
few years, while geostationary communication satellites may
function for up to 15 years [1].
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Suppose a critical component fails or an anomaly occurs
during a satellite’s operational lifetime. In that case, it may
become partially or fully dysfunctional and remain in orbit
unmanaged, contributing to the overcrowding of Earth’s
orbits [2]. This results in ‘‘space junk’’ accumulating in
outer space. Currently, thousands of man-made objects are
in orbit, with approximately 95% classified as ‘‘space junk,’’
represented by dots in Fig. 2. Each dot in the figure
corresponds to an active satellite, an inactive satellite, or a
piece of debris in LEO [3].

FIGURE 1. Various types of satellite orbits.

FIGURE 2. Simulated debris in LEO orbit.

As noted by Mital et al. [4], there are around 17,494
objects in Earth’s orbital environment, including inactive
satellites, debris, and rocket bodies. This accumulation has
raised serious concerns, as satellites require stable conditions
for effective anomaly management and resource optimization
within satellite systems. Consequently, identifying and man-
aging satellite anomalies, particularly regarding reliability,
is critical to reducing satellite failures and promoting
space sustainability. This issue highlights the need for
responsible space exploration and the protection of space
infrastructure.

In this research, we analyze Seradata, a leading database
for satellite launches, reliability events, and space market
analysis, to address the longstanding challenge of satellite
anomalies. Over six decades, in-orbit anomalies have posed
significant issues, as repairs are often impossible once
satellites are deployed. Consequently, failed satellites become
debris, floating in orbit and posing risks to active satellites
and space assets [5]. Improving mission success rates
requires a robust approach to satellite anomaly reliability
identification, a critical component on which this study
focuses. We aim to develop an optimized satellite anomaly
reliability classification framework by leveraging a Trade-
Space Exploration (TSE) framework integrated with machine
learning (ML) techniques.

Previous studies have demonstrated the versatility of
the Trade-Space Exploration (TSE) framework across var-
ious applications, including the formulation of system
requirements and lifecycle cost analysis for satellite invest-
ment [6], Whole System Trades Analysis Tool (WSTAT)
fot identifying the optimal system confguration concerning
performance, cost, and risk using multiobjective optimization
as implemented by the US Army Ground Vehicle Systems
Center (GVSC) and TradeStudio developed by the US
Army Engineer Research & Development Center (ERDC),
an Engineering Resilient Systems (ERS) tool suite [7]. While
these works highlight the effectiveness of TSE in space
system design and decision-making, none have explored
its integration with machine learning for satellite anomaly
classification and reliability assessment, which forms the core
novelty of this study.

Traditional anomaly detection in satellites often relies on
manual assessments and rule-based systems, which are time-
intensive and susceptible to human error. With the rise of
big data and advancements in ML, there is a significant
opportunity to enhance the accuracy and efficiency of
anomaly identification in satellite systems. While recent
studies have demonstrated ML’s potential in areas like
satellite bus type identification, stability prediction, and
anomaly detection [4], there remains a gap in systematically
integrating data preprocessing withML and TSE tomaximize
model performance and decision-making accuracy.

ML, a branch of artificial intelligence (AI), enables models
to learn from data and derive valuable insights, making it
increasingly popular in the satellite industry over the past
two decades [8]. However, developing effective ML models
for anomaly detection requires rigorous data preprocessing,
as raw satellite data is often incomplete, inconsistent, and
noisy. Data preprocessing addresses these issues by cleaning,
formatting, and structuring the data, ensuring it is prepared
for model training and reducing computational overhead.
Proper preprocessing is essential for achieving accurate and
reliable ML models, particularly in complex domains like
satellite anomaly detection, where data quality can directly
impact model performance.

Established in 2013, Seradata has documented satel-
lite reliability events across orbital categories, including
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LEO, MEO, GEO, and HEO. The database covers the
entire satellite lifecycle—from order and construction to
launch, final positioning, and observed failures, categorized
by severity, subsystem, or equipment involved [9], [10].
Our analysis leverages a dataset of 4,455 records, span-
ning 1957 to 2023, containing diverse satellite anomaly
data.

This study aims to identify and evaluate the optimal
combination of data preprocessing techniques and ML mod-
els for classifying satellite anomaly reliability. To achieve
this, we apply a Trade-Space Exploration framework to
experiment with various preprocessing methods andMachine
Learning algorithms, seeking configurations that maximize
accuracy and efficiency. The key contributions of this paper
include:

1. Novel TSE-ML Framework: Developing a systematic
TSE-ML framework that integrates data preprocessing
and model selection to optimize satellite anomaly clas-
sification. This approach addresses gaps in traditional,
rule-based anomaly identification methods by offering
a data-driven, adaptive solution.

2. Comprehensive Evaluation of Preprocessing Tech-
niques: Detailed analysis of multiple data preprocess-
ing methods—including imputation, transformation,
and normalization—demonstrating how specific pre-
processing techniques impact model accuracy and
processing time in satellite anomaly detection.

3. Optimization of Accuracy and Efficiency: Identifying
optimal configurations that achieve high accuracy
while minimizing processing time is crucial for real-
time or near-real-time anomaly detection in satellite
operations.

4. Practical Framework for Reliability Assessment: Pro-
vision of a scalable, data-driven framework for satel-
lite operators and stakeholders, enabling proactive
anomaly management and improving the reliability of
satellite missions across diverse orbital and mission
parameters.

5. Empirical Validation with Large-Scale Data: The
proposed framework was validated on a comprehensive
dataset from Seradata encompassing satellite anoma-
lies over several decades, establishing its effectiveness
and potential for broader application in the space
industry.

These contributions underscore the TSE-ML framework’s
effectiveness in advancing satellite anomaly classification,
providing a practical tool for enhancing satellite reliability
and safety. The paper is structured as follows: Section II
reviews existing data preprocessing and ML methods, space
missions, and the TSE framework. Section III outlines the
methodology, including data collection and ML models.
Section IV covers the experimental setup and implementation
details. Section V presents results and discussions, evaluating
performance across TSE design scenarios. Section VI
concludes with key findings, contributions, and suggestions
for future work.

II. ADVANCEMENTS IN SATELLITE ANOMALY
DETECTION, RELIABILITY, AND TRADE-SPACE
EXPLORATION
Satellite anomaly detection is critical in ensuring opera-
tional reliability and longevity of space assets. Traditional
approaches, often reliant on manual assessments and rule-
based systems, have limitations in scalability and accuracy,
particularly with the increasing complexity of satellite
systems and data volumes. Recent advancements in machine
learning and data-driven techniques offer new opportunities
to automate and enhance anomaly detection. Yet, challenges
remain in optimizing these methods for real-time, high-
accuracy applications in satellite reliability.

A. OVERVIEW OF SATELLITE ANOMALIES AND
RELIABILITY CHALLENGES
In the evolving satellite industry, operational failures that
are not promptly and accurately managed can lead to severe
malfunctions and significant financial losses [11]. Over the
past six decades, records indicate that up to 200 satellites have
experienced failures globally, highlighting the critical need
for robust reliability strategies [12].

Satellite anomalies refer to unexpected deviations from
normal satellite operations that can severely impact per-
formance, efficiency, reliability, and lifespan [10]. These
anomalies can result from various factors, including hard-
ware and software malfunctions, operational errors, and
environmental conditions like space debris, technical faults,
or intentional interference and cyberattacks [10]. Understand-
ing and managing these anomalies is essential for the success
of satellite missions.

Notable incidents underscore the importance of anomaly
management. In 2009, an Iridium communication satellite
collided with a defunct Russian satellite, generating over
2,500 pieces of debris and contributing to the more than
18,000 artificial objects now monitored in Earth’s orbit by
the United States Space Surveillance Network [3]. In 2010,
Intelsat’s Galaxy-15 satellite, labeled as a ‘‘zombiesat,’’ lost
communication with ground control but continued to transmit
signals, drifting in geosynchronous orbit and posing risks
to nearby satellites for several months [5]. More recently,
in 2021, an uncontrolled re-entry of China’s Long March 5B
rocket raised safety concerns among satellite operators [13],
while in 2023, Russia’s Luna-25 spacecraft crash landing
on the Moon highlighted the potential risks of mission
anomalies [14].

The growing complexity and volume of satellite data
demand advanced, data-driven anomaly detection to ensure
mission success. Traditional manual monitoring struggles
to keep pace, increasing risks of collisions, service dis-
ruptions, and asset loss. Machine learning, combined with
effective data preprocessing, refines raw data and detects
subtle anomaly patterns with high accuracy. By integrating
these technologies, satellite operations can shift toward
real-time monitoring, proactive anomaly management, and
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improved decision-making. This scalable approach enhances
satellite reliability, extends operational lifespans, and mit-
igates mission failures in increasingly congested orbital
environments.

B. ADVANCED IN AI AND ML FOR SATELLITE OPERATIONS
As the aerospace industry evolves, spacecraft systems
become increasingly complex, creating a growing demand
for sophisticated anomaly detection solutions that effectively
leverage satellite log data from comprehensive sources like
Seradata. This log data, which contains detailed records of
satellite anomalies, operational events, and failure instances,
provides valuable insights into satellite behavior. By analyz-
ing this data with AI-driven methods, satellite operators can
automatically monitor and assess the operational status of
satellites in orbit, allowing for rapid detection and mitiga-
tion of potential issues. These AI-enhanced methods offer
significant practical value by providing real-time operational
insights that support proactive anomaly management, thereby
improving satellite reliability andmission success [12]. Addi-
tionally, there is a growing demand to minimize the overall
cost of satellite operations, and automating maintenance and
satellite management with AI is a promising approach to
achieving substantial cost savings [8].
ML, a branch of artificial intelligence closely related to

computational statistics, focuses primarily on making pre-
dictions and identifying patterns within large datasets [15].
Current ML research spans various fields, including natural
language processing, computer vision, pattern recognition,
cognitive computing, and knowledge representation, with
predictive modeling being a core application in industrial
settings [15]. ML techniques are categorized into sev-
eral types: supervised, unsupervised, semi-supervised, and
reinforcement learning. In supervised learning, models are
trained on labeled data to predict new inputs accurately.
Unsupervised learning, in contrast, is applied to unlabeled
data to uncover hidden patterns or structures within the
dataset. Semi-supervised learning combines labeled and
unlabeled data to enhance learning accuracy, especially
when labeled data is scarce. Reinforcement learning involves
an agent interacting with its environment and learning to
maximize rewards through feedback from its actions, making
it ideal for dynamic, decision-driven scenarios.

Together, AI and ML advancements have significantly
enhanced satellite anomaly classification capabilities. AI-
driven techniques enable the efficient analysis of vast,
complex datasets, while specialized ML models—ranging
from supervised to reinforcement learning—allow for pre-
cise and flexible anomaly detection in diverse operational
contexts. These advancements provide satellite operators
with powerful tools for real-time monitoring, predictive
maintenance, and proactive anomaly management, helping to
prevent costly satellite malfunctions and extend operational
lifespans. By leveraging the strengths of AI and ML, the
aerospace industry is increasingly equipped to handle the

growing demands of complex satellite systems, ensuring
higher levels of reliability and mission success.

C. TRADE-SPACE EXPLORATION IN ENGINEERING DESIGN
Trade-Space Exploration (TSE) is a systematic approach
used to evaluate a range of possible solution alternatives,
encompassing a set of program parameters, system attributes,
and performance characteristics. TSE is particularly valuable
in complex engineering systems, where it balances trade-
offs between cost, schedule, risk, and performance to meet
specific standards and requirements [6]. This exploration
space includes a wide spectrum of design choices, from
overarching strategies to fine-tuned adjustments, allowing
researchers to compare design scenarios and identify optimal
solutions that satisfy often conflicting objectives.

As a core technique in engineering design, TSE provides
a structured framework for navigating intricate design
decisions where trade-offs are inevitable [7]. By examining
multiple dimensions of viable solutions, TSE methodologies
enable a thorough assessment of each option’s strengths and
limitations, facilitating an informed selection of the most
effective configuration for a given system. TSE thus serves
as a powerful tool for researchers to systematically evaluate
and select design options, ensuring the chosen solution aligns
with project goals and constraints [6].

TSE aims to optimize a solution by balancing multiple
parameters or objectives, such as classification accuracy,
processing time, and computational cost in satellite anomaly
detection. Mathematically, TSE can be formulated as amulti-
objective optimization problem where we seek an optimal set
of parameters θ for the satellite anomaly classification model.
The parameters may include preprocessing techniques,
machine learning algorithms, and hyperparameters.

Let f1 (θ) represents classification accuracy and f2 (θ)
represents processing. The TSE problem can be formulated
as:

Optimize F (θ) = [f1 (θ) , f2 (θ)] (1)

subject to constraints C (θ), such as operational costs and
resource limits. The solution to this problem is a Pareto
optimal set 2∗, which includes configurations θ∗, where
improving one objective, like accuracy, would degrade
another, such as processing time.

2∗
=

{
θ ∈ 2 | ∄ θ ′

∈ 2 : F
(
θ ′

)
≥ F (θ)

}
(2)

TSE is essential for optimizing configurations that balance
accuracy, efficiency, and computational cost in satellite
anomaly classification. TSE identifies optimal configurations
to maximize detection accuracy while minimizing resource
use by systematically exploring preprocessing techniques,
algorithms, and model parameters. This approach is critical
for real-time anomaly detection, preventing mission failures
and costly damages. Leveraging TSE ensures strategies
align with technical and operational demands, enhancing the
robustness and reliability of satellite systems in congested
orbital environments.
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Compared to conventional model-based engineering
(MBE) methods, Trade-Space Exploration (TSE) provides
a more comprehensive, adaptable, and stakeholder-driven
approach to system design and evaluation [6], [7]. While
traditional MBE relies on predefined models and constrained
design parameters, TSE allows for broader design trade-
offs, enabling dynamic exploration ofmultiple configurations
under varying constraints. Integrating machine learning
(ML) further amplifies TSE’s capabilities by enhancing
computational efficiency, improving classification accuracy,
and enabling data-driven decision-making [4], [16]. This
synergy between TSE and ML results in a more robust
and scalable framework, making TSE-ML particularly
well-suited for applications such as satellite anomaly
classification, where adaptability and predictive accuracy are
critical.

D. SATELLITE RELIABILITY
Reliability is a critical design consideration for systems
operating in hostile and inaccessible environments, such
as satellites in orbit. Since satellite systems must function
in extreme conditions without the possibility of in-situ
maintenance, reliability measures are paramount in the
design phase to mitigate the risk of functionality loss
due to unexpected failures [1]. For high-value assets like
satellites, where physical access for repair or adjustment is
virtually impossible, the design must prioritize durability and
resilience, ensuring the satellite can operate independently
over its intended lifespan [17]. This makes reliability a
foundational quality for satellite systems, as it directly
impacts mission success and the long-term viability of space
operations.

In engineering terms, reliability is the probability of a
system performing its intended function under specified
conditions for a particular period [17]. This translates to
the probability of completing the assigned mission within
a designated timeframe for satellite systems despite the
hostile space environment. Reliability in satellite design is
characterized by several factors, including the ability to
perform consistently over time, withstand various stresses,
balance reliability against other desirable qualities, achieve
target performance within budget constraints, and maximize
the satellite’s utility once deployed [17]. The emphasis on
reliability in satellite design is even more significant due
to the high costs and complexities associated with satellite
launch and maintenance, where a single anomaly or failure
can jeopardize an entire mission and result in substantial
financial losses [9].
Reliability, in the context of satellite anomaly classi-

fication, represents the probability that the system will
function without failure over a given period or under
specific conditions. In mathematical terms, reliability R (t) is
defined as:

R (t) = P (T > t) (3)

where T is a random variable representing the time until
a failure occurs, and t is the time under consideration.
In anomaly detection, we can enhance reliability by opti-
mizing the TSE parameters to maximize the detection of
potential failures before they manifest in critical damage.
By integrating anomaly detection models with high reliabil-
ity, we aim to maximize R (t) over the satellite’s operational
lifespan, ensuring it completes its mission without significant
malfunctions.

E. SELECTION OF SERADATA FOR SATELLITE ANOMALY
ANALYSIS
Seradata is an industry-leading open-source intelligence
database that provides comprehensive information on inter-
national satellite and space launch activities, including
detailed records of anomalies and failures [9]. Covering
data from 1957 to 2023, Seradata documents around 4,455
instances of spacecraft anomalies, making it an invaluable
resource for analyzing trends and patterns in satellite reliabil-
ity and failure modes. The database categorizes failures into
nine primary categories—attitude control, power, payload
instrument, beam, control processor, telemetry, thermal, and
transponder—providing a robust foundation for examining
the diverse factors contributing to satellite malfunctions [14].

The selection of Seradata for this research is justified
by its depth, historical range, and comprehensive anomaly
reporting, which are essential for a rigorous analysis of
satellite reliability.With over six decades of documented data,
Seradata offers a broad view of satellite performance and
failure characteristics, enabling researchers to understand the
long-term impacts of design choices, operational conditions,
and external environmental factors on satellite reliability.
This extensive dataset allows for a granular exploration of
failuremodes, facilitating the development ofMLmodels that
can accurately predict and classify anomalies. By leveraging
Seradata, this research can draw on a rich and diverse dataset
to enhance satellite anomaly detection and provide insights
that support the design of more resilient and reliable space
systems.

III. DATA PREPROCESSING IN MACHINE LEARNING
Data preprocessing is a crucial step in machine learning
to enhance raw data quality, consistency, and efficiency
to extract meaningful insights [18], [19]. In ML, data
preprocessing refers to the methods used to prepare raw data,
ensuring it is accurate, consistent, and suitable for building
and training models [19]. Preprocessing improves the quality
of the training process by refining the data before analysis,
helping to achieve reliable and interpretable results. Key
preprocessing steps in this research include data cleaning,
transformation, and normalization, each tailored to optimize
the dataset for satellite anomaly classification.

Data preprocessing is essential to minimize noise, handle
missing values, and enhance the relevance of features
for the classification task [16]. Each preprocessing step
includes several techniques: in data cleaning, methods
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such as Elimination, Mean Imputation, KNN Imputation,
and Iterative Imputation address missing values to reduce
data inconsistencies [20], [21], [22]. Data transformation
techniques, including Label Encoding, Word2Vec, FastText,
and Sentence Transformer, convert raw data into formats
suitable for ML model consumption. Finally, normaliza-
tion methods—such as Z-Score, Min-Max Scaling, Robust
Scaling, Vector Normalization, and Power Transformation—
adjust the scale of data to improve model stability and
performance.

Exploring diverse data preprocessing techniques is essen-
tial for optimizing ML in satellite anomaly classification,
where data quality directly influences model accuracy and
reliability. Satellite data often contains noise, missing values,
and inconsistencies due to challenging collection conditions,
making robust preprocessing critical. Techniques such as
imputation for missing values, encoding for categorical
data, and normalization for feature scaling enhance data
suitability for ML models, each impacting model perfor-
mance differently. Identifying the optimal combination of
these methods is crucial to achieving precise anomaly
detection, reducing false positives, and ensuring reliable
satellite operations. Proper preprocessing thus forms the
backbone of an effective ML pipeline for robust, high-quality
satellite anomaly classification.

A. DATA CLEANING FOR HANDLING MISSING VALUES
Data cleaning, or data cleansing, is the process of identifying,
correcting, or removing errors and inconsistencies within a
dataset to improve its quality and suitability for analysis [23].
One critical aspect of data cleaning is handling missing
values, which can be managed through various methods
such as elimination, mean imputation, k-Nearest Neighbors
(KNN) imputation, and iterative imputation [21], [22].

1) ELIMINATION METHOD
The elimination method, also known as deletion, involves
removing data entries (rows or columns) with missing val-
ues [21]. While this method is straightforward and effective
for large datasets where missing data is not informative,
it may result in significant information loss in smaller
datasets [22]. In this study, listwise deletion is implemented,
removing any row with missing values if the missing rate
exceeds a set threshold T . This approach is formalized as in
Eq. (4):

Eliminate Feature X =

{
Remove X if

MX

N
> T (4)

where MX represents the number of missing values in the
feature X , N is the total number of observations, and T is
the predefined threshold [22].

2) MEAN IMPUTATION
Mean Imputation replaces missing values in an attribute with
the mean value of the observed data for that attribute. This
method is computationally efficient, making it suitable for

datasets with minimal missing data. However, it may not be
ideal for datasets with large gaps, as it can introduce bias.
Mean imputation is defined as:

X̂ij =
1
nk

∑
i:Xij∈Ck

Xij (5)

where nk is the number of non-missing values in the j-th
feature of the class Ck [21].

3) KNN IMPUTATION
The KNN Imputation method fills in missing values based on
the values of the k-nearest neighbors determined by distance
measures such as Euclidean, Minkowski, Manhattan, and
Cosine distances [24], [25]. Euclidean distance is commonly
used due to its efficiency and effectiveness. KNN imputation
with Euclidean distance is calculated as:

Distxy =

√∑m

k=1

(
Xik − Xjk

)2 (6)

where Distxy is the Euclidian distance between instances x
and y, k denotes the number of attributes, Xik is the value of
the k-th attribute with missing data, and Xjk is the complete
data value for the same attribute [25]. While effective, KNN
imputation can be computationally intensive as it searches the
entire dataset.

4) ITERATIVE IMPUTATION
Iterative Imputation models each feature with missing values
as a function of other features in a round-robin fashion, using
predictive modeling to estimate missing values [24], [26].
This method is particularly advantageous for multivariate
datasets, leveraging correlations among features to provide
more accurate imputations. The process of Iterative Imputa-
tion can be described as follows:

• Initialization: Start with an initial imputation for missing
values, often using mean, median, or another simple
method for each feature with missing values.

◦ X = {X1,X2, . . . ,Xm} represents the dataset with
m features, some of which contain missing values.

◦ Xi denotes the i-th features, and X−i represents all
other features, including Xi.

• Round-Robin Modeling:
◦ For each feature Xi with missing values, construct

a regression model fi that predicts Xi based on the
other features X−i.

◦ Let X̂ (t+1)
i denote the updated value ofXi at iteration

t + 1, predicted from the values of X (t)
−i from the

previous iteration.
• Prediction: Use the model fi to predict missing values in
Xi based on the observed and currently imputed values
of X−i:

X̂ (t+1)
i = fi

(
X (t)

−i

)
(7)

where X̂ (t+1)
i is the imputed values for Xi based on the

other features.
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• Iteration and Convergence: Repeat the above process
for each feature with missing values. Continue iterating
until the imputed values stabilize or a predefined
convergence criterion (such as a threshold for changes
between successive imputations) is met.

After convergence, the dataset X has all missing values
replaced with imputed values derived from the iterative
process. The final imputed values for each missing entry in X
are thus based on correlations with other features, leveraging
multivariate relationships within the dataset.

Various data cleansing methods are essential for satellite
anomaly classification due to satellite data’s complex and
often imperfect nature, which can contain significant noise,
missing values, and inconsistencies from environmental
interference, hardware limitations, and operational errors.
Each data cleansing technique offers distinct strengths and
weaknesses, making it critical to tailor approaches to specific
data characteristics. For instance, elimination methods are
straightforward and reduce noise by removing incomplete
records, but they risk discarding valuable information,
especially in smaller datasets. Mean imputation is computa-
tionally efficient and works well for datasets with minimal
missing values but can introduce bias in more complex data
patterns. KNN imputation, which infills missing values based
on similar instances, preserves data structure more effectively
but can be computationally intensive, especially for large
datasets, due to its reliance on distance calculations. Iterative
imputation, meanwhile, leverages multivariate relationships
to predict missing values with high accuracy but requires
significant computational power and can be sensitive to corre-
lations among features. Given the unique challenges posed by
satellite data, including the need for high accuracy in anomaly
detection and the constraints of large, high-dimensional
datasets, combining multiple cleansing techniques helps to
achieve a balance between data completeness, computational
efficiency, and accuracy, thereby optimizing the quality of
data used in machine learning models for reliable satellite
anomaly classification.

B. DATA TRANSFORMATION AND ENCODING METHODS
Data transformation, also known as encoding, converts non-
numeric values into numeric representations, enabling ML
algorithms to process categorical data effectively [27]. This
involves altering data format, structure, or representation to
make it more suitable for analysis and modeling. The choice
of transformation technique varies based on the data type
and the ML model’s specific requirements. This research
uses label encoding and various natural language processing
(NLP)methods for data transformation, includingWord2Vec,
FastText, and Text Transformers.

1) LABEL ENCODING
Label Encoding is a straightforward technique provided by
the Scikit-Learn library that transforms categorical variables
into integer values ranging from 0 to kclasses − 1 [24],
[27]. If X is the categorical variable with n samples, k

represents the number of unique categories in X , which
will be referred to as k_classes to keep it distinct and
Categories =

{
C1,C2, . . . ,Ckclasses

}
represents the unique

categories within X , then label the encoding function LE (Ci)
can be defined as:

LE (Ci) = i− 1 for i = 1, 2, . . . , kclasses (8)

This approach is particularly practical for machine learning
models that interpret ordinal relationships, as it converts
categorical data into a numeric format without introducing
additional complexity. Label Encoding allows ML algo-
rithms to process categorical data directly, enhancing model
efficiency and simplifying the preprocessing pipeline by
mapping each category to a distinct integer.

2) Word2Vec
Word2Vec is an NLP method representing words as vectors
in a continuous vector space. It employs two primary model
architectures: the Continuous Bag-of-Words (CBOW) and
Skip-Gram (SG) models. CBOW predicts the current word
based on its surrounding context, while Skip-Gram predicts
surrounding words given a specific word [28], [29]. The
objective function for training Word2Vec, commonly applied
to optimize word embeddings, is defined as follows:

E = − log σ
(
V

′T
ω0
h
)

−

∑
ωj∈W

log σ
(
V

′T
ωj
h
)

(9)

where ω0 represents the target (output) word, V ′
j is the

output vector, and h denotes the hidden layer output, which
is defined as h =

1
C

∑C
c=1 Vωc for the CBOW model

and h = VωI for the SG model [28], [29]. Typically, the
default specification for the hidden layer in Word2Vec is one
layer with 10 neurons, although common implementations
use between 100 and 1000 dimensions for the embedding
space, depending on the dataset size and computational
constraints [29].

3) FASTEXT
FastText is another NLP method developed by Facebook AI
Research that efficiently learns word and sentence represen-
tations. UnlikeWord2Vec, FastText considers the character n-
grams,making it especially effective formorphologically rich
languages and for handling out-of-vocabulary words [30],
[31], [32]. Similar to Word2Vec, FastText can use either
the SG or CBOW architecture but differs in its use of sub-
word embeddings. This character-level focus allows FastText
to generate more flexible and robust word representations.
Studies show that FastText achieves comparable performance
to Word2Vec while operating faster and producing smaller
model sizes, which is advantageous for resource-limited
environments.

In FastText, each word w is represented as a bag of
character n-grams. The embedding for a word w is computed
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as the average of its n-gram embeddings:

Embedding (w) =
1

|g (w)|

∑
g∈g(w)

vg (10)

where g (w) represents the set of n-grams for the word w, vg
denotes the vector representation (embedding) for an n-gram
g within g (w), and |g (w)| is the number of n-grams for the
word w.
Eq. (10) captures both the structure of the word and

its subword components, allowing FastText to generate
robust word representations even for words that may not
appear frequently in the training corpus. The final word
embedding is thus a composition of its character-level
n-grams, making FastText more effective than traditional
word-level embeddings, especially in tasks involving rare or
out-of-vocabulary words.

4) TEXT TRANSFORMER
Text Transformers, such as Bidirectional Encoder Repre-
sentations from Transformers (BERT), were developed by
Google AI and are designed to understand the context by
analyzing sentences in both directions [33]. BERT training
involves two stages: pre-training, where the model learns
from large amounts of unlabeled data through specific
language tasks, and fine-tuning, adapted to labeled data from
specific tasks. This two-step process allows BERT to achieve
high accuracy across various NLP applications by leveraging
global and local contexts [31].

Text Transformers generate embeddings by processing
text in both directions and capturing contextual relationships
between words. Their core mechanism relies on self-attention
to compute word representations based on a sentence’s
surrounding context. The self-attention mechanism can be
formulated as follows:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V (11)

where Q ∈ Rn×dk ,K ∈ Rn×dk , and V ∈ Rn×dv are
the matrices for queries, keys, and values, respectively.
QKT (dk)−0.5 computes the attention scores for all word
pairs, capturing dependencies betweenwords in the sequence.
The softmax function normalizes these scores to form
attention weights, which are then used to compute weighted
sums of the values V for each word.

This self-attention mechanism is repeated across multiple
layers and attention heads in a Transformer model, allowing
the model to capture nuanced contextual information across
different positions in the text. The final embedding for each
word thus reflects its contextualized representation based on
the entire input sequence.

Various data transformation techniques are essential for
optimizing machine learning models in satellite anomaly
classification, especially given satellite data’s complex and
diverse nature. Satellite datasets often include non-numeric
information, such as operational statuses, failure descriptions,
and system alerts written in sentences. To effectively process

this textual data, it must be transformed into a numeric
format suitable for machine learning algorithms. Techniques
like label encoding provide a straightforward approach for
transforming categorical text data into integer values, but they
lack nuance for capturing complex relationships in textual
information. More advanced methods, such as Word2Vec,
FastText, and Transformers, offer powerful tools for con-
verting sentences into meaningful vector representations.
Word2Vec and FastText are particularly useful for capturing
semantic relationships betweenwords. FastText has the added
advantage of handling out-of-vocabulary words through
character n-grams, which is crucial in technical datasets
where unique terminology may appear. Transformers like
BERT go even further by leveraging contextual information
and understanding relationships within and across sentences,
making them well-suited for nuanced anomaly detection
tasks in satellite data. Each transformation technique has
its strengths and weaknesses, with simpler methods being
computationally efficient but potentially less accurate and
more advanced methods offering deep insights at the cost
of increased computational resources. Given the high-stakes
nature of satellite operations, where precise anomaly detec-
tion can prevent costly malfunctions, selecting appropriate
transformation techniques is critical to optimize data quality
and model performance.

C. DATA NORMALIZATION
Data normalization is the process of scaling or transforming
data to ensure consistency in format and structure, making it
suitable for machine learning algorithms [34], [35]. Several
data normalization methods are applied in this research,
including Min-Max Scaling, Z-Score Normalization, Robust
Scaling, Vector Normalization, and Power Transformation.
Each method has unique characteristics and serves different
purposes when preparing the dataset for analysis.

1) MIN-MAX SCALING
Min-max scaling applies a linear transformation to scale
data into a specific range, typically between 0 and 1.
This approach aims to maintain the distribution of the
data while rescaling values based on their minimum and
maximum occurrences. Min-max scaling is especially useful
for preserving zero entries in sparse data [24]. The formula
for Min-Max Scaling is:

x ′
=

x − min (x)
max (x)− min (x)

(12)

where x ′ is the normalized value, x is the original value, and
min (x) and max (x) are the minimum and maximum values
of x in the dataset.

2) Z-SCORE NORMALIZATION
Z-Score Normalization, also known as Standard Scaling,
standardizes data by centering it around the mean and
scaling it to unit variance. This method is useful when the
data distribution needs to be normalized for ML algorithms
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sensitive to scale. The Z-score of a sample x is calculated as
follows:

z =
x − µ

σ
(13)

where µ is the mean of the data, and σ is the standard
deviation of the data [24].

3) ROBUST SCALING
Robust Scaling mitigates the impact of outliers by using the
median and interquartile range (IQR) rather than the mean
and standard deviation. This approach scales data based on
the IQR, defined as the range between the first quartile Q1
and the third quartile Q3 of the data. The formula for Robust
Scaling is:

x ′
=

x − Q2

Q3 − Q1
(14)

where x ′ is the scaled value, x is the original value, and Q2,
Q1, and Q3 are the median, first quartile, and third quartile
values, respectively [34].

4) VECTOR NORMALIZATION
Vector Normalization is a process that scales each data
sample to have a unit norm, typically setting the magnitude
(or length) of each vector to 1. This approach is particularly
effective when dealing with data in vector form, as it
preserves the direction of each data point while standardizing
its scale, making it easier for machine learning algorithms to
process and compare samples consistently [24].

Given a vector x = [x1, x2, . . . , xn], the normalized vector
x′ is computed by dividing each component of x by the vector
norm (magnitude). The formula for vector normalization is:

x′
=

x
∥x∥

=
x√

x21 + x22 + · · · + x2n

(15)

where x′ is the normalized vector with a unit norm,
∥x∥ denotes the Euclidean norm (magnitude) of x. This
normalization ensures that

∥∥x′
∥∥ = 1, allowing each data

point to have a consistent scale while retaining its original
direction.

5) POWER TRANSFORMATION
Power Transformation is a family of parametric transfor-
mations that aim to make data more Gaussian-like, which
can improve the performance of ML models that assume
normally distributed data. One of the most common Power
Transformations is the Box-Cox transformation, which
was introduced by Box and Cox in 1964. The Box-Cox
transformation formula is:

ψBC (λ, x) =


(
xλ − 1

)
λ

if λ ̸= 0

log (x) if λ = 0
(16)

where λ is a parameter that determines the nature of
the transformation and x is the data value [36], [37].

Power transformations are beneficial for stabilizing variance
and making data more symmetrical, thus aiding in model
accuracy.

Data normalization is a crucial step in satellite anomaly
classification, as it ensures that each feature contributes
proportionally to themodel’s performance by scaling data to a
typical range or distribution. Since satellite data often consists
of measurements across various units and scales, such as
temperature, voltage, and position, normalization prevents
features with larger numerical ranges from dominating the
learning process. Techniques like Min-Max Scaling and
Z-Score Normalization standardize the range and distribution
of the data, making it easier for machine learning models
to converge and identify meaningful patterns in anomaly
detection. Normalization enhances model accuracy and
stability by reducing biases caused by differing feature
scales, which is essential in high-stakes applications like
satellite anomaly classification, where precision is critical.
However, normalization can also be sensitive to outliers.
At the same time, Min-Max Scaling may overemphasize
extreme values. Techniques like Robust Scaling are more
resilient, adjusting data based on interquartile ranges to
mitigate outlier influence. Despite this, normalization has
inherent trade-offs, as the choice of method depends on
data characteristics and model requirements. When applied
thoughtfully, normalization strengthens anomaly classifica-
tion models, enabling them to reliably detect deviations in
satellite behavior and support real-time monitoring, where
quick, accurate anomaly identification is paramount for
maintaining operational reliability in space systems.

IV. TSE-ML FRAMEWORK AND IMPLEMENTATION
This section details the framework’s conceptual structure, key
algorithmic steps, and technical setup, including hardware
and software tools. Additionally, it provides an exploratory
analysis of the Seradata dataset, establishing a data founda-
tion for optimizing satellite anomaly classification through
the TSE approach.

A. FRAMEWORK DESIGN
The proposed TSE (Trade-Space Exploration) framework
aims to optimize satellite anomaly classification by balancing
accuracy and processing time through a three-step approach:
data preprocessing, machine learning model development,
and performance evaluation, as illustrated in Figure 3. This
workflow is further detailed in Figure 4, which presents
the TSE algorithm, providing a step-by-step breakdown of
each stage. Figures 3 and 4 offer a comprehensive view
of the TSE framework’s structure and operational flow,
guiding the selection of preprocessing methods, machine
learning models, and evaluation criteria to achieve optimal
classification results.

The Data Preprocessing stage refines raw data from
Seradata, addressing missing values and inconsistent
scales to enhance model performance. This stage involves
three key operations: data cleansing, transformation, and
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FIGURE 3. Proposed TSE framework.

FIGURE 4. Proposed TSE algorithm.

normalization. Data cleansing employs methods such as
mean imputation for simplicity, KNN imputation for

accuracy across mixed datasets, and iterative imputation
for robust handling of complex missing patterns. In data
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transformation, techniques like Label Encoding, Word2Vec,
FastText, and Sentence Transformers convert categorical or
textual data into numerical formats that ML models can
process efficiently. Finally, data normalization methods such
as Min-Max scaling, Z-Score normalization, and Vector
Normalization ensure that features are scaled appropriately,
addressing the sensitivity of AI models to varied data ranges.

The Machine Learning (ML) Model Development step
selects and trains models for anomaly classification. Key
algorithms evaluated include Random Forest, Support Vec-
tor Machines (SVM), Decision Tree, K-nearest neighbors
(k-NN), Logistic Regression, Naive Bayes, and linear dis-
criminant analysis (LDA). Models are trained on a 70:30
train-test split, which provided the best balance between
performance and reliability across our experiments.

The Performance Evaluation and Optimization phase
identifies the optimal TSE configuration by systematically
comparing model performance metrics. This approach uses
accuracy and processing time as the core optimization
objectives, ensuring each model configuration meets the
operational demands for real-time anomaly detection in
satellite operations. The selected configuration is then
evaluated against predefined reliability thresholds to classify
anomalies as high, medium, or low impact, aiding proactive
decision-making in satellite mission management.

Through this framework, the TSE approach enables an
in-depth exploration of various model and preprocessing
configurations, balancing the trade-offs between processing
resources and detection accuracy. This multi-dimensional
evaluation ensures the TSE framework is optimized to handle
the operational complexities of satellite anomaly detection,
providing a robust, scalable solution for enhanced reliability
in increasingly congested orbital environments.

B. IMPLEMENTATION SETUP
The experimental setup for this research is designed to
ensure the replicability and robustness of the TSE framework
in satellite anomaly classification. The experiments were
conducted on a dedicated, high-performance server with min-
imal background applications to eliminate external variables
and ensure consistent results. The choice of hardware and
software reflects the demanding computational requirements
of large-scale satellite data analysis and machine learning
model optimization.

1) HARDWARE CONFIGURATION
Table 1 details that the hardware configuration includes state-
of-the-art components optimized for intensive computational
tasks. The Intel Core i9-14900K processor, operating at a
clock speed of 3.20 GHz, ensures high processing power
and efficiency for data preprocessing and model training.
The NVIDIA GeForce RTX 4090 GPU accelerates parallel
processing, essential for complex ML algorithms and deep
learning models. With 64 GB of DDR5 RAM, the system
supports large-scale memory-intensive operations, including
handling the extensive Seradata dataset. Storage is divided

between a 500 GB SSD for high-speed access to frequently
used files and a 6 TB HDD for long-term storage, enabling
seamless data management.

TABLE 1. Hardware specifications.

2) SOFTWARE AND LIBRARY SETUP
The software environment, outlined in Table 2, was curated to
align with the TSE framework’s computational needs, ensur-
ing speed, efficiency, and reproducibility. Python 3.11.9 is the
foundation, providing extensive libraries and tools for data
analysis and machine learning. GPU acceleration, enabled
by CUDA 12.4 and PyTorch 2.4.0, significantly reduces
training time for ML models. Essential libraries like pandas
and Numpy handle large-scale data preprocessing tasks,
while Scikit-learn enables the implementation of diverse ML
algorithms.

Advanced text processing tools, including gensim, fasttext,
and sentence-transformers, transform unstructured textual
data into numeric representations, optimizing it forMLmodel
consumption. Seaborn and Matplotlib provide intuitive plot-
ting capabilities for data visualization, aiding in exploratory
data analysis and performance evaluation.

TABLE 2. Software and library specifications.

3) MACHINE LEARNING CONFIGURATION
As detailed in Table 3, the machine learning models were
configured with carefully chosen hyperparameters to ensure
fair and robust evaluations. Default configurations main-
tained consistency and focused on preprocessing techniques
and trade-space exploration. These settings were sufficient
to achieve high accuracy and efficiency, leveraging the
optimized hardware and software setup.

Nevertheless, modifications to the default parameters were
considered to accommodate scenarios where performance
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TABLE 3. Hyperparameters setup.

metrics such as accuracy or processing time fell below
acceptable thresholds. These adjustments were made itera-
tively, based on performance diagnostics, to enhance model
outcomes while preserving computational efficiency. Such
parameter tuning ensured that the models were adaptable
to diverse data characteristics, optimizing their ability to
classify satellite anomalies accurately and reliably. This
adaptive approach allows the framework to remain flexible
while addressing potential underperformance, ensuring the
robustness and scalability of the machine learning pipeline
across varying conditions.

The choice of hyperparameters enhances the balance
between computational feasibility and model robustness,
facilitating reliable and scalable satellite anomaly classifi-
cation. For performance evaluation, this setup prioritizes
accuracy over training and testing time. This prioritization is
intentional, as future advancements in hardware technology
can readily address processing speed. However, achieving
high classification accuracy is critical to the framework’s
success and applicability in real-world satellite reliability
assessments. By ensuring that the models are tuned for
maximum precision, the study sets a strong foundation for
operational reliability, even as technology evolves.

C. DATASET PREPARATION AND EXPLORATORY DATA
ANALYSIS
The data for this study was sourced from Seradata, a pro-
prietary database known for its comprehensive records
of satellite operations and anomalies. Covering 66 years,
from 1957 to 2023, the dataset comprises 4,455 entries,
offering a detailed view of satellite anomaly events and
associated parameters. The features within the dataset, listed
in Table 4, include both numerical and non-numerical
attributes, such as the satellite’s design life, operational orbit,
and mission type, providing a diverse set of inputs for
machine learning models.

From this dataset, 3,050 records were selected for further
analysis after excluding retired satellites. This selection
criterion ensures a focus on unreliable entries, which is

TABLE 4. Seradata satellite details.

critical for identifying patterns and insights into satellite
anomalies. By concentrating on data with known reliability
concerns, this study seeks to uncover relationships between
key attributes, such as bus type, mission, orbit, and satellite
mass, and the occurrence of anomalies.

1) DATA TRANSFORMATION
Non-numerical features were transformed into numerical
representations to facilitate machine learning model training.
Table 5 provides an example of this process for a specific
event, ‘‘Retired - Due to Unknown Anomaly, I,’’ where text
data was encoded into vectors using FastText, Word2Vec, and
Sentence Transformers. These vectors were then averaged
to produce a single numeric value, a widely used approach
in clustering and semantic analysis tasks [38]. Averaging
is computationally efficient and straightforward. It allows
machine learningmodels to handle variable-length text inputs
effectively by creating fixed-size representations.

If the resulting accuracy proves insufficient, adjustments
will be made to the transformation process. Instead of averag-
ing, alternative methods may be explored, including retaining
the entire vector representation to preserve the detailed
contextual information encoded by FastText, Word2Vec, and
Sentence Transformers. While this approach will increase the
computational requirements due to the larger feature size,
it may enhance model performance by providing richer, more
nuanced data for anomaly classification. This flexibility in
transformation strategies ensures that the data preparation
process can adapt to the needs of the machine learning
model, prioritizing accuracy and robustness in the final
results.

TABLE 5. Sample of encoding processes for non-numeric features.
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By transforming textual features into fixed-size numeric
representations, the dataset becomes suitable for machine
learning models, which typically require consistent input
formats. This process ensures efficient computation while
maintaining the semantic integrity of the original data.

2) RELIABILITY CALCULATION
The reliability of satellite anomalies is calculated using the
formulation in Eq. (17), where NR represents the normalized
reliability:

NR =

∣∣∣∣a− d
d

∣∣∣∣ (17)

where a the satellite’s age from launch to failure, and
d signifies the satellite’s design life. A higher NR value
indicates greater unreliability. This formulation is adapted
from [17], who define reliability as a function of multiple
characteristics, including durability, resistance to stress, and
trade-offs between cost and performance. Reliability is
categorized into three levels: low (0≤ NR ≤ 40), medium
(41 ≤ NR ≤ 70), and high (71 ≤ NR ≤ 100).

3) CORRELATION ANALYSIS
A correlation matrix was constructed to analyze relationships
between features, as shown in Figure 5. This matrix measures
the strength and direction of linear relationships between
variables, with values ranging from−1 to 1. Key observations
include:

• Age Since Launch and Event (t): Weak negative
correlation (-0.08), suggesting events are slightly more
likely earlier in a satellite’s operational lifespan.

• Design Life and Age Since Launch (t): Moderate
positive correlation (0.5), indicating satellites with
longer design lives tend to experience failures later in
their lifespan.

• Design Life and Event (t): Weak negative correlation
(−0.15), suggesting satellites with longer design lifes-
pans are marginally less prone to anomalies.

• Bus Type and Orbit Category: Weak correlation
(0.21), indicating minor associations between satellite
structure and orbital position.

• Mission and Orbit Category: Moderate positive corre-
lation (0.41), implying the primary mission is somewhat
influenced by orbital placement.

• Mass at Launch and Event (t): Weak negative corre-
lation (-0.13), suggesting heavier satellites may have a
slightly lower likelihood of encountering anomalies.

This analysis reveals patterns and relationships
among satellite attributes, aiding the development of
machine-learning models tailored for anomaly
classification.

V. RESULT AND DISCUSSION
This section presents the experimental results and critical
Trade-Space Exploration (TSE) framework analysis. The
experiments were conducted systematically to evaluate the

FIGURE 5. Correlation matrix heatmap.

impact of various preprocessing and machine learning
methods on satellite anomaly classification accuracy and pro-
cessing time. Each experimental phase focused on a specific
pipeline component, building upon prior research [39] and
incorporating improvements for more reliable performance.
In the previous research, the best configuration for the TSE
framework included elimination for data cleaning, Label
Encoder for data transformation (as only Label Encoder
was used in the earlier study), Z-Score for normalization,
and Support Vector Machines (SVM) for the machine
learningmodel.While this configuration achieved reasonable
performance, its reliance on limited preprocessing and
machine learning techniques revealed the need for a broader
exploration of alternative methods. This study expands the
evaluation by incorporating advanced techniques across the
pipeline to improve accuracy and efficiency. Furthermore,
the training and testing accuracies reported in this study
were obtained using stratified 5-fold cross-validation, which
ensures that each fold preserves the distribution of satellite
anomalies, reducing bias and improving the generalizability
of the results. This comprehensive approach seeks to identify
a more robust configuration that outperforms the baseline
framework.

A. EVALUATION OF DATA CLEANING METHODS
The first experiment in the TSE framework aimed to
determine the most effective data-cleaning method for satel-
lite anomaly classification. The experiment systematically
evaluated fourmethods: Elimination,Mean Imputation, KNN
Imputation, and Iterative Imputation, as depicted in Figure 6.
These methods were assessed based on their training and
testing accuracy as well as processing times, with results
summarized in Table 6. This step was critical as data cleaning
provides the foundation for the TSE pipeline’s subsequent
transformation and classification processes.
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FIGURE 6. Data cleaning experiments.

TABLE 6. Data cleaning performance.

Elimination, while computationally efficient with the
shortest training (0.0939 seconds) and relatively fast testing
times (0.1226 seconds), achieved the lowest testing accuracy
(90.68%) due to the loss of critical information from
removing incomplete records, making it less suitable for
complex datasets like satellite anomaly classification. Mean
Imputation and KNN Imputation both achieved identical
testing (91.69%) and training (94.75%) accuracies, with
Mean Imputation standing out for its exceptional computa-
tional efficiency, particularly with the shortest testing time
(0.0513 seconds), making it ideal for resource-constrained
scenarios. KNN Imputation, while slightly slower, main-
tained contextual integrity by considering relationships
among neighboring data points, though it failed to out-
perform Iterative Imputation. Iterative Imputation emerged
as the best method, achieving the highest testing accuracy
(91.80%) by leveraging feature interdependencies through
iterative refinement. Despite having the longest training
(0.1244 seconds) and testing times (0.1293 seconds), its
superior accuracy makes it the most reliable choice for high-
precision tasks like satellite anomaly classification. Based
on these results, Iterative Imputation will be selected as the
optimal data-cleaning method for use in the optimal TSE
experiment.

B. EVALUATION OF DATA TRANSFORMATION METHODS
The second experiment, illustrated in Figure 7, aimed to
evaluate the impact of different data transformation methods
on satellite anomaly classification performance. The methods
tested included Label Encoder, Word2Vec, FastText, and
Sentence Transformer. These methods were compared based
on training and testing accuracy and processing time to
identify the most effective approach for transforming non-
numerical data into numerical representations suitable for
machine learning models. The results are presented in
Table 7.

FIGURE 7. Data transform experiments.

Label Encoder, the simplest method, achieved the fastest
training (0.0939 seconds) and testing times (0.1226 seconds)

TABLE 7. Data transform performance.

but had the lowest testing accuracy (90.68%) due to its
inability to capture semantic relationships within the data,
making it unsuitable for tasks requiring deeper understand-
ing. Word2Vec offered a balance between accuracy and
processing time, achieving a testing accuracy of 91.00% and
demonstrating its ability to capture meaningful relationships,
though its processing times (0.5079 seconds for training
and 0.4869 seconds for testing) were higher. FastText,
despite its significant computational cost (4.6013 seconds
for training and 4.6403 seconds for testing), achieved
the highest testing accuracy (91.12%), making it the
most effective method for generalization and improving
anomaly classification. Conversely, Sentence Transformer
had the lowest testing accuracy (89.68%) and the highest
computational cost, making it unsuitable for this context.
Ultimately, FastText was selected as the optimal data
transformation method for its superior accuracy, ensuring
a strong data representation for use in the optimal TSE
experiment.

C. EVALUATION OF DATA NORMALIZATION METHODS
The third experiment evaluated the performance of various
data normalization methods within the TSE pipeline,
as depicted in Figure 8. The methods assessed included
Z-Score, Min-Max Scaling, Robust Scaling, Vector Nor-
malization, and Power Transformation. These methods
were evaluated based on training and testing accu-
racy and processing times, with the results summarized
in Table 8.

FIGURE 8. Data normalization experiments.

TABLE 8. Data normalization performance.

Robust Scaling emerged as the most effective normaliza-
tion method, achieving the highest testing accuracy (91.12%)
and the shortest testing time (0.0689 seconds), making it
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both accurate and computationally efficient. By leveraging
themedian and interquartile range, Robust Scaling effectively
mitigates the influence of outliers, which is critical for
satellite anomaly classification. In contrast, Z-Score normal-
ization provided reasonable results with a testing accuracy
of 90.68% and moderate processing times but was not the
optimal choice. Min-Max Scaling, while the fastest method
(0.0996 seconds for testing), had the lowest testing accuracy
(72.81%) due to its sensitivity to outliers, making it suitable
only for applications prioritizing speed over precision. Vector
Normalization and Power Transformation underperformed in
accuracy and efficiency, with Vector Normalization showing
the poorest results overall. Therefore, Robust Scaling was
selected as the optimal method for this study, ensuring the
dataset is well-prepared for subsequent steps in the TSE
pipeline and enhancing the reliability and accuracy of satellite
anomaly classification.

D. EVALUATION OF MACHINE LEARNING METHODS
The fourth experiment assessed the performance of various
machine learning (ML) algorithms in the TSE pipeline,
as depicted in Figure 9. The algorithms evaluated included
SVM, Random Forest, Decision Tree, KNN, Logistic Regres-
sion, Naïve Bayes, and Linear Discriminant Analysis (LDA).
These methods were compared based on their training and
testing accuracy and processing time to determine the most
effective ML model for satellite anomaly classification. The
results are summarized in Table 9.

FIGURE 9. Machine learning experiments.

Decision Tree emerged as the optimal machine learning
model for satellite anomaly classification, achieving the
highest testing accuracy (94.96%) and the shortest testing
time (0.0455 seconds), making it both effective and efficient.
Its strong generalization ability and interpretable structure
make it ideal for applications requiring high accuracy and
rapid predictions. In comparison, SVM, the baseline model,
delivered a reasonable performance with a testing accuracy
of 90.68% and competitive processing times but lacked
the generalization capabilities of superior models. Random
Forest improved testing accuracy to 91.78% with moderate
processing costs, while Logistic Regression provided a
balance of accuracy (91.66%) and speed, making it a
viable option for resource-constrained environments. KNN
performed poorly, with a testing accuracy of 70.50%,
due to its sensitivity to noisy data and higher processing
time. In contrast, Naïve Bayes and LDA, with testing
accuracies of 72.69% and 69.96%, respectively, proved
unsuitable for the dataset’s complexity. Based on its supe-
rior performance, the Decision Tree was selected as the
primary ML method for subsequent experiments in the TSE
pipeline.

TABLE 9. Machine learning performance.

E. EVALUATION OF OPTIMAL TSE PIPELINE WITH
VARIOUS MACHINE LEARNING MODELS
The next experiment evaluated the performance of differ-
ent machine learning models within the optimized TSE
pipeline, which consisted of Iterative Imputation, FastText for
data transformation, and Robust Scaling for normalization,
as illustrated in Figure 10. The models tested included SVM,
Random Forest, Decision Tree, KNN, Logistic Regression,
Naïve Bayes, and LDA, with results presented in Table 10.

FIGURE 10. Optimal TSE experiments.

TABLE 10. Optimal TSE experiments on various machine learning.

Decision Tree emerged as the best-performing model
in the optimized TSE pipeline, achieving the highest test-
ing accuracy (95.74%) with competitive processing times
(2.2114 seconds). Its robustness, interpretability, and superior
generalization make it the most suitable choice for satellite
anomaly classification. In comparison, SVM and Random
Forest achieved respectable testing accuracies of 91.47%
and 91.80%, respectively, but at higher computational costs,
while Logistic Regression offered a balance of accuracy
(91.91%) and efficiency, making it a viable alternative in
resource-constrained scenarios. KNN underperformed with
a testing accuracy of 71.91% and longer processing times,
demonstrating sensitivity to noise and inefficiency in high-
dimensional datasets. Naïve Bayes and LDA, with the lowest
testing accuracies (70.05% and 70.16%, respectively), proved
unsuitable for the dataset’s complexity. Overall, the Decision
Tree’s combination of accuracy and computational efficiency
reaffirms it as the most reliable model for the TSE pipeline.
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TABLE 11. Top 10 Optimal method combinations for the TSE framework, Including data cleaning, Transformation, Normalization, and Machine learning,
with corresponding training and testing performance metrics.

F. OPTIMAL METHOD COMBINATIONS FOR TSE
The final experiment sought to identify the most effective
combination of preprocessing methods and machine learning
models for the Trade-Space Exploration (TSE) framework by
testing all possible configurations. This evaluation integrated
various techniques across four critical stages: data cleaning,
data transformation, data normalization, and machine learn-
ing. The goal of systematically exploring these combinations
was to determine the configuration that maximizes accuracy
and computational efficiency for satellite anomaly classifica-
tion. As shown in Fig. 3, with four methods of data cleaning,
four methods of data transformation, five methods of data
normalization, and seven machine learning models, a total of
480 possible combinations were evaluated. The results of the
top 10 combinations are summarized in Table 11, showcasing
the configurations that achieved superior performance in
training and testing accuracy while maintaining competitive
processing times.

The results reveal that the combination of KNN Imputation
for data cleaning, Label Encoder for data transformation,
MinMax normalization, and Decision Tree for machine
learning achieved the highest testing accuracy (96.07%)
while maintaining an efficient testing time of 0.0746 sec-
onds. This configuration’s balance of accuracy and speed
underscores its suitability for applications requiring high
precision without incurring significant computational costs.
MinMax normalization effectively scales the features within
a bounded range, while KNN Imputation retains critical data
relationships, contributing to exceptional performance.

Another standout combination featured KNN Imputation,
Label Encoder, Z-Score normalization, and Decision Tree,
achieving a close testing accuracy of 95.96% with a faster
testing time of 0.0633 seconds. The slightly lower accuracy
compared to MinMax normalization reflects the impact of
data scaling choices. Z-Score normalization standardizes
features relative to their variance, whichmay not always align
optimally with the underlying data distribution.

Interestingly, iterative imputation, combined with Fast-
Text, Robust Scaling, and decision trees, maintained the
strong performance of earlier experiments. This configura-
tion achieved a testing accuracy of 95.74%, with a longer
testing time of 2.2114 seconds due to the computational

demands of FastText. While not the most efficient, this
combination demonstrates the robustness of Iterative Impu-
tation and the semantic richness provided by FastText,
which improves generalization at the cost of computational
efficiency.

The top 10 configurations consistently highlighted the
Decision Tree as the best-performingmachine learningmodel
across various preprocessing combinations. Its interpretabil-
ity, robustness, and ability to generalize effectively make
it the preferred choice for the TSE pipeline. Among the
data cleaning methods, KNN Imputation dominated the top
configurations, underscoring its ability to preserve critical
relationships in the data. Label Encoder appeared most fre-
quently for data transformation, reflecting its computational
efficiency and compatibility with the dataset. Finally, Robust
Scaling and MinMax normalization emerged as the most
effective normalization techniques, excelling in different
scenarios.

This experiment demonstrates the importance of selecting
complementary preprocessing methods to optimize the
performance of the TSE framework. While KNN Imputation,
Label Encoder, MinMax normalization, and Decision Tree
proved the most effective overall combination, other con-
figurations, such as those utilizing Iterative Imputation and
FastText, offer viable alternatives for specific applications.
These findings provide a robust foundation for implementing
the TSE framework in satellite anomaly classification and
highlight the critical role of method selection in achieving
superior accuracy and efficiency.

G. MODEL INTERPRETABILITY IN THE TSE FRAMEWORK
USING DECISION TREE
Model interpretability is vital to the Trade-Space Exploration
(TSE) framework, particularly when leveraging the Decision
Tree as the optimal machine-learning model. The Decision
Tree delivers exceptional accuracy (96.07%) and provides a
transparent and interpretable structure, aligning with the TSE
framework’s objective of generating actionable insights for
satellite anomaly classification. By visualizing decision rules
and feature thresholds, the model facilitates understanding
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FIGURE 11. Decision tree model for rules with ratio total > 7.97%.

how key attributes—such as Age Since Launch, Design Life,
and Orbit Category—influence classification outcomes.

As shown in Figure 11, a simplified Decision Tree serves
as an intuitive classifier for satellite anomalies. Age Since
Launch at Event is the primary determinant, with satellites
older than 1.081 years more likely to have lower reliability.
This highlights performance degradation over time, stressing
the need for robust design and maintenance. The model
further refines classifications using Design Life, predicting
that satellites with more than 12.8 years of Design Life are
more likely to fall under Medium reliability.

A key pattern observed in the Decision Tree is that
satellites older than 3.366 years with a Design Life exceeding
12.8 years are typically categorized underMedium reliability,
depending on additional criteria. On the other hand, satellites
older than 3.81 years and Design Life less than 12.8 years are
more likely to fall under low reliability. Satellites with longer
design lives tend to exhibit higher reliability, but the model
also highlights critical thresholds where reliability begins to
decline. Conversely, satellites classified as High Reliability
are typically newer (Age Since Launch ≤ 0.368 years) and
have a Design Life greater than 3.755 years. This aligns with
advancements in satellite engineering, suggesting that mod-
ern designs benefit from improved materials, manufacturing,
and operational strategies.

As shown in Fig. 12, the confusion matrix reinforces the
model’s reliability, with minimal misclassifications between

Low, Medium, and High anomaly risk categories. The
precision (95.74%) and recall (95.73%) scores indicate a
low false positive and false negative rate, ensuring that
satellites at risk of anomalies are correctly classified. This is
particularly critical for mission planning and risk assessment,
as undetected anomalies could lead to mission failures or
costly interventions. The high F1 score (95.73%) confirms
the model’s balanced performance, ensuring that accuracy,
precision, and recall are optimally maintained.

FIGURE 12. Confusion matrix.
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From an operational standpoint, the Decision Tree’s inter-
pretability allows for rule-based insights that engineers and
decision-makers can directly apply. For instance, satellites
with an Age Since Launch greater than 1.5 years and a
Design Life less than 12 years are consistently classified
as Low Reliability, while newer satellites with extended
design lifespans are deemed highly reliable. These findings
support proactive maintenance strategies and mission design
adjustments, ensuring optimized resource allocation for
satellite fleets. Additionally, identifying thresholds within
Design Life and Event (t) offers guidance on critical failure
points, enabling organizations to mitigate operational risks
effectively.

Therefore, this Decision Tree analysis strengthens the
TSE framework’s capability to provide accurate and explain-
able anomaly classifications. The model ensures informed
decision-making in satellite operations by identifying key
reliability thresholds, supporting enhanced mission success,
and reducing operational failures. Combining high classifi-
cation performance, low misclassification rates, and strong
interpretability makes the Decision Tree an indispensable
tool within the TSE-ML pipeline, offering a data-driven
foundation for improving satellite reliability in increasingly
complex orbital environments.

VI. CONCLUSION
This study introduces the Trade-Space Exploration Machine
Learning (TSE-ML) framework, a comprehensive and inter-
pretable pipeline for satellite anomaly classification that
addresses the dual challenges of accuracy and computational
efficiency. By systematically evaluating 480 configurations
across data cleaning, transformation, normalization, and
machine learning stages, the framework identified an optimal
combination—Iterative Imputation, FastText, Robust Scal-
ing, and Decision Tree—with a high testing accuracy of
95.74%. The Decision Tree model delivered superior classi-
fication performance and provided interpretability, revealing
critical features such as Age Since Launch, Design Life, and
Orbit Category, which drive anomaly classification outcomes.
The TSE-ML framework’s robust methodology, validated
with stratified 5-fold cross-validation, ensures generaliz-
ability and practical applicability for satellite operations.
It offers actionable insights for improving satellite design,
operational planning, and anomaly mitigation, enabling more
reliable and efficient systems in increasingly congested
orbital environments. By advancing the integration of
machine learning into satellite reliability assessment, this
work establishes a solid foundation for scalable, transparent,
and effective anomaly detection strategies. Future works
will focus on extending the TSE-ML framework to real-
time telemetry data, integrating additional anomaly types,
and exploring its application to broader aerospace sys-
tems to further enhance satellite reliability and operational
resilience.
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