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relief to separate and expand. When the shear layer comes out, it gets divided into two
regions: main flow and separated flow. The divided stream line gets reattached with the
duct and forms a recirculation zone where the pressure is lower than ambient pressure,
resulting in significant drag. This study focuses on base pressure control through quarter-
circle rib as a passive control mechanism. Accordingly, a comprehensive numerical
simulation was carried out at screech-prone Mach number M = 1.6 for various radii 1
mm, 2 mm, 3 mm, and 4 mm for duct lengths in the range from L = 1D to 6D and nozzle
pressure ratios from 3 to 11. Results indicate that for the same range of the rib radius,
duct lengths, and level of expansion, there is a progressive increase in the base pressure
when rib locations are moved downstream from 0.5D to 3D. The maximum rise in the
base pressure is achieved when the rib is located at 66 mm from the base region. A rib
with a radius of 1 mm is inadequate for the entire range of rib placement in the present
study except when the rib is 11 mm from the base. It can be concluded that a rib of a 1.5

Keywords: mm radius will be sufficient to neutralize the suction created due to the flow separation.
Level of expansion; over-expansion; The user can decide on the rib dimension, location, and nozzle pressure ratio based on
base drag; L/D ratio their requirements.

1. Introduction

Sudden flow expansion is a significant issue with many subsonic and supersonic regime
applications. An outstanding application of unexpected expansion difficulties is using a jet and shroud
combination as a supersonic parallel diffuser. A jet discharging into a shroud and generating a
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sufficient subatmospheric discharge pressure is another fascinating use, found in the system used to
simulate high altitude conditions in jet engine and rocket engine test cells. The exhaust port of an
internal combustion engine has a similar flow state; hot exhaust gas jets pass past the exhaust valve.
A further pertinent illustration is the flow surrounding the base of a projectile or missile in flight with
a blunt edge; in this case, the flow expands inward instead of outward, as in the preceding example.

The physics of the flow, when the shear layer is exhausted in a duct with a more extensive area,
would be better understood before analyzing the base pressure data. After leaving the nozzle, the
boundary layer will split, expand, and reattach itself to the duct when the Mach number is less than
unity. One or more vortices will be present in the separated zone since the first vortex is close to the
base and reasonably powerful. It is known as the central vortex. It will function as a pump, moving
fluids from the base area to the boundary layer's edge, where the primary jet is located. Low pressure
will develop in the recirculation zone due to this pushing activity. Pushing action is too sporadic since
this vortex spread is known to occur periodically. This erratic pattern causes variations in the base
pressure. But when the tests are being run, it becomes clear that these base pressure changes are
minimal. As a result, when evaluating the data, we use the mean base pressure values. The entire
flow pattern of the duct may oscillate due to the cyclicity of the vortex desquamation. These
oscillations could get very severe regarding geometrical and inertia parameters. The degree of
expansion, reattachment length, Mach number, and area ratio are the primary determinants of the
intensity of the central vortex located at the base.

The jet that exits the CD nozzle can originate from any of the three situations that are being
discussed. Three possible expansions of the flow are optimal: under-, over-, and perfect. Correct
expansion will result in an isentropic leaving shear layer dominated by waves that cross the stream
flow. A powerful shock wave will be detected when the nozzle experiences negative pressure at the
exit. The primary vortex's strength and, thus, the base pressure values will be significantly impacted
by this shock, which will cause the flow to shift to the main flow and cause a delay in reattachment
and a longer reattachment length.

Last but not least, an expansion fan for under-expanded nozzles speeds up the flow as it expands,
causing the flow to diverge in the direction of the base and reattach earlier and with a shorter length.
Any ribs present in the duct will produce more vortices. Even though they are tiny, these additional
vortices will encourage mixing, raising the base pressure.

The external flow that becomes inward at the expansion point of a blunt-edged projectile or
missile during flight presents a dangerous condition. When there is internal flow, the flow exits the
nozzle outward and is exhausted into the larger duct. The following are the benefits of studying an
abruptly increased flow experimentally with internal rather than exterior flows. By removing the
requirement for a tunnel with sufficiently broad cross-sections to ensure that wall interference does
not disrupt flow over the model, the size of the air supply required to carry out the experiments is
significantly reduced. Along the expansion's entrance section and in the wake area, it is also possible
to record the static pressure and surface temperature.

It is well known that the total drag is the sum of skin friction, wave, and base drag. Due to the
mission requirement, the skin friction drag will be there by default. Wave drag will exist as and when
the Mach number is unity or more than unity. However, while scanning the literature about the wave
drag, it is observed, based on several wind tunnel tests, that if the nose finess ratio is 2.5 to 4, the
wave drag will be the lowest. Then, the authors are left with the only area to explore: the base
pressure control. It is found that the base pressure is lower than atmospheric pressure, which results
in a considerable amount of base drag. Literature indicates that the base drag contribution can be up
to sixty to seventy percent. Hence, increasing the base pressure by even a tiny amount will
significantly decrease the base drag and, thus, the net drag of the missiles, rockets, aircraft bombs,
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and shells. This way, we can save fossil fuels, reduce air pollution, and ultimately decrease global
warming.

2. Literature Review

In this section, literature about base pressure control is discussed. Two methods to control the
base pressure are (a) Passive control and (b) Active control. Passive control can be accomplished just
by a geometrical alteration, whereas active control requires an external energy source, which is quite
challenging to arrange. It may not be so easy to arrange an external source of energy. However, active
control has an advantage over passive control, which can be used as and when needed. However, in
the case of passive control, the passive control mechanism is in the form of ribs, cavities, vented
cavities, after-locked mechanisms, boattails, and step bodies.

Pathan et al.,, [1,2] underscored the substantial enhancements in base flow characteristics that
can be attained through the optimization of expansion geometry; they emphasized the pivotal role
of design in augmenting aerodynamic efficacy. In a complementary study, Fiqri et al., [3] investigated
control mechanisms within flows that experience sudden expansion and contain cavities at sonic
Mach numbers, revealing that strategically designed cavities effectively promote flow reattachment
and elevate base pressure, thereby serving as passive control strategies. Asadullah et al.,, [4]
introduced a cost-effective passive method to mitigate base drag, making aerodynamic optimization
more feasible and more readily accessible. Pathan et al., [5] delved into the optimization of duct
lengths, uncovering their crucial role in enhancing flow management and minimizing pressure losses
in expanded flows; this finding further underlines the significance of geometric design considerations.

In the literature, Pathan et al., [6] explored the effects of varying expansion levels on base
pressure and reattachment lengths; they discovered that optimized geometries significantly enhance
base flow characteristics. Similarly, Azami et al., [7] analyzed supersonic flow dynamics within
converging-diverging nozzles, revealing that diverse nozzle configurations can substantially influence
flow patterns and facilitate the advancement of passive control techniques for supersonic
applications. Furthermore, Pathan et al.,, [8] illustrated that the optimization of nozzle design,
primarily through variations in wall thickness, not only enhances performance but also diminishes
structural weight; this underscores the extensive advantages of innovative geometric methodologies
within the realm of aerospace engineering. However, the implications of these findings extend
beyond mere performance improvements, suggesting a profound impact on future design models.

The research underscores the significance of passive and active control techniques for optimizing
flow characteristics in high-speed aerodynamic configurations [9-11]. Passive design strategies, such
as meticulously optimized geometries, have consistently demonstrated efficacy in enhancing
aerodynamic efficiency without requiring active control mechanisms [12-19]. However, integrating
advanced computational tools, such as Computational Fluid Dynamics (CFD), into traditional design
frameworks presents substantial challenges, primarily because of fluid dynamics' inherent
complexity [20,21].

Computational Fluid Dynamics (CFD) has become an indispensable tool across many applications.
Chaudhari et al., [22] elucidated that combustion strategies employed within series catalytic
converters significantly influence fluid dynamics, thereby providing critical insights into sonic
aerodynamic flows; this revelation is pivotal for advancing the field. Jain et al., [23] illustrated that
the orientation of heat sinks markedly affects thermal performance, thus emphasizing the necessity
of geometric optimization in heat transfer and flow management. Moreover, Khalil et al., [24]
investigated the heat transfer phenomena of air jets, revealing the intricate interplay between
airflow dynamics and thermal and aerodynamic designs [24]. Furthermore, they applied CFD
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methodologies to enhance flow uniformity within catalytic converters, thereby underscoring its
relevance in improving base flow characteristics for aerodynamic applications; however, the
implications of these findings extend beyond conventional boundaries [25-28].

Extensive research regarding base pressure control in high-speed flows encompassing passive
methodologies such as the implementation of ribs and nozzle optimization further substantiates
these findings. Khan et al., [29-31] demonstrated that incorporating quarter and semi-circular ribs
within suddenly expanded ducts significantly enhances flow reattachment and diminishes base drag.
Similarly, studies conducted by Nurhanis et al., [32] and Khan et al., [33,34] illuminated the critical
role of nozzle geometry in stabilizing flow while optimizing base pressure at both sonic and
supersonic velocities. Numerical simulations by Khan et al., [35-37] underscored the importance of
area ratios in managing flow separation.

Rathakrishnan [38] studied the effect of Rib in a suddenly expanded flow at sonic Mach numbers.
He conducted experiments at various nozzle pressure ratios ranging from 1.141 to 2.54 for 3:1, 3:2,
and 3:3 rib aspect ratios. His investigation revealed a decreasing trend in the base pressure at a lower
aspect ratio, and control decreases the base pressure. The base pressure increased when an aspect
ratio of 3:3 Rib was employed. Therefore, depending upon the end user's demands, these
combinations of the ribs can be used. If the mission requirement is to increase the base pressure,
then the Rib with an aspect ratio is ideal. The Rib with an aspect ratio of 3:1 is the right choice when
the application is in a combustion chamber. In the present study, we have validated our CFD results
first with the experimental results of Rathakrishnan [38]. After validation, we took various rib
geometry, rib location, and nozzle pressure ratios to study passive control's effect on base pressure.

Overall, these studies emphasize the necessity for continued investigation to elucidate the
intricate interdependencies inherent in aerodynamic control comprehensively; however, many
facets remain unresolved despite the promising advancements achieved thus far.

2.1 Literature Gap

Notwithstanding considerable progress in optimizing base flow characteristics (and passive
control strategies), several deficiencies persist within the extant body of research. Although
investigations conducted by Pathan et al.,, [1,2,5,6], Figri et al., [3], and Asadullah et al., [4] have
elucidated the significance of optimizing expansion geometry and the implementation of strategic
cavity designs, a comprehensive analysis regarding the synergistic effects of various passive control
methodologies, such as ribs and cavity structures, in complex flow environments across diverse Mach
numbers remains conspicuously absent. Moreover, a significant portion of contemporary research
underscores the importance of static geometric configurations; however, the potential inherent in
adaptive or altering geometries to dynamically optimize flow characteristics remains largely
underexplored. Addressing existing gaps will significantly enhance our understanding of intricate
aerodynamic phenomena, thus paving the way for developing more robust and adaptive design
frameworks within aerospace engineering.

However, these studies show the necessity of continued research in this area, as the
interdependencies among various factors remain fully understood. Although promising, this
endeavor requires further investigation because the complexities involved are substantial. From the
above review, it is evident that there is research on low supersonic Mach numbers, and more so so
far, none of the researchers has ever used quarter rib circles as a passive control mechanism. Hence,
we intend to study the impact of passive control in the form of a quarter-rib circle. The sharp corner
rib will generate secondary vortices, which will interact with duct walls, dividing streamlines, and the
main jet to increase the base pressure and decrease the base drag.
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3. Computational Fluid Dynamic Analysis
3.1 Governing Equations

The following hypotheses are taken into consideration:
i.  Turbulent flow is considered because of the turbulent viscous dissipation effects.

ii.  The fluid's viscosity varies with temperature and is compressible.

iii. At atmospheric pressure, the flow exits the duct.

iv.  While scanning the literature, we found that the internal flow k-epsilon turbulence model is
the best as it gives reasonably good results. Shaikh et al., [16] employed the usual k-epsilon
turbulence model to simulate internal flow. As a result, the standard k-epsilon turbulence
model is applied to the circumstance. Sutherland's three-coefficient viscosity model is
expressed as follows:

3/2
P Ta Taot+Sr
H=H, (Ta,o) TgtSr (1}

The reference viscosity value in kg/m-s is denoted as u'o,, where u’ represents the viscosity. Ta
denotes static temperature, K represents the temperature of a standard reference, and S’ is the
temperature-dependent Sutherland constant. Three-dimensional continuity equation for

compressible flow:

The equation for mass balance is as follows:

e+ (pr) =0 @
where the fluid's velocity is denoted by V.

The equation for momentum balance is:

2 (pV)+7 - (pVV) +7p =T - [20(7V)]] + ¥ - (t_p) 3)

Where (ﬂ)z = (ﬂ)s - % (E : K){, (H)S = EKJ;EKT, and T_g, is the turbulent stress tensor.

The formulae for total energy are as follows:
A7 (Ly2 4., 1v2 4w — _ : StV
2o G2+ ttine )| + [0 GV + tine ) V] = 7 (AXT = p¥ + 207 - (7V)] +V - 7, ) (4)
where u;,; is the internal energy, and A is the thermal conductivity.

Many internal flow simulations use the k-epsilon turbulence model due to its affordability,
resilience, and sufficient accuracy. The Ansys Fluent program incorporates the k-epsilon (&)

turbulence model used in this research. The K-equation allowed us to calculate the turbulent kinetic
energy.

(Pl + 7+ (pVk) = V- [(u + £ (k)| - pe + M (5)
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The turbulent kinetic energy dissipation rate is denoted by ¢, the turbulent Prandtl number is o-
k, and the word Mx is the turbulence generation. Precisely, the dissipation (or (-equation)) is
controlled by,

af-f) =V (Pfi’:) +V- [(ﬂ + i_:) Vg] —Cify (E) M — szz% (6)

where p; = pfpcﬂsze denotes turbulent viscosity, and the arbitrary constants are denoted as C_ﬂ =
0.09,C, = 1.44,C, = 1.92,]? =1,0, =1.0,and o, = 1.3.

3.2 Geometry and Modelling

The finite volume technique (FVM) was employed to delve further into this investigation. The CFD
simulation used the ANSYS FLUENT 2024/R2 software to assess the nozzle's fluid flows. We are
examining the impact of the quarter geometry of the rib in the form of a passive control method. The
orientation of the quarter rib is shown in Figure 1.

'

Fig. 1. Orientation of the Rib
3.3 Meshing and Boundary Conditions

A crucial part of the CFD process is meshing. By choosing the free-face mesh type, the 2D model
is of the structured mesh type in this case. Elements were given sizes according to each line (edge)
length when the constructed structured mesh type was used. The lines were utilized to apply the
element size, and elements with identical forms were created using face meshing. The mesh
independence check is done. Figure 2 below shows the mesh's element type and size tested during
mesh independence check.
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(b)
Fig. 2. Mesh model (a) without ribs (b) with ribs

3.4 Assumptions and Fluid Properties

Assumptions are accomplished to replicate the flow activities in the precise physical
environment. Appropriate mathematical and numerical models are selected to make simpler the
governing equations.

To solve the governing equations simultaneously, numerical modeling requires choosing the
appropriate mathematical models, such as the governing equations, boundary conditions, mesh
guality, and numerical method. Despite its limitations in accurately representing physical
phenomena, the computational method has been trusted for decades and offers sufficient insight
into flow behavior. As a result, this calls for careful consideration of elements that closely resemble
the flow behavior. This study pinpoints the presumptions that jeopardize the precise physical state.
The following are the presumptions and characteristics covered in this study:

The flow is assumed to be a steady 2D flow because geometry is symmetric.

i.  The density of the air is variable.

ii.  Since turbulent flow has a significant impact on turbulent viscous dissipation at a given flow
velocity, it is taken into consideration.

iii.  The viscosity of the fluid is dependent on temperature.

iv.  Atthe standard atmospheric pressure, the flows leave the duct. At normal ambient pressure,
the flows leave the duct.

v. Since the flow via the nozzle is considered turbulent, the compressible flow field is
represented by the k-epsilon standard model. The subsequent equations most appropriately
characterize the turbulent flow.
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3.5 Geometry of the Model

The ANSYS Workbench program utilized fluid flow (Fluent) analytical techniques and was
employed for the entire computational fluid dynamics (CFD) procedure. The model was generated
via a Design Modeller. Figure 3 depicts a converging nozzle that abruptly widens into a duct with five
ribs. In Rathakrishnan's [38] experimental setup, the dimensions of the convergent-divergent nozzle
with a suddenly expanded duct are as stated in Table 1.

L‘I—n L'1—| UHG uLl L ¥ 5
T ks BB £
#30 ¢m| 3 . h D| g
Wi ~
~ [ul n n o 0
N [t e o o o
\..buse
o | D ] D ) R D 1 D
T T o T L

Fig. 3. Duct with five ribs used in an experimental study [38]

Table 1

The geometries of the validation model

Parameters Dimensions

Nozzle inlet diameter 30 mm

Nozzle outlet diameter 10 mm

Duct diameter 25 mm

Duct length Varies from 1D to 6D
Converging length 20 mm

Rib width 3 mm

Rib height Varies from 1mm to 3mm

3.6 Validation of Previous Work

According to Rathakrishnan [38], the prior work was performed at aspect ratios of 3:3, 3:2, and
3:1; an area ratio of 6.25; L/D ranging from 1 to 6; pressure ratios of 1.141, 1.295, 1.550, 1.707, and
2.458; and nozzle exit Mach numbers of 0.44,0.62,0.82,0.91, and 1.0. However, in a prior publication
by Rathakrishnan [38], the result from Figure 4 with NPR (Po1/Pa) 2.458 and models with control in
the form of ribs with 3:2 and 3:3 aspect ratios was chosen to be compared to the current work. The
simulation is supported by Rathakrishnan's [38] experimental work, which used five ribs positioned
at equidistant intervals in the duct, as illustrated in Figure 3. The results of base pressure fluctuation
with NPR of 2.458 and L/D ranging from 2 to 6 are obtained. The study is repeated to validate the
numerical results of a model with control over different rib aspect ratios.
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P,./Pa = 2.458

Base Pressure Ratio, Po/Pa

2 3 - 5 6

L/D
+o@--+ 3:3 (Experimental) —@— 3:3 (Simulation)

weecdeses 3:2 (Experimental) 3:2 (Simulation)

Fig. 4. Validation of previous work by Rathakrishnan [38]

Figure 4 demonstrates the current and earlier studies' base pressure ratio data curves [38]. The
experimental values were denoted by dotted lines, while the simulation results obtained using ANSYS
Fluent were represented by straight lines. The present numerical analysis exhibited a percentage
discrepancy of less than 10% compared to the previous experimental study. Consequently, the
current work met the criteria for acceptability. The curves exhibited a consistent pattern, with each
point close to the subsequent one. As a result, based on the table and graph described before, the
validation of the current work was successful.

3.7 Mesh Independence Study

Table 2 provides data from a mesh independence study, a crucial step in computational
simulations to ensure that the results remain consistent regardless of the mesh refinement level. The
element sizes range from the coarsest to the finest, with corresponding node and element counts for
each mesh configuration. As the mesh becomes finer, the number of nodes and elements increases
significantly, from 1,284 nodes and 1,145 elements in the coarsest mesh to 1,354,262 nodes and
1,351,303 elements in the finest mesh.

This study aims to determine the optimal mesh size for accurate simulations without unnecessary
computational expense. The table shows a notable increase in nodes and elements as the mesh is
refined. The coarsest mesh has relatively few nodes and elements, which means lower computational
cost but potentially less accuracy. Conversely, the finest mesh offers the highest resolution at the
expense of significant computational resources. The medium and fine meshes provide intermediate
levels of refinement, offering a balance between accuracy and efficiency.

Based on the node and element numbers trends, the finest mesh will likely produce the most
accurate results (Figure 5). However, continuing to refine the mesh beyond a certain point may offer
diminishing returns in terms of accuracy while significantly increasing computational time. A critical
assessment of this table would suggest that the "Fine" or "Finer" mesh configurations may represent
the best balance between accuracy and computational efficiency. These configurations substantially
increase nodes and elements compared to the medium meshes without reaching the computational
expense of the finest mesh. If simulation results do not significantly change between the fine and
finest meshes, further refinement to the finest mesh is unnecessary, as it would only increase
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computational time without added benefit. Thus, the fine or finer mesh sizes are likely the best
choices for further simulation.

Table 2
Mesh independence study
Element size Coarsest Coarse Medium 1 Medium 2 Fine Finer Finest
Nodes 1284 1933 7490 15240 124938 359022 1354262
Elements 1145 1777 7237 14895 124008 357492 1351303
Mesh Independence Test
0.7
—@— COARSEST(2417)
—&— COARSE(2965)
0.6 MEDIUM 1(8114)

—e— MEDIUM 2(14756)
—e— FINE(126412)

0-5 FINER(239850)
—e—FINEST(1151570)

0.4
D-{'S
S
0
o

0.3

0.2

0.1

0

0 2 4 6 8 10 12

NPR
Fig. 5. Results of mesh check

4, Results and Discussion

It would be better to understand the flow mechanics when the shear layer is exhausted in a duct
with a more significant area before analyzing the base pressure results caused by the ribs. The
boundary layer will detach, expand, and rejoin the enlarged duct when it exits the nozzle when the
Mach number is less than unity. The separated region will have one or more vortices because the
initial vortexis near the base and relatively robust. The central vortex is the name given to this vortex.
Fluids will be transferred from the base region to the main jet on the boundary layer's edge,
employing this device operating as a pump. The recirculation zone will experience low pressure due
to this pushing action. But pushing activity is too sporadic since, as we know, this vortex spread is a
periodic phenomenon. The base pressure fluctuates as a result of this erratic pattern.

Nevertheless, it was found that these base pressure differences are minimal when the tests are
done. As a result, we use the mean base pressure values while evaluating the data. The whole flow
pattern in the larger image may be oscillatory due to the cyclicity of the vortex desquamation. For
geometrical and inertia values, these oscillations have the potential to become extremely severe. The
core vortex at the base's intensity is determined mainly by the area ratio, Mach number,
reattachment length, and degree of expansion.
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Analyzing the flow mechanics would be a better place to start when examining the base pressure
results induced by the ribs when the shear layer is exhausted in a duct with a larger area. The
boundary layer appears from the nozzle, spreads, and reattaches to the expanded duct when the
Mach number is less than unity. Since the initial vortex is near the base and sufficiently robust, one
or more vortices will be in the separated zone. We call it the core vortex. It will move fluids from the
base area to the edge of the boundary layer, where the primary jet is situated, acting as a pump. This
pushing action will build up low pressure in the recirculation zone. Since this vortex spread is known
to happen occasionally, the pushing motion is too erratic. The base pressure varies as a result of this
unpredictable pattern. However, it is evident from the testing that these base pressure variations are
negligible. Therefore, we use the mean base pressure values while analyzing the data. The cyclicity
of the vortex desquamation suggests that the entire flow pattern in the enlarged image could be
oscillatory. Concerning geometrical and inertia parameters, these oscillations have the potential to
become extremely severe. The main factors that determine the intensity of the central vortex at the
base are the degree of expansion, reattachment length, Mach number, and area ratio.

Figure 6 shows a view of the converging-diverging nozzle with duct and quarter-circle rib for
orientation one. The figure shows that the curved part faces the flow from the nozzle first, whereas
the straight part of the rib is demonstrated towards the trailing edge.

Fig. 6. A view of the Nozzle, duct, and rib Assembly

To alter the base pressure, quarter-circle ribs installed in the ducts are the subject of this
investigation's efficiency analysis. The area ratio, the duct's L/D ratio, the Mach number, and the level
of expansion (NPR) are the characteristics considered in this study. Through division by the
atmospheric pressure, the recorded base pressures are normalized.

For NPRs ranging from 3 to 11, the base pressure dependence for area ratios of 4.84 is presented.
Base pressure outcomes are contrasted with and without treatment. These results demonstrate the
base pressure's reliance on the Mach number in the supersonic region. The control effectiveness for
a given Mach number mostly depends on the nozzle pressure ratio (NPR), which determines the
amount of expansion. Furthermore, increasing NPR enhances the control's ability to raise base
pressure. This trend might result from the shock at the nozzle exit, which weakens the vortex at the
base by turning the flow away from the base region.

The oblique shock at the nozzle exit may become milder than that at lower NPRs due to the
decrease in overexpansion as the NPR rises. The vortex is thus nearly intact as the tendency to divert
the incoming flow decreases. Under these circumstances, passive control can cause them to spread
without any propensity to deflect, entraining some mass from the standing vortex and convecting it
away from the base, raising the base pressure above those without control. For Mach 1.6, the NPR
needed for correct expansion is 4.25. Meanwhile, the simulations are done for NPRs ranging from 3
to 11, resulting in expansion levels of 0.71, 1.18, 1.65, 2.12, and 2.6. This level of expansion indicates
that flow from the nozzle while exiting from the nozzle undergoes over-expansion, correct expansion,
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and under-expansion. At NPR = 3, the jet is over-expansion; for remaining NPRs, the nozzle remains
under-expansion, and the level of under-expansion increases with an increase in the NPR values.

4.1 Base Pressure Results for Rib Location at 0.5D

Figure 7(a) to Figure 7(f) show the outcome of this study when a quarter-circle rib is placed at 11
mm from the base inside the duct, various radii ranging from 1 mm to 4 mm at different expansion
levels for duct lengths in the range L = 1D to 6D. As we know, at Mach M = 1.6, only at NPR = 3, the
jets are over-expanded, and for the rest of the NPRs, the nozzle exhausting the shear layer into the
enlarged duct remains under-expanded. That implies that when the nozzle is over-expanded, the
pressure at the nozzle lip will be less than the ambient pressure, and this pressure has to become
equal to the ambient pressure, and it will be possible when the flow passes through the oblique shock
waves. When the flow exits from the nozzle and starts interacting with the waves, this process will
continue till the flow attains ambient pressure.

From Figure 7(a), it is seen that there is a decrease in the base pressure without control or when
a 1 mm radius rib is employed, and once the nozzle is under-expanded, this decreasing trend gets
arrested, and there is a progressive rise in the base pressure. Furthermore, when we look at the
results for rib radii 2 mm, 3 mm, and 4 mm, it is found that the declining trend in the base pressure
is absent, rather than there is a linear increase in the base pressure once the rib radius is 2 mm and
above. Even without a control case, the base pressure recovery takes place, and there is still a
difference of 40%. For this duct length L = 22 mm, when ribs of radii 1 mm, 2 mm, 3 mm, and 4 mm
are employed, the Base pressure ratios are 0.95, 1.3, 1.7, and 2.3, respectively. Since the duct length
is small and flow will not be attached to the duct wall, these results are unreliable due to the influence
of ambient pressure.

Figure 7(b) shows base pressure results for duct length L = 44 mm at various rib radii and NPRs.
Results indicate that the impact of a rib with a radius of 1 mm is not visible for this duct length, and
base pressure values with and without control are the same. The physics behind this trend may be
due to the increased duct length from 22 mm to 44 mm, significantly decreasing the backpressure's
impact. However, for ribs with a radius of 2 mm to 4 mm, the base pressure results are nearly the
same as in the previous case; it may be due to the increase in the rib radius, and the secondary
vortices formed will push more mass towards the base. Hence, there is a significant rise in the base
pressure.

Figure 7(c) to Figure 7(d) shows similar results for duct lengths L = 66 mm and 88 mm, except for
rib radius 1 mm; we observe some fluctuation in base pressure, and this change is due to the duct
length and influence of the back pressure. When we look for duct lengths L = 110 mm and 132 mm,
they too represent similar except for a marginal reduction in the magnitude of the base pressure due
to the considerable increase in the duct length, resulting in a minimum influence of ambient pressure
inside the duct flow field.
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Fig. 7. Base Pressure Vs. NPR for various duct lengths

4.2 Base Pressure Results for Rib Location 1D

Figure 8(a) to Figure 8(e) depict the findings of this study when ribs are placed at 22 mm from the
base for four radii of the ribs, namely 1 mm, 2 mm, 3 mm, and 4 mm, for duct lengths in the range
from 22 mm to 132 mm and at various levels of expansion having nozzle pressure ratios (NPRs) in the
range 3 to 11. From the figure, we may draw the following inferences: Because the shift in the rib
location does not yield any positive results, the base pressure values remained in the same range as
previous case, where ribs were located 11 mm from the base. We anticipate the
following reasons for these unchanged base pressure value trends. One of the primary reasons could
be the high Mach number, which plays a vital role in fixing the base pressure values. When the shear
layer interacts with the rib surfaces in the presence of either an oblique shock wave or an expansion
fan, the rib location is nowhere near the reattachment point. For lower duct sizes, the ambient

was seen in the
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pressure will impact the flow field inside the duct. It is also seen that there is a marginal decrease in
the base pressure for smaller duct sizes for a rib radius of 1 mm and 3 mm.
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Fig. 8. Base Pressure Vs. NPR for various duct lengths
4.3 Base Pressure Results for Rib Location 1.5D

Figure 9(a) to Figure 9(e) show the outcomes of this study when the control is employed at a
distance of 33 mm from the base for various rib radii, duct length ranging from L=22 mmto 132 mm,
at various expansion level for the NPRs in the range 3 to 11. The results show that the 1 mm rib has
a marginal impact as a control mechanism in the NPRs from 3 to 5 when nozzles are over-expanded.
It is also seen that with an increase in the duct lengths, there is a minor change in the base pressure
magnitude. These minor changes in the base pressure can be attributed to the fact that there is a
change in the duct length, for lower duct length flow may not be attached to the wall of the duct,
and based on the results obtained, one can state that minimum duct length needed is 66 mm.
Furthermore, the ambient pressure will also influence the flow field inside the duct, and the back
pressure will not significantly impact the duct's flow field for duct lengths 110 mm and 132 mm. The
overall base pressure ratios for the present set of parameters at the highest value of NPR of
simulation are 2.9, 2, 1.5. and 0.6 for rib radii 1 mm, 2mm, 3mm, and 4 mm.
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Fig. 9. Base Pressure Vs. NPR for various duct lengths
4.4 Base Pressure Results for Rib Location 2D

The outcomes of this numerical study show ribs of different radii, various duct lengths, and nozzle
pressure ratios ranging from 3 to 11 in Figure 10(a) to Figure 10(d). As observed in the previous cases
of duct lengths, there are variations in the base pressure for NPR in the range of 3 to 5 only and later,
and the base pressure values are the same for 1 mm rib radius and in the absence of the ribs. This
trend may be due to the jets being over-expanded in this range of NPR, and for NPRs beyond this
range, the nozzle is facing a favorable pressure gradient. We know that whenever controls are
employed, active or passive, they become effective once the nozzles are flowing under the influence
of a favorable pressure gradient. In the present case, the NPR needed for correct expansion is 4.25;
hence, any NPR larger than 4.25 will turn jets under-expanded, and a further increase in the NPR will
increase the under-expansion level. According to this analysis, the base pressure ratios for various
rib radii, namely 2 mm, 3 mm, and 4 mm, are 1.4, 2.2, and 3.4, as seen in Figure 10(a). Similar trends
are seen for other duct lengths as all the parameters are the same except the duct length variation
from L = 3D to 6D. Due to this change in the duct length, the influence of the atmospheric pressure
will have the least impact on the flow field of the duct, and the same is reflected in the result with
minor variations in the base pressure ratio.
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Fig. 10. Base Pressure Vs. NPR for various duct lengths

4.5 Base Pressure Results for Rib Location 3D

For the farthest rib location of 66 mm from the base, the findings of this study are shown in Figure
11(a) to Figure 11(c), with rib radii 1 mm to 4 mm and NPRs ranging from 3 to 11. As discussed, the 1
mm rib and without control results show similar trends for other rib locations. As expected, the base
pressure ratio is the maximum for a 4 mm rib radius at NPR = 11, with the highest level of under-
expansion. For this case, the base pressure ratios for different rib radii range from 2 mm, 3 mm, and

4 mm are 1.5, 2.4, and 4.0, except for minor variations for duct lengths in L = 3D to 6D.
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Fig. 11. Base Pressure Vs. NPR for various duct lengths
4.6 Pressure Contours

Figure 12(a) to Figure 12(c) show pressure contours corresponding to a rib diameter of 4 mm, a
nozzle pressure ratio (NPR) of 5, and a rib placement at 1D downstream. The outcomes are shown
for various duct length-to-diameter (L/D) ratios of 2, 4, and 6. The pressure contours describe how
the base pressure distribution fluctuates with differing L/D ratios. At L/D = 2, the base pressure region
demonstrates moderate separation but exhibits lower reattachment. Conversely, at L/D = 4, a more
stabilized flow reattachment occurs, accompanied by diminished flow separation, indicating an
enhanced base pressure recovery. Notably, when L/D = 6, the pressure contours reveal further
evolution, showcasing an improved base pressure and reduced recirculation zones. These findings
imply that extended ducts (higher L/D ratios) and careful rib placements intensely affect flow
reattachment and base pressure.
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Fig. 12. Pressure Contours for Rib Diameter 4 mm, NPR=5 and Rib location at 1D

4.7 Velocity Contours

Figure 13(a) to Figure 13(c) show the velocity contours corresponding to a rib diameter of 4 mm,
a nozzle pressure ratio (NPR) of 5, and a rib location at 1D. When L/D = 2, the duct length is twice the
diameter. The flow pattern reveals a separation region near the base, accompanied by conspicuous
recirculation zones. The rib's presence significantly affects the flow; however, reattachment remains
a work in progress downstream. When L/D = 4, the recirculation region propagates further
downstream, demonstrating enhanced flow reattachment relative to L/D = 2. When L/D = 6, the flow
stabilizes more efficiently, and the reattachment point becomes distinctly defined. The velocity
contours exhibit diminished separation and enhanced flow uniformity downstream. This observation
suggests that the elongated duct length facilitates more effective flow control when employing a rib.
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4.8 Velocity Streamlines

Figure 14(a) to Figure 14(c) show the velocity streamlines for a rib diameter of 4 mm, a nozzle
pressure ratio (NPR) of 5, and a rib location at 1D. When L/D = 2, the flow pattern reveals a prominent
separation region near the base. When L/D = 4, the recirculation region propagates further
downstream, demonstrating enhanced flow reattachment. When L/D = 6, the flow stabilizes more
efficiently, and the reattachment point becomes distinctly defined.
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Fig. 14. Velocity Streamlines for Rib Diameter 4 mm, NPR=5 and Rib location at 1D

5. Conclusions

Based on the discussions in the previous section, we may draw the following conclusions: when
ribs are located very close to the base recirculation region for the most petite duct length of 22 mm,
there is a decline in the base pressure; however, there is no such trend for larger rib radius. When
the ribs are located 11 mm from the base area, even a 1 mm rib radius has a significant role in fixing
the base pressure values. There is a linear increase in the base pressure for all the rib radii, and this
pattern continues for the rib location at 22 mm from the base. For this rib placement at 22 mm, the
rib of 1 mm radius and without control, the base pressure values are identical, and this pattern holds
suitable for all other rib locations of the present study. When ribs are located at a distance of 33 mm,
44 mm, and 66 mm, there is a continuous rise in the base pressure with the movement of the ribs
towards the downstream, and these locations seem to be very close to the reattachment point.
Therefore, depending on the user's requirements, one can decide to decrease the suction in the base
recirculation zone and freeze the rib radius, rib location, and level of expansion for optimum control
system performance. Based on the deliberation, it can concluded that the control is effective when
jets are under-expanded and, more so, under the influence of adverse pressure gradient across the
nozzle, the flow control mechanism becomes ineffective. Hence, these results reiterate that the
effectiveness is directly associated with the expansion level and a strong function of the nozzle
pressure ratio. In this case, NPR is an essential parameter in regulating the base pressure and, hence,
the base drag.
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