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Abstract. In this paper we consider the solution formula of linearized diffusive capillary model of 

Korteweg type without surface tension in three-dimensional Euclidean space ℝ3 using Fourier transform.

Firstly, we construct the matrix of differential operators from the model problem. Then, we apply Fourier 

transform to the matrix.   In the third step, we consider the resolvent problem of model problem. Finally, we 

find the solution formula of velocity and density by using inverse Fourier transform. For the further research 

we can consider not only estimating the solution operator families of the Korteweg theory of capillarity but 

also estimating the optimal decay for solution to the non-linear problem.  

1 Introduction 

Water can be found in many different forms in daily life, 

including ice, liquid water, and water vapour. The solid, 

water, and vapour or gas phases of water are the names 

given to these various physical states. One might think 

of boiling water while brewing a cup of tea as an 

example of water vapour. Instead, we see water steam 

erupting from the kettle and filling the kitchen. Water 

vapour, on the other hand, refers to the gaseous state of 

water in the natural sciences. Despite the imprecision in 

this common example, we nevertheless gain a general 

understanding of how water vapourizes, or changes 

phases from the liquid to the vapour phase. On chilly 

winter days, we can observe the water easily changing 

back into tiny drops of water by looking out the kitchen 

window. Condensation, the phase change from the 

vapour to the liquid phase, is the main topic. 

In the case of making tea, a temperature difference 

initiates the phase transition: the water vapourizes when 

heated, and the vapour steam condenses when the cold 

window surface cools. The two phases of phase 

transition are under continuous pressure. In general, the 

phases that matter exists in are determined by both the 

influences of temperature and pressure. This reliance on 

pressure is evident in the mountains, where it boils at 

lower temperature and at the coast. This condition is 

caused by the reduced pressure at high altitude. In this 

paper we consider fluids at constant temperature and 

phase transition between liquids and gases. 

Liquids and gases both have ability to flow, in 

contrast to solids. Together, they make up the fluid class. 

Their mass densities, however, greatly differ from one 

another. This phase border enables us to disguise 

between various phases using mass density, assuming a 

constant temperature. It makes sense to be interested in 

the phase boundaries that separate the liquid phase from 

vapour phase when thinking about a container filled 

with a fluid. Let us consider the resolvent problem of the 

compressible Korteweg type model fluid without 

surface tension which described in the following 

{
𝜆𝜌 + div 𝐮 = 𝑓   in Ω

𝜆𝐮 − 𝜇Δ𝐮 − 𝜈∇div 𝐮 − 𝜅∇Δ𝜌 + 𝛾∇𝜌 = 𝐠    in Ω
  (1) 

where 𝜌 = 𝜌(𝑥, 𝑡) and 𝐮 = 𝐮(𝑥, 𝑡) =

(𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 𝑢3(𝑥, 𝑡))
T
 are fluid density and fluid

velocity, respectively. The coefficients of 𝜇 and 𝜈 are 

viscosity coefficients and div 𝐮 =  ∑ 𝜕𝒋𝑢𝑗
𝟑
𝒋=𝟏 . 𝜅 is a given 

constant such that 𝜅 > 0. 𝑓 = 𝑓(𝑥) and 𝐠 = 𝐠 (𝑥) =

(𝑔
1
(𝑥), 𝑔

2
(𝑥), 𝑔

3
(𝑥))

T
 are given functions.  Meanwhile, 

𝜆 and 𝛾 are eigen value and positif constant, 

respectively.  

Korteweg formulated a constitutive equation of 

stress tensors in 1901 that includes density gradients to 

explain fluid capillarity effects. Dunn and Serrin [1] 

derived a Korteweg stress tensor in the context of 

rational mechanics by presenting the interstitial 

operating thermomechanics. The system governing the 

motion of isothermal compressible viscous fluid of 

Korteweg type also investigated by [2]. They described 

a liquid-vapour two-phase flow with phase transition as 

diffuse interface model.  

Furthermore, we provide an overview of the past 

mathematical research on the Korteweg type model. 

First, let us concentrate on difficulties with boundaries. 

A boundary value problem was handled in a weak 

formulation by Bresch et.al [3] who also put out a 

number of boundary conditions. Kotschote [4] 
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examined strong solution for the system governing the 

motion of isothermal compressible viscous fluid of 

Korteweg type in bounded and exterior domain. He 

demonstrated the local well-posedness of a linearised 

system in an 𝐿𝑝 setting by proving an optimal regularity 

result and then combining it with a fixed-point theorem. 

He also investigated not only Newtonian fluids but also 

non-Newtonian fluids [5,6]. In 2014, Kotschote studied 

the asymptotic stability of non-trivial steady state in 

bounded domain to describe phase transition [7].  

Recently, there are many researchers who consider 

for whole-space case. Hattori and Li [8,9] proved not 

only local unique existence theorem but also global 

well-posedness on smooth solutions. Furthermore, 

Shibata and Murata [10] considered strong solution in 

𝐿𝑝 − 𝐿𝑞framework. Inna et.al [11] considered half-

space model problem for a compressible fluid model of 

Korteweg type with slip boundary conditions.  Maryani 

and Murata [12] studied the compressible Korteweg 

type with surface tension in half-space. In contrast, Saito 

[13] investigated same model problem without surface 

tension. This article considers a compressible of the 

Korteweg type in ℝ3 without surface tension in whole 

space case.  

2 Method  

Research methodology of this research is review 

articles. To prove the Theorem 2, first of all, we consider 

the resolvent problem of the Korteweg type model fluid. 

Secondly, we apply Fourier transform the Korteweg 

type. Finally, we can find the solution formula of fluid 

velocity and fluid density of Korteweg type.  

3 Result 

3.1 Compressible Fluid of Korteweg Type 

The capillary effects and evaporation can be described 

in partial differential equations (PDE). This PDE known 

as Korteweg type. Before we state the main theorem, 

following is definition of Sobolev space 

 

Definition 1. (Adams & Fournier, 2003) [16] 

Let 𝑘 ∈ ℕ ∪ {0} and 𝑝 ∈ [0,1), then the Sobolev Space 

𝑊𝑞
𝑚(Ω) is defined by 

𝑊𝑞
𝑚(Ω) ≔ {𝐮 ∈ 𝐿𝑞(Ω) | 𝐷𝛼𝐮 ∈ 𝐿𝑞(Ω),   ∀𝛼 with |𝛼|

≤ 𝑚}. 
The following Theorem is the main result of this article: 

Theorem 2. Let 𝜌(𝑥, 𝑡) and 𝐮(𝑥, 𝑡) be a pressure and 

velocity in 3-dimensional Euclidean space, respectively. 

Let {𝜆𝑗(𝜉)}𝑗=1

4
 be the roots of det (𝜆𝐈 + 𝐀̂(𝜉)) = 0 

where 𝜆1(𝜉) = 𝜆2(𝜉) = −𝜇|𝜉|2. Then, for 𝜆𝑗(𝜉), 𝑗 =

3,4, we have the following assertions: 

1) For |𝜉| ≥
2√𝛾

√(𝜇+𝜈)2−4𝜅
 , we have 𝜆𝑗(𝜉), 𝑗 = 3,4 as 

follows: 

𝜆3(𝜉) = −
1

2
(𝜇 + 𝜈)|𝜉|2 +

1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾)  

𝜆4(𝜉) = −
1

2
(𝜇 + 𝜈)|𝜉|2 −

1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾).  

2) For |𝜉| ≤
2√𝛾

√(𝜇+𝜈)2−4𝜅
 , we have 𝜆𝑗(𝜉), 𝑗 = 3,4 as 

follows: 

𝜆3(𝜉) = 𝜆4(𝜉)

= −
1

2
(𝜇 + 𝜈)|𝜉|2

+
𝑖

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾). 

3) For |𝜉| ≠
2√𝛾

√(𝜇+𝜈)2−4𝜅
 , we have the solution 

formula of  𝜌̂(𝜉, 𝑡) and  𝐮̂(𝜉, 𝑡) as follows: 

𝜌̂(𝜉, 𝑡) = (
𝜆3(𝜉)𝑒𝜆4(𝜉)𝑡−𝜆4𝑒𝜆3(𝜉)𝑡 

𝜆3(𝜉)−𝜆4(𝜉)
)  𝜌̂0(𝜉) −

𝑖𝜉 (
𝑒𝜆3(𝜉)𝑡−𝑒𝜆4(𝜉)𝑡 

𝜆3(𝜉)−𝜆4(𝜉)
) 𝐮̂0(𝜉)  

and 

𝐮̂(𝜉, 𝑡) = −𝑖𝜉(𝜅|𝜉|2

+ 𝛾) (
𝑒𝜆3(𝜉)𝑡 − 𝑒𝜆4(𝜉)𝑡 

𝜆3(𝜉) − 𝜆4(𝜉)
)  𝜌̂0(𝜉)

+ 𝑒−𝜇|𝜉|2𝑡𝐮̂0(𝜉) 

 

 
     +(

𝜆3(𝜉)𝑒𝜆4(𝜉)𝑡−𝜆4𝑒𝜆3(𝜉)𝑡 

𝜆3(𝜉)−𝜆4(𝜉)
−

𝑒−𝜇|𝜉|2𝑡)
𝜉𝜉𝑇

|𝜉|2
𝐮̂0(𝜉). 

 

 In the following section, we state the steps of the 

proof. Proving the main Theorem 2, first of all, we 

introduce a reduced system for (1), then calculate 

representation formulas for solutions of the reduced 

system by using the Fourier transform and its inverse 

transform. Finally, we prove our main theorem for the 

reduced system (1). 

3.2 The proof of Theorem 2 

In this subsection, we consider the proof of Theorem 

2. Firsly, we can write the time differential of equation 

(1) in the following 

 

{
𝜌𝑡 + div 𝐮 = 𝑓,

𝐮𝑡 − 𝜇Δ𝐮 − 𝜈∇div 𝐮 − 𝜅∇Δ𝜌 + 𝛾∇𝜌 = 𝐠, .
      (2)  

  in [0,∞) × ℝ3. The equation (2) can be written in the 

following form 

 𝕌𝑡 + 𝐀𝕌 = 𝔽 in Ω𝑡 (3) 

with, 

𝕌 = (
𝜌
𝐮
) = (

𝜌
𝑢1

𝑢2

𝑢3

),   𝐀 = [
0 div

−𝜅∇Δ + 𝛾∇ −𝜇Δ − 𝜈∇ div
],       

and 𝔽 = (
𝑓
𝐠
). Moreover, the linearise form of equation 

(4) follows 

 𝕌𝑡 + 𝐀𝕌 = 𝟎 in Ω. (4) 

If we write the equation (4) in the matrix form, we have 
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[
𝜌𝑡

𝐮𝑡
] [

0 div
−𝜅∇Δ + 𝛾∇ −𝜇Δ − 𝜈∇ div

] [
𝜌
𝐮
] = [0

𝟎
] 

[
𝜌𝑡

𝐮𝑡
] +

[
 
 
 
 
 0 ∑

𝜕

𝜕𝑥𝑘

3

𝑘=1

−𝜅
∂

∂𝑥𝑗

∑
𝜕2

𝜕𝑥𝑘
2

3

𝑘=1

+ 𝛾
∂

∂𝑥𝑗

−𝜇 ∑
𝜕2

𝜕𝑥𝑘
2

3

𝑘=1

− 𝜈
∂

∂𝑥𝑗

∑
𝜕

𝜕𝑥𝑘

3

𝑘=1 ]
 
 
 
 
 

[
𝜌
𝐮
] = [

0
𝟎
] 

for 𝑡 > 0, 𝕌|𝑡=0 = 𝕌0. Moreover, equation (4) has 

general solution i.e 

𝕌(𝑡) = 𝑒𝐀𝑡𝐶. 

with initial condition 𝕌|𝑡=0 = 𝕌0, then 

𝕌(0) = 𝐶. 

Therefore, we have 

𝕌(𝑡) = 𝑒𝐀𝑡𝕌0. 

Furthermore, the resolvent problem of equation (4) then 

applying Fourier transform, we have 

𝜆 𝕌̂(𝜉) + 𝐀̂(𝜉)𝕌̂(𝜉) = 𝔽̂(𝜉) 

[𝜆𝐈 + 𝐀̂(𝜉)]𝕌̂(𝜉) = 𝔽̂(𝜉) 

𝕌̂(𝜉) = [𝜆𝐈 + 𝐀̂(𝜉)]
−1

𝔽̂(𝜉) 

𝕌 = ℱ𝑥
−1 {[𝜆𝐈 + 𝐀̂(𝜉)]

−1
𝔽̂(𝜉)} 

where det[𝜆𝐈 + 𝐀̂(𝜉)] ≠ 0, 𝐈 is an identity matrix and 

[𝜆𝐈 + 𝐀̂(𝜉)]
−1

 is inverse of [𝜆𝐈 + 𝐀̂(𝜉)]. By using adjoint 

method, firstly, we have determine inverse of [𝜆𝐈 + 𝐀̂(𝜉)] that 

is 

[𝜆𝐈 + 𝐀̂(𝜉)]
−1

=
1

det[𝜆𝐈 + 𝐀(𝜉)]
adj[𝜆𝐈 + 𝐀̂(𝜉)]. 

By the properties of Fourier transform for 𝐀̂(𝜉) matrix, we 

have 

𝐀̂(𝜉) =

[
 
 
 

0 𝑖𝜉1 𝑖𝜉2 𝑖𝜉3

𝑖𝜉1(𝜅|𝜉|2 + 𝛾) 𝜇|𝜉|2 + 𝜈𝜉1
2 𝜈𝜉1𝜉2 𝜈𝜉1𝜉3

𝑖𝜉2(𝜅|𝜉|2 + 𝛾) 𝜈𝜉2𝜉1 𝜇|𝜉|2 + 𝜈𝜉2
2 𝜈𝜉2𝜉3

𝑖𝜉3(𝜅|𝜉|2 + 𝛾) 𝜈𝜉3𝜉1 𝜈𝜉3𝜉2 𝜇|𝜉|2 + 𝜈𝜉3
2]
 
 
 

(5) 

with |𝜉|2 = 𝜉1
2 + 𝜉2

2 + 𝜉3
2 dan 𝑖 = √−1. Moreover [𝜆𝐈 +

𝐀̂(𝜉)] yields 

[𝜆𝐈 + 𝐀̂(𝜉)]

=

[
 
 
 

𝜆 𝑖𝜉1 𝑖𝜉2 𝑖𝜉3

𝑖𝜉1(𝜅|𝜉|2 + 𝛾) 𝜆 + 𝜇|𝜉|2 + 𝜈𝜉1
2 𝜈𝜉1𝜉2 𝜈𝜉1𝜉3

𝑖𝜉2(𝜅|𝜉|2 + 𝛾) 𝜈𝜉2𝜉1 𝜆 + 𝜇|𝜉|2 + 𝜈𝜉2
2 𝜈𝜉2𝜉3

𝑖𝜉3(𝜅|𝜉|2 + 𝛾) 𝜈𝜉3𝜉1 𝜈𝜉3𝜉2 𝜆 + 𝜇|𝜉|2 + 𝜈𝜉3
2]
 
 
 

(6) 

Moreover, we find the determinant of equation (6), that is 

det[𝜆𝐈 + 𝐀̂(𝜉)] = 𝑎̂11 𝐶̂11 + 𝑎̂12 𝐶̂12 + 𝑎̂13 𝐶̂13 + 𝑎̂14 𝐶̂14 

= 𝜆 |𝕄̂11| − 𝑖𝜉1 |𝕄̂12| + 𝑖𝜉2 |𝕄̂13| − 𝑖𝜉3 |𝕄̂14|. 

Next, we consider |𝕄̂11| which explaining in the following 

|𝕄̂11| = |

𝜆 + 𝜇|𝜉|2 + 𝜈𝜉1
2 𝜈𝜉1𝜉2 𝜈𝜉1𝜉3

𝜈𝜉2𝜉1 𝜆 + 𝜇|𝜉|2 + 𝜈𝜉2
2 𝜈𝜉2𝜉3

𝜈𝜉3𝜉1 𝜈𝜉3𝜉2 𝜆 + 𝜇|𝜉|2 + 𝜈𝜉3
2

| (7) 

= (𝜆 + 𝜇|𝜉|2)2{𝜆 + (𝜇 + 𝜈)|𝜉|2}. 

Similar technique, we can find |𝕄̂12|, |𝕄̂13|, and |𝕄̂14|, we 

have 

|𝕄̂12| = (𝑖𝜉1){(𝜅|𝜉|2 + 𝛾)(𝜆 + 𝜇|𝜉|2)2} 

|𝕄̂13| = (−𝑖𝜉2){(𝜅|𝜉|2 + 𝛾)(𝜆 + 𝜇|𝜉|2)2} 

|𝕄̂14| = (𝑖𝜉3){(𝜅|𝜉|2 + 𝛾)(𝜆 + 𝜇|𝜉|2)2} 

Substituting |𝕄̂11|, |𝕄̂12|, |𝕄̂13|, and |𝕄̂14| to (5), we have 

det[𝜆𝐈 + 𝐀̂(𝜉)] = (𝜆 + 𝜇|𝜉|2)2{𝜆2 + (𝜇 + 𝜈)|𝜉|2𝜆

+ (𝜅|𝜉|2 + 𝛾)|𝜉|2}.                          (8) 

Furthermore, we are determined an adjoint matrix of 

[𝜆𝐈 + 𝐀̂(𝜉)] for other minors. Same method with (7), we have 

|𝕄̂21| = (𝑖𝜉1)(𝜆 + 𝜇|𝜉|2)2 

|𝕄̂22| = (𝜆 + 𝜇|𝜉|2){𝜆(𝜆 + 𝜇|𝜉|2)

+ (𝜉2
2 + 𝜉3

2)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]} 

|𝕄̂23| = |𝕄̂32| = (𝜆 + 𝜇|𝜉|2){(𝜉1𝜉2)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]} 

|𝕄̂24| = |𝕄̂42| = −(𝜆 + 𝜇|𝜉|2){(𝜉1𝜉3)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]} 

|𝕄̂31| = −(𝑖𝜉2)(𝜆 + 𝜇|𝜉|2)2 

|𝕄̂33| = (𝜆 + 𝜇|𝜉|2){𝜆(𝜆 + 𝜇|𝜉|2)

+ (𝜉1
2 + 𝜉3

2)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]} 

|𝕄̂34| = |𝕄̂43| = (𝜆 + 𝜇|𝜉|2){(𝜉2𝜉3)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]} 

|𝕄̂41| = (𝑖𝜉3){(𝜅|𝜉|2 + 𝛾)(𝜆 + 𝜇|𝜉|2)2} 

|𝕄̂44| = (𝜆 + 𝜇|𝜉|2){𝜆(𝜆 + 𝜇|𝜉|2)

+ (𝜉1
2 + 𝜉2

2)[𝜆𝜈 + (𝜅|𝜉|2 + 𝛾)]}. 

Based on minor results, we have 

𝐶̂11 = (𝜆 + 𝜇|𝜉|2)2{𝜆 + (𝜇 + 𝜈)|𝜉|2} 

𝐶̂1𝑛 = −(𝑖𝜉𝑛−1){(𝜅|𝜉|2 + 𝛾)(𝜆 + 𝜇|𝜉|2)2} 

𝐶̂𝑚1 = −(𝑖𝜉𝑚−1)(𝜆 + 𝜇|𝜉|2)2 

𝐶̂𝑚𝑛 = (𝜆 + 𝜇|𝜉|2){𝜆(𝜆 + 𝜇|𝜉|2)𝛿𝑚𝑛

+ (𝛿𝑚𝑛|𝜉|2 − 𝜉𝑚−1𝜉𝑛−1)[𝜆𝜈

+ (𝜅|𝜉|2 + 𝛾)]} 

where 𝛿𝑚𝑛 = 1 for 𝑚 = 𝑛, 𝛿𝑚𝑛 = 0 for 𝑚 ≠ 𝑛, and 

𝑚, 𝑛 = 2,3,4.  

Next step, we determine eigen values. According 

to equation (8), eigen values can be found from  

det[𝜆𝐈 + 𝐀̂(𝜉)] = 0. Therefore,  

(𝜆 + 𝜇|𝜉|2)2{𝜆2 + (𝜇 + 𝜈)|𝜉|2𝜆 + (𝜅|𝜉|2 + 𝛾)|𝜉|2} = 0. (9) 

From equation (9), we have (𝜆 + 𝜇|𝜉|2)2 = 0 or 

{𝜆2 + (𝜇 + 𝜈)|𝜉|2𝜆 + (𝜅|𝜉|2 + 𝛾)|𝜉|2} = 0. First of 

all, for (𝜆 + 𝜇|𝜉|2)2 = 0, we have 𝜆1 = 𝜆2 = −𝜇|𝜉|2. 

Whilst, for {𝜆2 + (𝜇 + 𝜈)|𝜉|2𝜆 + (𝜅|𝜉|2 + 𝛾)|𝜉|2} = 0, 

by using following formula,  

𝜆3,4 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

we have, 

𝜆3,4

= −
1

2
|𝜉|2(𝜇 + 𝜈) ±

1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾). (9) 

On the other hand, according to equation (9), for |𝜉| ≥
2√𝛾

√(𝜇+𝜈)2−4𝜅
, we have 

𝜆3(𝜉) = −
1

2
(𝜇 + 𝜈)|𝜉|2

+
1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾) 

𝜆4(𝜉) = −
1

2
(𝜇 + 𝜈)|𝜉|2

−
1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾). 

Moreover, for |𝜉| ≤
2√𝛾

√(𝜇+𝜈)2−4𝜅
, we have 

𝜆3(𝜉) = 𝜆4(𝜉) = −
1

2
(𝜇 + 𝜈)|𝜉|2 +

.            
𝑖

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾)                       (10) 

3.3 Fourier transform of 𝝆̂ and 𝐮̂ 

Finding a formula of 𝜌̂ and 𝐮̂ which are fluid density and 

fluid velocity, respectively, we transform 𝐮 and 𝜌  by 

using Fourier transform. First of all, applying div to the 

second line of equation (3), we have 
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𝜕

𝜕𝑡
𝐮 − 𝜇Δdiv 𝐮 − 𝜈Δdiv 𝐮 − 𝜅ΔΔ𝜌 + 𝛾Δ𝜌 = 0.            (11) 

Let 𝜑 = div 𝐮, then 
𝜕

𝜕𝑡
div 𝐮 = 𝜑𝑡 and equation (11) can 

be written in the following 

𝜑𝑡 − 𝜇Δ𝜑 − 𝜈Δ𝜑 − 𝜅ΔΔ𝜌 + 𝛾Δ𝜌 = 0.              (12) 

Furthermore, according to first line of equation (3), we 

have 

𝜌𝑡 = −𝜑                                     (13) 

Then, by differentiating equation (13) respect to 𝑡 and 

substituting to (12), we have 

𝜌𝑡𝑡 − (𝜇Δ + 𝜈Δ)𝜌𝑡 − (−𝜅ΔΔ + 𝛾Δ)𝜌 = 0.       (14) 

Applying equation (14) by Fourier transform, we have  

𝜌̂𝑡𝑡 + 𝛼|𝜉|2𝜌̂𝑡 − (−𝜅|𝜉|2 + 𝛾)|𝜉|2𝜌̂ = 0,          (15) 

where 𝛼 = 𝜇 + 𝜈, and initial data 

𝜌̂(𝜉, 0) = 𝜌̂0(𝜉), 𝜌̂𝑡(𝜉, 0) = −𝑖𝜉𝐮̂0(𝜉).           (16) 

Furthermore, we determine eigen values 𝜆. 

According to equation (15), we have 

𝜆3,4 = −
1

2
(𝜇 + 𝜈)|𝜉|2 ±

1

2
|𝜉|√(𝜇 + 𝜈)2|𝜉|2 − 4(𝜅|𝜉|2 + 𝛾).   

(17) 

By equation (17), we have general solution 

𝜌̂(𝜉, 𝑡) = 𝑐3𝑒
𝜆3(𝜉)𝑡 + 𝑐4𝑒

𝜆4(𝜉)𝑡                  (18) 

Substituting equations (16) and (17) to equation (18), we 

have 

𝑐3 =
−𝑖𝜉𝐮̂0(𝜉)−𝜌̂0(𝜉)𝜆4(𝜉)

𝜆3(𝜉)−𝜆4(𝜉)
, 𝑐4 =

𝜌̂0(𝜉)𝜆3(𝜉)+𝑖𝜉𝐮̂0(𝜉)

𝜆3(𝜉)−𝜆4(𝜉)
.       (19) 

Moreover, by substituting equation (19) to (18), yield 

𝜌̂(𝜉, 𝑡)

= (
𝜆3(𝜉)𝑒

𝜆4(𝜉)𝑡 − 𝜆4(𝜉)𝑒
𝜆3(𝜉)𝑡

𝜆3(𝜉) − 𝜆4(𝜉)
) 𝜌̂0(𝜉)

− 𝑖𝜉 (
𝑒𝜆4(𝜉)𝑡 − 𝑒𝜆3(𝜉)𝑡

𝜆3(𝜉) − 𝜆4(𝜉)
) 𝐮̂0(𝜉). 

Next step, we consider the solution formula of 𝐮̂(𝜉, 𝑡). 

By applying Fourier transform to second line of 

equation (2), we have 

𝐮̂𝑡 + 𝜇|𝜉|2𝐮̂ + 𝜈𝜉𝑗 ∑ 𝜉𝑘𝑢̂𝑘

3

𝑘=1

+ 𝑖𝜅𝜉𝑗|𝜉|
2𝜌̂ + 𝑖𝛾𝜉𝑗𝜌̂ = 0. 

(20) 

for 𝑗 = 1,2,3. We can write equation (20) to be 

𝐮̂𝑡 = (𝜇|𝜉|2𝕀 − 𝜈𝜉𝜉𝑇)𝐮̂ − 𝑖𝜉(𝜅|𝜉|2 + 𝛾)𝜌̂. 

Since,  𝐮̂(𝜉, 𝑡) is parallel and orthogonal to 𝜉, then 

𝐮̂(𝜉, 𝑡) can be written as 

𝐮̂(𝜉, 𝑡) = 𝑣(𝜉, 𝑡)
𝜉

|𝜉|
+ 𝑤(𝜉, 𝑡)                    (21) 

with 𝑣(𝜉, 𝑡) = 𝐮̂(𝜉, 𝑡)
𝜉

|𝜉|
 is a scalar and 𝑤(𝜉, 𝑡) is 

ortogonal to 𝜉. Furthermore, differentiating equation 

(21) respect to 𝑡, we have 

𝐮̂𝑡(𝜉, 𝑡) = 𝑣𝑡(𝜉, 𝑡)
𝜉

|𝜉|
+ 𝑤𝑡(𝜉, 𝑡).              (22) 

Substituting (21) to (20), we have 

𝐮̂𝑡(𝜉, 𝑡) = −𝑣(𝜉, 𝑡) (𝜇𝜉|𝜉| + 𝜈
𝜉⋅𝜉𝜉𝑇

|𝜉|
) − 𝑤(𝜉, 𝑡)(𝜇|𝜉|2 +

𝜈𝜉𝜉𝑇) − 𝑖𝜉(𝜅|𝜉|2 + 𝛾)𝜌̂.  (23) 

By substitute equation (22) to the right-hand side (RHS) 

of equation (23), we have 

𝑣𝑡(𝜉, 𝑡) = −𝛼|𝜉|2𝑣(𝜉, 𝑡) − 𝑖|𝜉|(𝜅|𝜉|2 + 𝛾)𝜌̂, 𝑤𝑡(𝜉, 𝑡) =

−𝜇|𝜉|2𝑤(𝜉, 𝑡).         (24) 

By using integration by part to equation (24) for  

𝑣𝑡(𝜉, 𝑡), we have 

𝑣(𝜉, 𝑡) = 𝑒−𝛼|𝜉|2𝑡 [𝑣(𝜉, 0) − 𝑖|𝜉|(𝜅|𝜉|2 +

𝛾) ∫ 𝑒𝛼|𝜉|2𝜂𝜌̂(𝜉, 𝜂) 𝑑𝜂
𝑡

0
]     (25) 

with 𝑣(𝜉, 0) is a constant. Then we can find the result of  

(25) for 𝑒𝛼|𝜉|2𝜂𝜌̂(𝜉, 𝜂) with 𝜆3,4(𝜉) + 𝛼|𝜉|2 = −𝜆4,3(𝜉) 

and 𝜆3(𝜉)𝜆4(𝜉) = (𝜅|𝜉|2 + 𝛾)|𝜉|2, we have 

𝑒𝛼|𝜉|2𝜂𝜌̂(𝜉, 𝜂) = (
𝜆3(𝜉)𝑒−𝜆3(𝜉)𝜂−𝜆4(𝜉)𝑒−𝜆4(𝜉)𝜂

𝜆3(𝜉)−𝜆4(𝜉)
) 𝜌̂0(𝜉) −

𝑖𝜉 (
𝑒−𝜆4(𝜉)𝜂−𝑒−𝜆3(𝜉)𝜂

𝜆3(𝜉)−𝜆4(𝜉)
) 𝐮̂0(𝜉). (26) 

Integrating equation (26) for 0 ≤ 𝜂 ≤ 𝑡 to RHS and 

LHS, we have 

∫ 𝑒𝛼|𝜉|2𝜂𝜌̂(𝜉, 𝜂) 𝑑𝜂
𝑡

0
= (

−𝑒−𝜆3(𝜉)𝑡+𝑒−𝜆4(𝜉)𝑡

𝜆3(𝜉)−𝜆4(𝜉)
) 𝜌̂0(𝜉) +

(
𝑖𝜉

(𝜅|𝜉|2+𝛾)|𝜉|2
) (

−𝜆4(𝜉)𝑒−𝜆3(𝜉)𝑡+𝜆3(𝜉)𝑒−𝜆4(𝜉)𝑡

𝜆3(𝜉)−𝜆4(𝜉)
) 𝐮̂0(𝜉)          (27) 

According to equation (27), we have equation (25) with 

𝑣(𝜉, 0) = 0, and 𝑣(𝜉, 0)𝑒𝛼|𝜉|2𝜂 = 0, then 

𝑣(𝜉, 𝑡) = −𝑖|𝜉|(𝜅|𝜉|2 + 𝛾) (
𝑒𝜆3(𝜉)𝑡−𝑒𝜆4(𝜉)𝑡

𝜆3(𝜉)−𝜆4(𝜉)
) 𝜌̂0(𝜉) +

𝜉

|𝜉|
(
𝜆3(𝜉)𝑒𝜆3(𝜉)𝑡−𝜆4(𝜉)𝑒𝜆4(𝜉)𝜂

𝜆3(𝜉)−𝜆4(𝜉)
) 𝐮̂0(𝜉)           (28) 

Moreover, based on equation (23) for 𝑤(𝜉, 𝑡) and initial 

data 𝑤(𝜉, 0) = (𝐈 −
𝜉𝜉𝑇

|𝜉|2
) 𝐮̂𝟎(𝜉), we have 

𝑤(𝜉, 𝑡) = 𝑒−𝜇|𝜉|2𝑡 (𝐈 −
𝜉𝜉𝑇

|𝜉|2
) 𝐮̂𝟎(𝜉)                (29) 

Finally, by substituting equation (28) and (29) to (21), 

we have 

𝐮̂(𝜉, 𝑡) = −𝑖𝜉(𝜅|𝜉|2 + 𝛾) (
𝑒𝜆3(𝜉)𝑡 − 𝑒𝜆4(𝜉)𝑡  

𝜆3(𝜉) − 𝜆4(𝜉)
)  𝜌̂0(𝜉)

+ 𝑒−𝜇|𝜉|2𝑡𝐮̂0(𝜉)

+ (
𝜆3(𝜉)𝑒

𝜆3(𝜉)𝑡 − 𝜆4𝑒
𝜆4(𝜉)𝑡 

𝜆3(𝜉) − 𝜆4(𝜉)

− 𝑒−𝜇|𝜉|2𝑡)
𝜉𝜉𝑇

|𝜉|2
𝐮̂0(𝜉) 

This proved the Theorem 2.  

4 Discussion 

In this article, we investigate a result concerning the 

solution formula of equation system (1) in 3dimensional 

case. As we known that the example of Korteweg 

system is cavitation process. There are two ways to 

represent the vapor-liquid interface that are sharp-

interface and diffuse-interface. The diffuseinterface is 

used to study cavitation. 

5 Conclusion 

Cavitation as an example of Korteweg type is 

delivering in this article. This phenomenon is described 

in PDE. The first equation system of (1) called 

conservation of mass and the second one is conservation 

of momentum. This study investigates the solution 

formula of Korteweg type without surface tension by 

using Fourier transformation. The solution formula of 
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equation system (1) is formed by the multiplier. Using 

Weis’s Theorem, we can estimate the multipliers. 
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