Radionuclide Contamination in Soil and Radiological Hazard Assessment from Industrial Areas: A Systematic Review

Supiah Abd Bahar¹ and Noor Fatihah Mohammad Fandi^{1,*}

¹Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Pahang, Malaysia

ABSTRACT

Background: The production of radionuclides as industrial by-products such as radium (²²⁶Ra), thorium (²³²Th), potassium(⁴⁰K), and uranium (²³⁸U) might contaminate the soil and harm the health of nearby populations for long-term. Due to the limited evidence of the associated relation and lack of public awareness of the potential risk, people tend to ignore this concerning issue. Therefore, this study aims to review the activity concentrations of the aforementioned radionuclides in the soil's nearest industrial vicinity and to assess their radiological hazard presented in the existing literature. Method: This systematic review was conducted using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA 2009) on online databases such as PubMed, SpringerLink, Scopus, and ProQuest. The following criteria were included: full-text English journal, studies from 2014 onwards with search keywords of "radionuclide exposure" AND "radiological hazard" OR "health effect". Results: A total of 1025 articles were screened and only 7 full-text articles were evaluated. Based on the review, the types of industries that produce ²²⁶Ra, ²³²Th, ⁴⁰K, and ²³⁸U were petrochemical, chemical, rare-earth element (REE), and gold mining industries. The findings showed the elevated ²²⁶Ra activity, nearly three times the global average of 35 Bq/kg, was found at petrochemical sites in Rayong, Thailand. The ²³²Th and ⁴⁰K activity levels at Nigeria mining sites were higher than the global average. All studied areas exceeded world average for ²³⁸U. The highest absorbed dose (D) values were observed in artisanal mining, Anka, Nigeria (127.00 nGy/h) and in petrochemical sites in Rayong, Thailand (84.98 nGy/h), both exceeding the limit of 60 nGy/h. The annual outdoor effective dose (AED) from similar industrial areas was 2.2 and 1.4 times higher than the global average of 0.07 mSv/y. The highest gamma index (Ivr) value was at 2.08, recorded in Anka artisanal mining area, exceeding the safe limit of 1. Meanwhile, all values for excess lifetime cancer risk (ELCR) were below a safe limit of 1.16×10^{-3} . Conclusion: In conclusion, radiological risks at Anka artisanal mining sites and Rayong petrochemical sites, exceeded UNSCEAR limits, but cancer risks were minimal, suggesting a need for further research including in groundwater samples and clinical studies.

Keywords:

Radionuclides exposure; radiological hazard assessment; soil; industrial areas

INTRODUCTION

A radionuclide, known as a radioisotope, radioactive releasing the radionuclides and generating technologically isotope, or radioactive nuclide, is an unstable atom enhanced naturally occurring radioactive material containing excess energy (Ansobarlo and Adam- (TENORMs) by-products. Guillermin, 2012). According to the Centers for Disease Control and Prevention (2015), unstable radionuclides These by-products of radionuclides may contaminate the spontaneously emit radiation in the form of energetic air, soil, surface, and groundwater if not disposed of particles of alpha, beta, or gamma radiation to other properly. Hence, human exposure to TENORMs and radioisotopes. This process is called radionuclide decay NORMs of earth gamma-emitting radionuclides such as which can be measured by its half-life (Choppin, 2012).

The natural sources of radionuclides are commonly known decades ago and might go unnoticed due to its diverse as naturally occurring radioactive materials (NORMs) and usage. According to the American Institute of Physics previous studies have shown that most of the (2014), the Malaysian Rare Earth Corporation Plant radionuclides can be found naturally in the environment (MAREC) at Papan, Perak has been operating until 1992 (Almayahi, Tajuddin, & Jaafar, 2012). Sources of and stopped due to abundant radionuclide waste such as radionuclide contamination also could be generated from thorium and uranium found in soil. A previous study nuclear weapons programs, nuclear weapons testing, conducted in Malaysia by Almayahi, Tajuddin, & Jaafar nuclear power plants, uranium mining and milling, (2012), from 2004 until 2008 revealed an increase in commercial fuel reprocessing, nuclear accidents, and cancer cases in Penang, which recorded up to 9692 cases

radionuclides contained at the geological repository (Hu et al., 2010). These industries process the desired resource by

radium, thorium, potassium, and uranium is inevitable. Radiation exposure to humans has been increasing since

^{*} Corresponding author.

E-mail address: fatihahfandi@iium.edu.my

due to exposure to high concentrations of natural plant" OR "petrochemical" OR "rare earth element (REE)" radioactivity.

Chen (2005) stated human health may be affected by keyword; "AND" is used to restrict the search, whereas the prolonged exposure to low levels of radionuclides following contamination through the water, air, or soil, the radionuclides can be deposited in blood, brain, and bones The search technique in this study aims to identify a by ingestion, inhalation, absorbed from skin, and wound contamination (Hao et al., 2015). Radiation risk among ensuring both high sensitivity and accuracy in the results. industrial workers is controlled by the International Atomic The PICOS elements, namely population (P), intervention Energy Agency (IAEA) safety standard using personal (I), comparator (C), outcome (O), and study design (S)radiation dosimeters to detect radionuclides exposure. were crucial in identifying the specific criteria to be However, the population living near the industrial area included in this review as shown in Table 1. is also vulnerable to low doses of radionuclides from prolonged exposure but there is no radiation assessment available to them (Rana et al., 2010).

Zhe Hao et al. (2015) mentioned that there is limited evidence about the relationship between radionuclide exposure and potential health effects on residents living near industrial areas for a long period. It is important to determine the radiological hazard assessment (e.g.: annual effective dose, excess cancer risk, lifetime average daily dose, and hazard quotient) from exposed radionuclides in industrial areas. Thus, this study provides an opportunity to systematically review the radiological hazard at low levels of radionuclide exposure among the population living near industrial areas from previous literature.

Despite extensive research, limited studies were found on the associated link between the levels of radionuclides in soil and their radiological hazard assessment on human health. Therefore, this study aims to review the activity concentrations of radium (²²⁶Ra), thorium (²³²Th), potassium (⁴⁰K), and uranium (²³⁸U) in soil and assess the radiological hazard of the above-mentioned radionuclides measured from industrial areas based on the published literature.

MATERIALS AND METHODS

Systematic Review Process

This systematic review applied the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA 2009) method to aid in reporting the findings. The PRISMA guidelines include identification, screening, eligibility, and included criteria.

Search Strategy

The articles were sought from Scopus, SpringerLink, PubMed, and ProQuest. The keywords ("uranium" OR "radium" OR "thorium" OR "potassium") AND ("nuclear

OR "industry") AND ("health risk assessment") were used. Boolean terms (AND and OR) were used to separate each search is extended by "OR".

comprehensive range of relevant papers on the topic,

Table 1: PICOS framework to determine the eligibility of studies

Criteria	Determinants
Problem	Residents living near the industrial area are at pose risk of exposure to radionuclides
Intervention	Exposure level of $^{\rm 226}Ra,^{\rm 232}Th,^{\rm 40}K$ and $^{\rm 238}U$
Comparator	Radiological hazard assessment
Outcomes	Health effects on the population
Study design	Cross-sectional studies

Inclusion and Exclusion Criteria

The articles were screened by their title, especially those mentioned radium (²²⁶Ra), thorium (²³²Th), potassium (⁴⁰K), and uranium (²³⁸U). The inclusion criteria such as full-text English language or English-translated literature that were published in 2014 onwards, with research articles must include exposure levels to public and radiological hazards of ²²⁶Ra, ²³²Th, ⁴⁰K, and ²³⁸U in determining the health effects. The exclusion criteria such as review study, incomplete literature, unrelated topic, non-English language, and no available author were removed from this study.

Review Method

Articles were evaluated and assessed for eligibility according to the inclusion and exclusion criteria based on their title and abstract. Articles that fulfill the requirements were included to be reviewed. The quality of the studies was evaluated using the National Heart, Lung, and Blood Institute's (NHLBI) quality risk assessment method for cohort and cross-sectional studies from the National Institute of Health (NIH).

RESULTS

The article selection process was simplified in the PRISMA conducted, and the addition of four articles was able to be flow diagram as shown in Figure 1. A total of 1025 articles retrieved from the reference list. were derived from the online databases namely PubMed (n=6), Scopus (n=18), ProQuest (n=537), and SpringerLink The quality of the included studies was evaluated using duplication. Then, the articles were screened by title and seven articles were determined as good quality while abstract, resulting in the removal of 968 articles. The others were fair quality. Those six articles were considered remaining eight articles were evaluated according to the as fair as they did not give enough information on inclusion and exclusion criteria. Next, three of them were numerous checklist criteria such as sample size removed due to the inaccessibility of the full text. After justification and participation rate, making it impossible to the full text was reviewed, two articles were excluded as it assess their quality. Despite that, all seven articles were does not have any radiological risk assessment in their found as eligible according to the inclusion criteria.

study leaving only three articles available for the review. From the three articles, snowball techniques were

(464). However, 49 studies were excluded due to the NHLBI quality risk assessment tool. Only one out of

Figure 1: PRISMA flow diagram

DISCUSSION

Study Location and Types of Industrial Area

Seven reviewed studies highlighted five countries, namely Saudi Arabia, Nigeria, Thailand, Ghana, and Malaysia. The industrial city of the Arabian Gulf Coast in Saudi Arabia

hosts over a hundred petrochemical and chemical industries and has a population of approximately 100,000 residents, with residential districts located to the east, south, and north (Alshahri, 2019). Additionally, Ras Tanura, home to the largest and oldest oil refinery in the Middle East, spans an area of approximately 290 km² and includes residential zones with a population of around 74,000 inhabitants (Alshahri & El-Taher, 2018). The studies Activity Concentrations of Radionuclides in Soil Samples conducted in Anka and Itagunmodi, Nigeria, and Akyem, Ghana focused on gold mining activities (Akpanowo et al., According to the seven included studies, the activity 2020; Bekelesi, Darko & Andam, 2017; Ademola et al., 2014). The Anka gold mining area spans 2,940 km² and is home to an estimated population of 12,655, residing approximately 10 km from the mining site. Since 1980, various industries, including petrochemical, automotive, electronics, oil, and gas sectors, have been operating in Rayong, Thailand (Kessaratikoon et al., 2019). Nonetheless, the rare earth refinery industry in Kuantan, Malaysia is known as Lynas Advanced Material Plant 2015; Ademola et al., 2014). All extracted data is presented (LAMP) is the largest, rare earth refinery project in the in Table 2. world with a study area between 0.9 km and 3 km from the LAMP (Kolo et al., 2015).

concentrations of radionuclides were used to determine the scientific evidence affecting the population's health effects from radium, thorium, potassium, and uranium exposure. The radionuclides activity concentrations were analysed using HPGe gamma-ray detector and gamma spectrometry analysis (Akpanowo et al., 2020; Kessaratikoon et al., 2019; Alshahri, 2019; Alshahri & El-Taher, 2018; Bekelesi, Darko & Andam, 2017; Kolo et al.,

		N	Mean Activity Concentrations (Bq/kg)				
Authors	Location	Type of industry	Radium (²²⁶ Ra)	Thorium (²³² Th)	Potassium (⁴⁰ K)	Uranium (²³⁸ U)	
		_	World Average Concentrations (Bq/kg) (UNSCEAR, 2000)				
			35	30	400	35	
Akpanowo et al. (2020)	Anka, Zamfara State, North-West, Nigeria	Artisanal mining and mine processing	37.94*	151.15*	380.34	41.60*	
Alshahri (2019)	Northern Al Jubail, Arabian Gulf, Saudi Arabia	Petrochemical & Chemical Industries ^a	7.64	3.76	174.00	-	
Kessaratikoon et al. (2019)	Rayong province, Thailand	Petrochemical	96.65* ^b	36.73* ^b	423.75 ^{*b}	-	
Alshahri & El- Taher (2018)	Ras Tanura, Arabian Gulf, Saudi Arabia	Oil Refineries & Gas Plant	23.20	7.73	278.00	39.00*	
Bekelesi, Darko & Andam (2017)	Akyem, Ghana	Gold mining	28.00	12.00	11.00	-	
Kolo et al. (2015)	Gebeng Kuantan, Pahang, Malaysia	Rare Earth Oxides Processing Plant	6.56	10.62	41.02	-	
Ademola et al. (2014)	Itagunmodi, South- Western, Nigeria	Gold mining	-	26.4	505.10*	55.30*	

Table 2: Mean Activity concentrations of ²²⁶Ra, ²³²Th, ⁴⁰K and ²³⁸U in soil samples

Note:*Indicate the value exceeds the world average concentrations; aIncluding industries of phosphate, iron, chemical, water treatment plant, gas plant, oil refinery, ethylene, and methanol Industries; ^bUsing median values due to asymmetrical distribution of data.

From Table 2, the activity concentrations of studied Other factors, such as ongoing construction activities and radionuclides in petrochemical and chemical industries, Al the physicochemical and geochemical properties of Jubail of Saudi Arabia, gold mining, Akyem of Ghana, and specific radionuclides, can also influence soil turnover rare earth oxides processing, Kuantan, Malaysia were below the acceptable limits except for the Anka and Itagunmodi in Nigeria, Ras Tanura of Saudi Arabia, and Rayong province, Thailand. The highest level of ²²⁶Ra was recorded in the petrochemical sites in Rayong, Thailand with a median activity concentration of 96.65 Bq/kg (mean values = 105.25 Bq/kg). This was followed by the artisanal mining industry in Anka, Nigeria, with a mean value of 37.94 Bq/kg, both exceeding the global average activity concentration of 35 Bq/kg by 2.8 and 1.1 times, respectively (Kessaratikoon et al., 2019; Akpanowo et al., 2020). In contrast, the lowest mean activity concentration, 6.56 Bq/kg, was observed in Kuantan, Malaysia's rare earth element (REE) industry (Kolo et al., 2015). The asymmetrical data observed in the study by Kessaratikoon et al. (2019) prompted the use of median values, which were selected for radiological hazard estimation.

Additionally, Anka, Nigeria, reported the highest mean activity concentration of ²³²Th at 151.15 Bq/kg, significantly exceeding five times the global average of 30 Bg/kg (Akpanowo et al., 2020). Meanwhile, gold mining sites in Itagunmodi, Nigeria, and petrochemical sites in Rayong, Thailand, recorded the highest and secondhighest activity concentrations of ⁴⁰K, with a mean value of 505.10 Bg/kg and a median value of 423.75 Bg/kg (mean value = 532.39 Bq/kg), respectively. Both exceeded the global average activity concentration of 400 Bq/kg.

detected at the Itagunmodi gold mining sites, with a mean value of 55.30 Bq/kg, followed by Anka gold mining (41.60 Bq/kg), oil refineries and gas plants at Ras Tanura, Saudi Arabia (39.0 Bq/kg). These three industrial areas exceeded the global average concentration of ²³⁸U (30 Bq/kg).

Radionuclides

The mean activity concentrations for ²²⁶Ra, ²³²Th, and ²³⁸U in the artisanal mining areas exceeded global averages, primarily due to the geological characteristics and activity concentrations of geology in the mining region and mineral processing activities, further contributing to elevated radioactivity levels in the soil (Moshupya et al., 2022; Akpanowo et al., 2020). Variations in geological structures The annual outdoor effective dose (AED) from artisanal and dust generated during mining activities can contribute to exposure to naturally occurring radioactive materials (NORMs) and radon gas (Ademola et al., 2014).

concentrations. Meteorological factors, such as wind direction and rainfall distribution, can also influence the movement and deposition of radionuclides (Alshahri and El-Taher, 2018).

Radiological Hazard Assessment and Comparison

Industrial by-products containing radionuclides pose a risk to nearby populations, as the waste can accumulate in the soil, potentially leading to adverse health effects (Alshahri & El-Taher, 2018; Kolo et al, 2014). To assess the radiological hazard effects in soil samples for specific activities of ²²⁶Ra, ²³²Th, ⁴⁰K, and ²³⁸U, the radium equivalent activity (Req), air absorbed gamma radiation dose rate (D), annual effective dose equivalent (E), external hazard (Hex), gamma representative level index (lγr), excess lifetime cancer risk (ELCR) and geoaccumulation index (Igeo) and pollution load index (PLI) was calculated and presented in Table 3.

As shown in Table 3, the highest mean value of Ra_{eq} is documented at the artisanal mining site in Anka, Nigeria, with 288.51 Bq/kg, followed by the petrochemical industries in Ras Tanura, Saudi Arabia (62.10 Bq/kg), the gold mining site in Itagunmodi, Nigeria (31.75 Bq/kg), the petrochemical and chemical industries in Northern Al Jubail, Saudi Arabia (26.40 Bq/kg), and the lowest value at the rare earth oxides processing plant in Kuantan, Pahang (24.92 Bq/kg). All reviewed studies recorded Ra_{eq} was The highest mean activity concentration of ²³⁸U was below the world average of 370 Bq/kg (UNSCEAR, 2000), indicating that the gamma output and the radiation hazards mixture of ²³²Th, ⁴⁰K, and ²³⁸U in analysed soils samples are within safe limits for human health and environment.

The International Commission on Radiological Protection Factors Influence the Mean Activity Concentrations of (ICRP) recommends an absorbed dose value of 55 nGy/h (Alshahri and El-Taher, 2018; Kessaratikoon et al., 2019), while UNSCEAR (2000) sets the threshold at 60 nGy/h. In the studies reviewed, the highest absorbed dose values were observed in the artisanal mining area in Anka and the petrochemical industry in Rayong, Thailand, with reported values of 127.00 nGy/h and 84.98 nGy/h, respectively. This absorbed dose rate shows an elevated of ²²⁶Ra, ²³²Th, and ⁴⁰K from terrestrial gamma radiation sources.

> mining in Anka, Nigeria, and the petrochemical industry in Rayong, Thailand, is 2.2 and 1.4 times higher, respectively, than the global average of 0.07 mSv/y (Kessaratikoon et al., 2019; Akpanowo et al., 2020). This indicates that global

Table 3: Estimated radiological hazard in soil sa	mples	(mean va	alues)
---	-------	----------	--------

		Radiological Hazard					
Reference	Location	Ra _{eq} (Bq/kg)	D (nGy/h)	AED (mSv/y)	Hex	lγr	ELCR (x10 ⁻³)
Akpanowo et al. (2020)	Anka, Zamfara State, North-West, Nigeria	288.51	127.00*	0.156*	0.780	2.06*	0.550
Alshahri (2019)	Northern Al Jubail, Arabian Gulf, Saudi Arabia	26.40	13.00	0.016	-	-	-
Kessaratikoon et al. (2019)	Rayong province, Thailand	181.80	84.98*	0.100*	0.490	-	0.390
Alshahri & El- Taher (2018)	Ras Tanura, Arabian Gulf, Saudi Arabia	62.10	29.30	0.038	0.160	0.45	-
Bekelesi, Darko & Andam (2017)	Akyem, Ghana	37.53	-	0.044	0.101	-	-
Kolo et al. (2015)	Gebeng Kuantan, Pahang	24.92	11.16	0.010	0.070	0.18	0.050
Ademola et al. (2014)	Itagunmodi, South- Western, Nigeria	31.75	20.40	0.025	0.110	0.33	-
Global Average Limit		370ª	60ª	0.07ª	1 ^c	1 ^c	1.16 × 10 ^{-3a}
			55 ^b				

Note: *Exceed the global average limit; Raeq: Radium equivalent; D: Absorbed dose rate; AED: Annual effective dose (outdoor); Hex: External hazard; Ivr: Gamma index; ELCR: Excess lifetime cancer risk (outdoor); /geo: Geoaccumulation index; PLI: Pollution load index; ^aSource: UNSCEAR, 2000; ^bSource: Alshahri and El-Taher (2018); Kessaratikoon et al. (2019); ^cSource: Akpanowo et al. (2020).

average, highlighting elevated radiological exposure in the 2019; Kolo et al., 2015). This indicates that the populations vicinity of these studied locations.

For the external hazard index (Hex), the highest value was recorded in Anka, Nigeria, at 0.78, while the lowest value Artisanal mining in Anka, Nigeria and the petrochemical was observed in the rare earth oxides industry in Kuantan, site in Rayong, Thailand both exhibited elevated values for Pahang, at 0.07. None of the studied locations exceeded absorbed dose (D), annual effective dose (AED), and the recommended Hex limit of 1 (Akpanowo et al., 2020). radioactivity level index (Iyr). These findings suggest that Regarding the radioactivity level index (Ivr), the mean individuals in these areas, particularly those working near values for the petrochemical industry in Ras Tanura, Saudi these sites, are exposed to higher levels of environmental Arabia, the rare earth processing industry in Kuantan, gamma radiation. This increased exposure could pose a Pahang, and the gold mining industry in Itagunmodi, Nigeria, were 2.06, 0.45, 0.18, and 0.33, respectively. populations. Akpanowo et al. (2020) highlighted those However, the highest lyr value was recorded in the concerns regarding environmental radioactivity were artisanal mining area of Anka, Nigeria, at 2.08, exceeding more pronounced for artisanal workers in the mining the recommended safe limit of 1 (Akpanowo et al., 2020). industry, while nearby populations were not considered to This indicates that gamma radiation exposure in the area be at significant risk. Despite the elevated radiation levels, is more than twice the recommended threshold, the estimated cancer risk for all studied areas remains potentially posing health risks to the nearby population.

Three out of the seven articles assessed the excess lifetime population could increase the risk of cancer over time. cancer risk (ELCR), with all countries reporting values below the global safe limit of 1.16×10^{-3} for outdoor Previous reviewed studies have several limitations. The exposure (Akpanowo et al., 2020; Kessaratikoon et al. estimated excess lifetime cancer risk is more relevant to

in the studied areas are unlikely to develop cancer due to the levels of gamma radiation reported in these studies.

potential radiological hazard to the nearby local below the threshold, Kessaratikoon et al. (2019), however, argued that prolonged radiation exposure in the general

artisanal miners and mineral processing workers, as the general population may not face an immediate radiological risk (Akpanowo et al., 2020). However, the scope of these studies is limited to the current investigations and analyzed samples. Expanding research to cover broader Akpanowo, M., Ibrahim Umaru, Iyakwari, S., Joshua, E. O., areas is recommended, particularly industrial zones near densely populated residential areas or water sources (Kolo et al., 2015; Alshahri, 2019).

CONCLUSION

In conclusion, radionuclide activity exceeding global average concentrations was observed in certain studied areas. Elevated levels of ²²⁶Ra, almost three times higher than the global average, were detected at petrochemical sites in Rayong, Thailand. Meanwhile, ²³²Th activity at artisanal mining sites in Anka, Nigeria, was five times greater than the global average. Additionally, elevated levels of ⁴⁰K were predominantly found at the Itagunmodi gold mining sites in Nigeria. Notably, ²³⁸U activity surpassed the global average across all the studied areas. Geological factors appear to be a significant contributor to the elevated radionuclide concentrations, in addition to the by-products of industrial activities themselves. The radiological risks of absorbed dose (D) and annual outdoor effective dose (AED) were notably above the UNSCEAR safe limits at artisanal mining sites in Anka, Nigeria and petrochemicals sites in Rayong, Thailand, suggesting these areas may expose nearby populations and particularly those working in close proximity, to elevated levels of gamma radiation. All cancer risk values of studied radionuclides were below world safe limits of 1.16×10^{-3} , indicating the exposure to gamma radiation in the studied industrial areas is minimal. Assessing radiological hazards in other mediums, such as groundwater samples and through clinical studies, could yield different findings regarding the potential risks of radionuclide exposure to human health.

ACKNOWLEDGEMENTS

This project was funded by the Sustainable Research Collaboration Grant 2020 (SRCG), (Project ID: SRCG20-051-0051), Ministry of Education, Malaysia. We would like to express our gratitude to the Department of Biomedical Sciences, Islamic International University Malaysia (IIUM) for their encouragement and assistance.

REFERENCES

Ademola, Augustine & Bello, Adekunle & Adeniyi, Adejumobi. (2014). Determination of natural radioactivity and hazard in soil samples in and around

gold mining area in Itagunmodi, South-Western Nigeria. Journal of Radiation Research and Applied Sciences. https://doi.org/10.1016/j.jrras.2014.06.001

- Samson Yusuf, & Ekong, G. B. (2020). Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Elsevier. https://doi.org/10.1016/j.sciaf.2020.e00561
- Almayahi, B. A., Tajuddin, A. A., & Jaafar, M. S. (2012). Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia. Radiation Physics and Chemistry, 81(10), 1547-1558. https://doi.org/10.1016/j.radphyschem.2012.03.018
- Alshahri F. (2019). Natural and anthropogenic radionuclides in urban soil around non-nuclear industries (Northern Al Jubail), Saudi Arabia: assessment of health risk. Environmental science and pollution research international, 26(36), 36226–36235. https://doi.org/10.1007/s11356-019-06647-0
- Alshahri, F. & El-Taher (2019). Investigation of natural radioactivity levels and evaluation of radiation hazards in residential-area soil near a Ras Tanura Refinery, Saudi Arabia. Pol.J. Environ. Stud; 8(1):25-34. https://doi.org/10.15244/pjoes/83611
- American Institute of Physics Conference Proceedings. (2014). Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP). Retrieved from: https://doi.org/10.1063/1.4866110.
- Ansoborlo, E., & Adam-Guillermin, C. (2012). Radionuclide transfer processes in the biosphere. Radionuclide Behaviour in the Natural Environment, 484-513. https://doi.org/10.1533/9780857097194.2.484
- Centre of Disease Control and Prevention. (2015, February 22). What is Radiation? Properties of Radioactive Isotopes.https://www.cdc.gov/radiationhealth/about/ radioactive-isotopes.html
- Chen, Z. Y. (2005). Accumulation and toxicity of rare earth elements in brain and their potential effects on health. Rural Eco-Environment, 21(4):72-73
- Choppin, G. R., Liljenzin, J. O. & Rydberg, J. (2002). Unstable nuclei and radioactive decay. Radiochemistry and Nuclear Chemistry (3rd ed.).

https://doi.org/10.1016/B978-075067463-8/50004-2

- Hu, Q. H., Weng, J. Q., & Wang, J. S. (2010). Sources of review. Journal of Environmental Radioactivity, 101(6), рр 426-437. Retrieved from: https://doi.org/10.1016/j.jenvrad.2008.08.004
- International Commission on Radiological Protection. (2019). Absorbed, equivalent and effective dose. http://icrpaedia.org/Absorbed, Equivalent, and Effec tive Dose
- Kessaratikoon, P., Jewawongsakul, J., Boonkrongcheep, R., & Pholthum, S. (2019). Radiological hazard assessment and excess lifetime cancer risk evaluation in surface soil samples collected from Ban Chang and Nikhom Journal Conference of Physics: Series. https://doi.org/10.1088/1742-6596/1380/1/012104
- Khandoker Asaduzzaman & Yussof Mohd Amin. (2015). Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant Environment, Kuantan, Pahang, Malaysia. Environ Sci

Pollunt Res. https://doi.org/10.1007/s11356-015-4577-5

- anthropogenic radionuclides in the environment: a Moshupya, P. M., Mohuba, S. C., Abiye, T. A., Korir, I., Nhleko, S., & Mkhosi, M. (2022). In situ determination of radioactivity levels and radiological doses in and around the gold mine tailing dams, Gauteng province, South Africa. Minerals, 12(10), 1295. https://doi.org/10.3390/min12101295
 - The Ministry of Science, Technology and Innovation (2012). Naturally Occurring Radioactive Materials (NORM) Waste Management. Retrieved from: https://nucleus.iaea.org/sites/orpnet/home/Shared% 20Documents/T1-Teng-NORM-Management-Malaysia.pdf
- Phatthana districts in Rayong province, Thailand. UNSCEAR, U. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.
- Kolo, M. T., Siti Aishah Abdul Aziz, Khandaker, M. U., Zhe Hao, Hairong Li, YongHua Li, & Binggan Wei. (2015). Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.01.057