
 Comprehensive IoT-Based Water Management

System: Cloud Integration for Residential

Conservation

Abstract— In an era where water conservation is increasingly

critical, this paper unveils a groundbreaking IoT-based system

that revolutionizes water management through smart automation.

By harnessing cutting-edge technologies such as the ESP32

microcontroller, this system seamlessly integrates with cloud

services to deliver unparalleled efficiency in water monitoring and

control. Equipped with an ultrasonic sensor for precise water level

measurements and a rain sensor for immediate leak detection, the

system stands at the forefront of innovation in water resource

management. Designed to automatically adjust water levels and

respond swiftly to leaks, this system minimizes waste and ensures

optimal water use with remarkable precision. The advanced cloud

infrastructure supports real-time data logging and analysis,

facilitated by MQTT for agile data transmission and HTTP/REST

APIs for smooth system integration. MongoDB’s robust database

management enhances the system’s ability to handle and interpret

vast amounts of data effectively. The user experience is further

elevated through a dynamic interface built with React Native,

offering a seamless and intuitive interaction across multiple

devices. This pioneering solution not only advances smart water

management technology but also highlights its transformative

potential for conservation efforts. By combining IoT innovation

with intuitive software, the system sets a new standard for efficient

and sustainable water management in residential settings.

Keywords—Water level monitoring system, MQTT, NodeMCU

ESP32, Internet of Things, Cloud Integration, Residential

Conservation

I. INTRODUCTION

Water management is a crucial aspect of urban and suburban
regional planning, especially in developing countries like
Malaysia, where rapid urbanization and climate sensitivity
present significant challenges. This is particularly important in

Fig.1. Drawbacks of Current Water Management

residential areas, especially in densely populated neighborhoods
with aging infrastructure. Proper water management is vital not
only for preventing structural damage in these areas but also for
supplying clean and safe drinking water to residents. This aligns
with Sustainable Development Goal 6 (Clean Water and
Sanitation), which promotes efficient water use, minimizes
waste, and emphasizes maintaining water quality and ensuring
access to clean, safe water [1]. Therefore, solving problems
associated with water management is necessary not only to
protect people’s health but also to ensure the stability of housing
stock in Malaysia.

 Figure 1 illustrates the impacts of poor water management
on housing areas. The primary issue in today’s infrastructure is
on the aging of assets, which lose their strength and flexibility,
making them more susceptible to cracks, deformation and
eventually can causes leak to occur [2]. In some residential
areas, rainwater harvesting systems are used to collect and store
rainwater, aiming to reduce surface runoff and ease the burden
on urban drainage [3]. But, these systems have some potential
flaws in which inadequate tanks size and gutters may lead to
overflows due to insufficient capacity. These faulty results in
higher water bills and increased the maintenance costs.
Indirectly, these problems may also lower the property values
which causes structural damage and deterring potential buyers.
With that, IoT-Based Water Management System (IWMS)
comes into play, offering a solution that leverage real-time

1st Mohamad Syafiq Asyraf

Bharudin

Department of Computer

Science, Kuliyyah of ICT,

International Islamic

University Malaysia

Kuala Lumpur, Malaysia

msasyraf01@gmail.com

2nd Ahmad Anwar Zainuddin

Department of Computer

Science, Kuliyyah of ICT

International Islamic

University Malaysia

Kuala Lumpur, Malaysia

anwarzain@iium.edu.my

3rd Aliah Maisarah Roslee

Department of Computer

Science, Kuliyyah of ICT

International Islamic

University Malaysia

Kuala Lumpur, Malaysia

aliahmaisarahr@gmail.com

4th Nik Nor Muhammad

Saifudin

Department of Computer

Science, Kuliyyah of ICT,

International Islamic

University Malaysia

Kuala Lumpur, Malaysia

saifudinkamal11@gmail.com

monitoring with automated water control and micro leak
detection mechanism for an efficient and reliable water
management system.

Section I introduces the system and its role in sustainable
water management through IoT. Section II reviews the hardware
components, including the ESP32, ultrasonic sensor, rain sensor
module, cloud services, mobile app framework, NoSQL
database, and hybrid data transmission methods (MQTT and
HTTP/REST API). Building on this foundation, Section III
details the methodology, with a focus on cloud connectivity and
data transmission. Section IV then presents the results and
discussion, highlighting database data, HTTP/REST API
examples, and the mobile app interface. Finally, Section V
wraps up with a comprehensive summary of the findings and
overall discussions.

II. COMPONENT AND DESIGN STRUCTURE

A. Mobile Application Development Framework

Portable is one of the key aspects that define IoT. Without
portability, IoT devices would be restricted to fixed locations,
limiting their application to scenarios where devices are
stationary as well as reducing the flexibility of the device to
adapt to changing environments or use cases. Computers,
laptops, smartwatches, and smartphones have become essential
in today's world and can even be considered as core component
in IoT that exemplify the importance of portability.

React Native was opted for this work due to its ability to
facilitate cross-platform development, which is crucial in the
diverse and interconnected landscape of IoT. Additionally,
React Native’s hot reloading feature enable developers to see
changes in real-time, which is particularly beneficial in the
iterative and fast-paced environment of IoT development [4].

B. Utilizing NoSQL Database for IoT

Historical data provides valuable insights into the current
condition of a system. By collecting and analyzing this data,
trends in system behavior over time can be identified, offering a
baseline for detecting anomalies in real-time. Comparing
current data against historical norms allows for the quick
identification of unusual behavior, potentially signalling issues
that require immediate attention.

To effectively manage and analyze such data, a key tool is
the database. A database is defined as an organized collection of
data that can be easily accessed, managed, and updated [5]. This
structured collection allows for efficient storage and retrieval of
data, which is crucial for various applications across different
fields, including business, healthcare, and scientific research [5].
Databases are typically managed by Database Management
Systems (DBMS), which serve as intermediaries between users
and the databases themselves, facilitating operations such as
data definition, creation, querying, updating, and administration
[5]. Database can be divided into two data models which are
Relational Data Model and Not only Structured Query
Language (NoSQL) Data Model.

TABLE 1. Differences Between Relational Data Model & NoSQL

Data Model. [6], [7], [8]

Relational

Data Model

NoSQL Data

Model

Type Relational Non-relational

Schema Fixed Dynamic

Scalability Vertical Horizontal

Language

Structured

Query

Language

Unstructured

Query Language

Data

Stored in

tabular form

Stored in

unstructured

format using

various methods

(eg. JSON, key-

value pairing,

family

grouping, graph

nodes/edges)

Flexibility

Rigid to

defined

schema

Flexible

Data

Modeling

Technique

Normalization

(eg. 1NF, 2NF,

3NF)

Denormalization

Relational Data Model can be seen as the root of designing
a database architecture, uses the sense of “relationship” between
data derived from mathematic and scientific point of view [9].
In a perspective of data structure, relation can be represented as
tables of values which consist of attributes to provide
characteristic to an element and the content of the attributes are
known as rows of tuples [10]. The structure of a relational
database can be defined using a template called schema and can
be created through DataBase Management System (DBMS).
Create, Read, Update and Delete (CRUD) are four basic
operations of a database. Generally, most DBMS uses a standard
querying language called Structured Query Language (SQL) to
perform the CRUD operations. Normally, most SQL database
requires normalization process in organizing data to reduce
redundancy and improve data integrity. This process involves
dividing large tables into smaller tables that are called normal
foms (1NF, 2NF, 3NF) and defining relationships between
them. In contrast to NoSQL Data Model, it is a non-relational
database structure which does not use SQL syntax. MongoDB,
one of the most widely used NoSQL databases, stores data in a
document-oriented structure using JSON or BSON formats,
which can include nested structures [11]. This allows related
data to be stored together, reducing the need for complex joins.
Unlike relational databases, NoSQL databases often employ
denormalization, where data is intentionally duplicated to
optimize read performance and simplify queries. NoSQL
databases do not require a fixed schema, allowing data to be
stored with varying structures within the same database,
providing flexibility in how the data is organized [11]. This will
offer low latencies data flow and eventually increase the

performance of exchanging data between devices which tallied
with the objective of this work.

C. AWS & MongoDB Integration for IoT Applications

Integrating AWS with MongoDB creates a robust

architecture for IoT applications, harnessing the unique

strengths of both platforms to improve data management,

processing, and scalability. This integration allows for seamless

data flow from IoT devices to the cloud, enabling real-time

insights and operational efficiency.

AWS is one of the powerful cloud platforms where its

infrastructure is specially tailored for scalability and reliability,

supporting application deployment without relying on

extensive on-premise hardware. The set of services offered are

particularly well-suited for IoT solutions, which often generate

large volumes of data. Thus, when pairing with MongoDB, this

integration can reduce the need for complex data

transformation, which helps in streamlining the data ingestion

pipeline.

AWS IoT Core, part of the services used in this work, plays

a critical role in the architecture. It acts like a bridge, routing

messages from these devices in an effective manner while

guaranteeing reliable and secure data transmission of that

information. This capability becomes particularly important in

real-time applications where timely delivery of the data is

crucial for making decisions or responsiveness to an

operational process. Once the information has been passed

through AWS IoT Core, it will be further forwarded to

applications running on Amazon EC2 instances, which interact

directly with the MongoDB database. In turn, it will enable

seamless flow in data. The application will have almost real-

time access to the latest data. For instance, this kind of

effectiveness is required in applications such as environmental

monitoring, condition monitoring of assets, or responding to

sensor alerts.

III. METHODOLOGY

This work seamlessly integrates IoT technology, software

engineering, networking concepts, and electronic engineering

to develop an innovative water level monitoring system. By

harnessing the power of IoT, it transforms traditional water

level monitoring practices, significantly enhancing both user

efficiency and system performance. A critical step in the

prototype development is outlining the system topology, which

allows for a thorough conceptualization of the system and an

in-depth exploration of requirements prior to real-world

deployment. As illustrated in Figure 2A, the diagram shows the

physical connections of sensors to the MCU board and the

integration of cloud services through AWS. Figure 2B depicts

the system operation flows of IWMS.

Fig.2. (A) MCU-AWS Integration & Data Flow Diagram (B) IWMS System

Operation Flow Chart.

The system’s operation begins by establishing a robust
connection between the centralized IoT module and AWS cloud
services, a critical step for ensuring seamless and reliable data
transmission from the network of sensors to the cloud. This
connection is facilitated through the MQTT protocol, which is
well-suited for IoT applications due to its efficiency in handling
small, lightweight data packets. In this architecture, AWS IoT
Core acts as the MQTT broker, managing communication
between the sensors and the cloud. Specifically, it handles
incoming MQTT messages from the NodeMCU ESP32 board—
a key microcontroller unit that gathers data from various
sensors. AWS IoT Core ensures that these messages are
properly routed and distributed to the appropriate subscribers,
such as other cloud services, databases, or applications that need
to process or store the data. As shown in Figure 3A, the
connection setup between AWS and MongoDB uses a secure
approach by storing the URI in a separate environment
configuration file known as dotenv (.env). The MongoDB URI
is accessed by referencing the environment variable
MONGODB_URI, ensuring that sensitive information remains
hidden and secure.

A

B

Fig.3. (A) MongoDB-AWS Connection Setup (B) MongoDB-AWS Cross Connection Schema Configuration.

Fig.4. (A) HTTP/REST API Topic Configurations from EC2 Instance using
Express.js Framework (B) Fetching The Latest Sensor Data & Opening Port

For Cross Connection.

 At the same time, Amazon EC2 (Elastic Compute Cloud),
powered by Ubuntu – Linux based operating system, is used to
handle HTTP requests through a REST API. This component is
crucial for interfacing with the MQTT messages at a higher level
of abstraction. The REST API serves as a bridge, enabling
external applications—such as the mobile-based dashboard—to
interact with the IoT system using standard HTTP requests.
These requests might include commands, queries, or data
retrievals. The EC2 instance processes these HTTP requests and
coordinates with other services, such as MongoDB. Figure 3B
displays the connection configuration between AWS and
MongoDB and schema that will be used for the entire API
requests. MongoDB is employed as the system's storage
solution. After the MQTT messages are received and processed
via the REST API, they are stored in MongoDB, which is
particularly effective at managing large volumes of unstructured

or semi-structured data. This database is essential for
maintaining a historical record of sensor data over time. Such
historical data is highly valuable for trend analysis, anomaly
detection, and predictive maintenance, enabling the system to
identify patterns, spot irregularities, and anticipate maintenance
needs. These data should be accessible across devices and
services by using resource routing URI as defined in Figure 4A.
Figure 4B shows the topic configuration to fetch the latest data
from MongoDB and opening port for the incoming traffic from
EC2 instance and the mobile app.

 Building the RESTful API script alone is not enough; it must
run continuously as a background task. To achieve this, a
package called PM2, a daemon process manager suitable for
Node.js applications, should be used. PM2 is a popular process
manager for server side scripting as it has the capability to
automatically restart the application after crash, manage
multiple instances for load balancing, and provide features like
logging, monitoring and simple deployment [12].

 The mobile-based dashboard acts as the user interface,
providing real-time access to the IoT system's data. It efficiently
manages both data transmission and retrieval by utilizing the
MQTT protocol for live updates and the HTTP/REST API for
on-demand queries and interactions. This dual-protocol
approach ensures that the dashboard can present real-time data
while also enabling users to look at the historical chart for
further information of the system condition.

IV. RESULT AND DISCUSSION

A. Cloud Data

 Dealing with API request requires a lot of testing to ensures
the overall connectivity of system. Postman is one of the
available design, build, test and collaborative API platform
which can visualize the steps of how the API request been made
on the internet.

B. User Interface

 Figure 6A-C illustrates some samples of user interfaces (UI)
made in React Native built on top of JavaScript supported with
several packages including Axios (promise based HTTP client)
and MQTT-connection packages. Figure 12 portrays the key
interface of the system which includes the NodeMCU status
panel, water level gauge meter, water pump status, leak
detection prompt panel and historical water level chart.

B

A

B

A

Fig.6. (A) Dashboard UI Including Current Water Level, Water Pump Status,

Leakage Status & Water Level Summary (B) Nodes UI: Collection of

Multiple Nodes (C) Notifications UI: Display The Timestamp of a Specific
Node.

C. Data Security

When dealing with IoT systems, especially those handling

critical infrastructure, are often vulnerable to security breaches,

making data security a significant concern.

Despite having an enhanced processing power over its

predecessor, ESP32 does include secure boot, flash encryption

Fig.7. Software Bootloader Validation Logical Architecture

Fig.8. Application Firmware Validation Logical Architecture

and cryptographic hardware acceleration which supports

Advanced Encryption System (AES), Hash (SHA-2), Rivest-

Shamir-Adleman Encryption Algorithm (RSA), Elliptic Curve

Cryptography Algorithm (ECC) and Random Number

Generator (RNG) included in its package. Secure Boot is a

feature that will ensure only trusted firmware can be run on the

chip, preventing unauthorized code being executed. This means

that after the compilation of firmware, it will be signed with a

cryptographic key known only to the firmware developer. The

bootloader of ESP32, responsible for loading the main

firmware, will verify and validate the integrity and authenticity

of the firmware by checking the digital signature using

corresponding public key (RSA-3072) stored securely in the

device and can be generated only once during the

manufacturing [13]. With that, the device is immune to passive

side attacks as there is no corresponding RSA-PSS private key

stored on the chip. Additionally, configuring Flash Encryption

adds an extra layer of security where it is used to encrypt the

contents of ESP32’s flash memory. Figure 7 illustrates the

logical architecture of software bootloader validation process.

The ROM code looks up the Public Key, stored in 3072-bit

format, from the Bootloader’s image and cross-validate with

the digest in the eFuse. The ROM then transfer the execution

control to the Bootloader and begins the application firmware

validation as shown in Figure 8.

Not only limited to physical security of the hardware, AWS also

plays a crucial role in ensuring the protection of data over the

air by implementing robust security measures. A good example

of such implementation in AWS is the transport layer security

protocols known as TLS for protection of data in transit from

attacks like eavesdropping and man-in-the-middle attacks.

Besides, access to AWS resources can be tightly controlled; for

instance, AWS provides a facility for the restriction of SSH

access to AWS EC2 instances to particular IP addresses,

thereby reducing the chances of unauthorized access. Besides,

MQTT at AWS IoT Core depends on keys and certificates to

provide security regarding communication between IoT

B C

A

devices and AWS, ensuring that only authenticated devices are

able to transmit and receive data. This is such a multilayered

approach to security that on one hand protects the data in transit

but at the same time authenticates the devices to provide an

integrated protection against the threats.

These security features are helpful and becomes essential to

ensure the integrity, confidentiality and authenticity of the data

being transmitted are preserved.

V. CONCLUSION

After all, this paper addresses critical water management

challenges in Malaysia, particularly the issues stemming from

aging infrastructure and inefficient systems that compromise

both water quality and infrastructure stability. The IoT-Based

Water Management System (IWMS) introduced here provides

a transformative solution by leveraging advanced technologies

to effectively tackle these problems.

ACKNOWLEDGMENT

This work is supported by the Department of Computer
Sciences, KICT, IIUM, Centre of Excellence Cybersecurity,
KICT, IoTeams, KICT and Silverseeds Lab Network.

REFERENCES

[1] I. Martínez, B. Zalba, R. Trillo-Lado, T. Blanco, D. Cambra, and R. Casas,
“Internet of Things (IoT) as Sustainable Development Goals (SDG)
Enabling Technology towards Smart Readiness Indicators (SRI) for
University Buildings,” Sustainability, vol. 13, no. 14, p. 7647, Jul. 2021,
doi: 10.3390/su13147647.

[2] G. Asirvatham, “A Study on Deficiencies Causing Water and Energy
Losses in the Roof Top Water Storage Tank Installations in India,” Int. J.
Res. Appl. Sci. Eng. Technol., vol. 6, no. 3, pp. 871–881, Mar. 2018, doi:
10.22214/ijraset.2018.3138.

[3] G. Freni and L. Liuzzo, “Effectiveness of Rainwater Harvesting Systems
for Flood Reduction in Residential Urban Areas,” Water, vol. 11, no. 7,
p. 1389, Jul. 2019, doi: 10.3390/w11071389.

[4] “What is Cloud Computing?,” Google Cloud. Accessed: May 02, 2024.
[Online]. Available: https://cloud.google.com/learn/what-is-cloud-
computing

[5] G. A. Oguntala and R. A. Abd-Alhameed, “Systematic Analysis of
Enterprise Perception towards Cloud Adoption in the African States: The
Nigerian Perspective,” vol. 9, no. 4.

[6] R. Payne, “Developing in Flutter,” in Beginning App Development with
Flutter, Berkeley, CA: Apress, 2019, pp. 9–27. doi: 10.1007/978-1-4842-
5181-2_2.

[7] A. B., “DATABASE CONNECTOR: A TOOL FOR MANIPULATION
ON DIFFERENT DATABASES,” Int. J. Res. Eng. Technol., vol. 04, no.
22, pp. 7–10, Sep. 2015, doi: 10.15623/ijret.2015.0422003.

[8] C.-H. Lee and Y.-L. Zheng, “SQL-to-NoSQL Schema Denormalization
and Migration: A Study on Content Management Systems,” in 2015 IEEE
International Conference on Systems, Man, and Cybernetics, Kowloon
Tong, Hong Kong: IEEE, Oct. 2015, pp. 2022–2026. doi:
10.1109/SMC.2015.353.

[9] “NoSQL Vs SQL Databases,” MongoDB. Accessed: Aug. 25, 2024.
[Online]. Available:
https://www.mongodb.com/resources/basics/databases/nosql-
explained/nosql-vs-sql

[10] A. Kanade, A. Gopal, and S. Kanade, “A study of normalization and
embedding in MongoDB,” in 2014 IEEE International Advance
Computing Conference (IACC), Gurgaon, India: IEEE, Feb. 2014, pp.
416–421. doi: 10.1109/IAdCC.2014.6779360.

[11] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 26, no. 1, pp. 64–69, Jan. 1983, doi:
10.1145/357980.358007.

[12] V. F. De Oliveira, M. A. D. O. Pessoa, F. Junqueira, and P. E. Miyagi,
“SQL and NoSQL Databases in the Context of Industry 4.0,” Machines,
vol. 10, no. 1, p. 20, Dec. 2021, doi: 10.3390/machines10010020.

[13] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era
of Databases for Big data Analytics - Classification, Characteristics and
Comparison,” 2013, arXiv. doi: 10.48550/ARXIV.1307.0191.

[14] B. Wukkadada, K. Wankhede, R. Nambiar, and A. Nair, “Comparison
with HTTP and MQTT In Internet of Things (IoT),” in 2018 International
Conference on Inventive Research in Computing Applications (ICIRCA),
Coimbatore: IEEE, Jul. 2018, pp. 249–253. doi:
10.1109/ICIRCA.2018.8597401.

[15] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API
Testing Methodologies: Rationale, Challenges, and Solution Directions,”
Appl. Sci., vol. 12, no. 9, p. 4369, Apr. 2022, doi: 10.3390/app12094369.

[16] T. Ambler and N. Cloud, JavaScript Frameworks for Modern Web Dev.
Berkeley, CA: Apress, 2015. doi: 10.1007/978-1-4842-0662-1

[17] “Secure Boot V2 - ESP32 - — ESP-IDF Programming Guide v5.3.1
documentation.” Accessed: Sep. 24, 2024. [Online]. Available:
https://docs.espressif.com/projects/esp-
idf/en/stable/esp32/security/secure-boot-v2.html

