
 Comprehensive IoT-Based Water Management 

System: Cloud Integration for Residential 

Conservation

Abstract— In an era where water conservation is increasingly 

critical, this paper unveils a groundbreaking IoT-based system 

that revolutionizes water management through smart automation. 

By harnessing cutting-edge technologies such as the ESP32 

microcontroller, this system seamlessly integrates with cloud 

services to deliver unparalleled efficiency in water monitoring and 

control. Equipped with an ultrasonic sensor for precise water level 

measurements and a rain sensor for immediate leak detection, the 

system stands at the forefront of innovation in water resource 

management. Designed to automatically adjust water levels and 

respond swiftly to leaks, this system minimizes waste and ensures 

optimal water use with remarkable precision. The advanced cloud 

infrastructure supports real-time data logging and analysis, 

facilitated by MQTT for agile data transmission and HTTP/REST 

APIs for smooth system integration. MongoDB’s robust database 

management enhances the system’s ability to handle and interpret 

vast amounts of data effectively. The user experience is further 

elevated through a dynamic interface built with React Native, 

offering a seamless and intuitive interaction across multiple 

devices. This pioneering solution not only advances smart water 

management technology but also highlights its transformative 

potential for conservation efforts. By combining IoT innovation 

with intuitive software, the system sets a new standard for efficient 

and sustainable water management in residential settings. 

Keywords—Water level monitoring system, MQTT, NodeMCU 

ESP32, Internet of Things, Cloud Integration, Residential 
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I. INTRODUCTION  

Water management is a crucial aspect of urban and suburban 
regional planning, especially in developing countries like 
Malaysia, where rapid urbanization and climate sensitivity 
present significant challenges. This is particularly important in  

 

Fig.1.  Drawbacks of Current Water Management 

residential areas, especially in densely populated neighborhoods 
with aging infrastructure. Proper water management is vital not 
only for preventing structural damage in these areas but also for 
supplying clean and safe drinking water to residents. This aligns 
with Sustainable Development Goal 6 (Clean Water and 
Sanitation), which promotes efficient water use, minimizes 
waste, and emphasizes maintaining water quality and ensuring 
access to clean, safe water [1]. Therefore, solving problems 
associated with water management is necessary not only to 
protect people’s health but also to ensure the stability of housing 
stock in Malaysia. 

 Figure 1 illustrates the impacts of poor water management 
on housing areas. The primary issue in today’s infrastructure is 
on the aging of assets, which lose their strength and flexibility, 
making them more susceptible to cracks, deformation and 
eventually can causes leak to occur [2]. In some residential 
areas, rainwater harvesting systems are used to collect and store 
rainwater, aiming to reduce surface runoff and ease the burden 
on urban drainage [3]. But, these systems have some potential 
flaws in which inadequate tanks size and gutters may lead to 
overflows due to insufficient capacity. These faulty results in 
higher water bills and increased the maintenance costs. 
Indirectly, these problems may also lower the property values 
which causes structural damage and deterring potential buyers. 
With that, IoT-Based Water Management System (IWMS) 
comes into play, offering a solution that leverage real-time 
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monitoring with automated water control and micro leak 
detection mechanism for an efficient and reliable water 
management system. 

Section I introduces the system and its role in sustainable 
water management through IoT. Section II reviews the hardware 
components, including the ESP32, ultrasonic sensor, rain sensor 
module, cloud services, mobile app framework, NoSQL 
database, and hybrid data transmission methods (MQTT and 
HTTP/REST API). Building on this foundation, Section III 
details the methodology, with a focus on cloud connectivity and 
data transmission. Section IV then presents the results and 
discussion, highlighting database data, HTTP/REST API 
examples, and the mobile app interface. Finally, Section V 
wraps up with a comprehensive summary of the findings and 
overall discussions. 

II. COMPONENT AND DESIGN STRUCTURE  

A. Mobile Application Development Framework 

Portable is one of the key aspects that define IoT. Without 
portability, IoT devices would be restricted to fixed locations, 
limiting their application to scenarios where devices are 
stationary as well as reducing the flexibility of the device to 
adapt to changing environments or use cases. Computers, 
laptops, smartwatches, and smartphones have become essential 
in today's world and can even be considered as core component 
in IoT that exemplify the importance of portability. 

React Native was opted for this work due to its ability to 
facilitate cross-platform development, which is crucial in the 
diverse and interconnected landscape of IoT. Additionally, 
React Native’s hot reloading feature enable developers to see 
changes in real-time, which is particularly beneficial in the 
iterative and fast-paced environment of IoT development [4]. 

B. Utilizing NoSQL Database for IoT 

Historical data provides valuable insights into the current 
condition of a system. By collecting and analyzing this data, 
trends in system behavior over time can be identified, offering a 
baseline for detecting anomalies in real-time. Comparing 
current data against historical norms allows for the quick 
identification of unusual behavior, potentially signalling issues 
that require immediate attention. 

To effectively manage and analyze such data, a key tool is 
the database. A database is defined as an organized collection of 
data that can be easily accessed, managed, and updated [5]. This 
structured collection allows for efficient storage and retrieval of 
data, which is crucial for various applications across different 
fields, including business, healthcare, and scientific research [5]. 
Databases are typically managed by Database Management 
Systems (DBMS), which serve as intermediaries between users 
and the databases themselves, facilitating operations such as 
data definition, creation, querying, updating, and administration 
[5]. Database can be divided into two data models which are 
Relational Data Model and Not only Structured Query 
Language (NoSQL) Data Model. 

 

 

 

TABLE 1.  Differences Between Relational Data Model & NoSQL  

Data Model. [6], [7], [8] 

 
Relational 

Data Model 

NoSQL Data 

Model 

Type Relational Non-relational 

Schema Fixed Dynamic 

Scalability Vertical Horizontal 

Language 

Structured 

Query 

Language 

Unstructured 

Query Language 

Data 

Stored in 

tabular form 

Stored in 

unstructured 

format using 

various methods 

(eg. JSON, key-

value pairing, 

family 

grouping, graph 

nodes/edges) 

Flexibility 

Rigid to 

defined 

schema 

Flexible 

Data 

Modeling 

Technique 

Normalization 

(eg. 1NF, 2NF, 

3NF) 

Denormalization 

 

Relational Data Model can be seen as the root of designing 
a database architecture, uses the sense of “relationship” between 
data derived from mathematic and scientific point of view [9]. 
In a perspective of data structure, relation can be represented as 
tables of values which consist of attributes to provide 
characteristic to an element and the content of the attributes are 
known as rows of tuples [10]. The structure of a relational 
database can be defined using a template called schema and can 
be created through DataBase Management System (DBMS). 
Create, Read, Update and Delete (CRUD) are four basic 
operations of a database. Generally, most DBMS uses a standard 
querying language called Structured Query Language (SQL) to 
perform the CRUD operations. Normally, most SQL database 
requires normalization process in organizing data to reduce 
redundancy and improve data integrity. This process involves 
dividing large tables into smaller tables that are called normal 
foms (1NF, 2NF, 3NF) and defining relationships between 
them. In contrast to NoSQL Data Model, it is a non-relational 
database structure which does not use SQL syntax. MongoDB, 
one of the most widely used NoSQL databases, stores data in a 
document-oriented structure using JSON or BSON formats, 
which can include nested structures [11]. This allows related 
data to be stored together, reducing the need for complex joins. 
Unlike relational databases, NoSQL databases often employ 
denormalization, where data is intentionally duplicated to 
optimize read performance and simplify queries. NoSQL 
databases do not require a fixed schema, allowing data to be 
stored with varying structures within the same database, 
providing flexibility in how the data is organized [11]. This will 
offer low latencies data flow and eventually increase the 



performance of exchanging data between devices which tallied 
with the objective of this work. 

C. AWS & MongoDB Integration for IoT Applications 

Integrating AWS with MongoDB creates a robust 

architecture for IoT applications, harnessing the unique 

strengths of both platforms to improve data management, 

processing, and scalability. This integration allows for seamless 

data flow from IoT devices to the cloud, enabling real-time 

insights and operational efficiency. 

AWS is one of the powerful cloud platforms where its 

infrastructure is specially tailored for scalability and reliability, 

supporting application deployment without relying on 

extensive on-premise hardware. The set of services offered are 

particularly well-suited for IoT solutions, which often generate 

large volumes of data. Thus, when pairing with MongoDB, this 

integration can reduce the need for complex data 

transformation, which helps in streamlining the data ingestion 

pipeline.  

AWS IoT Core, part of the services used in this work, plays 

a critical role in the architecture. It acts like a bridge, routing 

messages from these devices in an effective manner while 

guaranteeing reliable and secure data transmission of that 

information. This capability becomes particularly important in 

real-time applications where timely delivery of the data is 

crucial for making decisions or responsiveness to an 

operational process. Once the information has been passed 

through AWS IoT Core, it will be further forwarded to 

applications running on Amazon EC2 instances, which interact 

directly with the MongoDB database. In turn, it will enable 

seamless flow in data. The application will have almost real-

time access to the latest data. For instance, this kind of 

effectiveness is required in applications such as environmental 

monitoring, condition monitoring of assets, or responding to 

sensor alerts. 

III. METHODOLOGY 

This work seamlessly integrates IoT technology, software 

engineering, networking concepts, and electronic engineering 

to develop an innovative water level monitoring system. By 

harnessing the power of IoT, it transforms traditional water 

level monitoring practices, significantly enhancing both user 

efficiency and system performance. A critical step in the 

prototype development is outlining the system topology, which 

allows for a thorough conceptualization of the system and an 

in-depth exploration of requirements prior to real-world 

deployment. As illustrated in Figure 2A, the diagram shows the 

physical connections of sensors to the MCU board and the 

integration of cloud services through AWS. Figure 2B depicts 

the system operation flows of IWMS. 

 

 
Fig.2.  (A) MCU-AWS Integration & Data Flow Diagram (B) IWMS System 

Operation Flow Chart. 

The system’s operation begins by establishing a robust 
connection between the centralized IoT module and AWS cloud 
services, a critical step for ensuring seamless and reliable data 
transmission from the network of sensors to the cloud. This 
connection is facilitated through the MQTT protocol, which is 
well-suited for IoT applications due to its efficiency in handling 
small, lightweight data packets. In this architecture, AWS IoT 
Core acts as the MQTT broker, managing communication 
between the sensors and the cloud. Specifically, it handles 
incoming MQTT messages from the NodeMCU ESP32 board—
a key microcontroller unit that gathers data from various 
sensors. AWS IoT Core ensures that these messages are 
properly routed and distributed to the appropriate subscribers, 
such as other cloud services, databases, or applications that need 
to process or store the data. As shown in Figure 3A, the 
connection setup between AWS and MongoDB uses a secure 
approach by storing the URI in a separate environment 
configuration file known as dotenv (.env). The MongoDB URI 
is accessed by referencing the environment variable 
MONGODB_URI, ensuring that sensitive information remains 
hidden and secure. 

A 

B 



  
Fig.3. (A) MongoDB-AWS Connection Setup (B) MongoDB-AWS Cross Connection Schema Configuration. 

 
 

 
Fig.4.  (A) HTTP/REST API Topic Configurations from EC2 Instance using 
Express.js Framework (B) Fetching The Latest Sensor Data & Opening Port 

For Cross Connection. 

 At the same time, Amazon EC2 (Elastic Compute Cloud), 
powered by Ubuntu – Linux based operating system,  is used to 
handle HTTP requests through a REST API. This component is 
crucial for interfacing with the MQTT messages at a higher level 
of abstraction. The REST API serves as a bridge, enabling 
external applications—such as the mobile-based dashboard—to 
interact with the IoT system using standard HTTP requests. 
These requests might include commands, queries, or data 
retrievals. The EC2 instance processes these HTTP requests and 
coordinates with other services, such as MongoDB. Figure 3B 
displays the connection configuration between AWS and 
MongoDB and schema that will be used for the entire API 
requests. MongoDB is employed as the system's storage 
solution. After the MQTT messages are received and processed 
via the REST API, they are stored in MongoDB, which is 
particularly effective at managing large volumes of unstructured 

or semi-structured data. This database is essential for 
maintaining a historical record of sensor data over time. Such 
historical data is highly valuable for trend analysis, anomaly 
detection, and predictive maintenance, enabling the system to 
identify patterns, spot irregularities, and anticipate maintenance 
needs. These data should be accessible across devices and 
services by using resource routing URI as defined in Figure 4A. 
Figure 4B shows the topic configuration to fetch the latest data 
from MongoDB and opening port for the incoming traffic from 
EC2 instance and the mobile app.  

 Building the RESTful API script alone is not enough; it must 
run continuously as a background task. To achieve this, a 
package called PM2, a daemon process manager suitable for 
Node.js applications, should be used. PM2 is a popular process 
manager for server side scripting as it has the capability to 
automatically restart the application after crash, manage 
multiple instances for load balancing, and provide features like 
logging, monitoring and simple deployment [12]. 

 The mobile-based dashboard acts as the user interface, 
providing real-time access to the IoT system's data. It efficiently 
manages both data transmission and retrieval by utilizing the 
MQTT protocol for live updates and the HTTP/REST API for 
on-demand queries and interactions. This dual-protocol 
approach ensures that the dashboard can present real-time data 
while also enabling users to look at the historical chart for 
further information of the system condition. 

IV. RESULT AND DISCUSSION  

A. Cloud Data 

 Dealing with API request requires a lot of testing to ensures 
the overall connectivity of system. Postman is one of the 
available design, build, test and collaborative API platform 
which can visualize the steps of how the API request been made 
on the internet. 

B. User Interface 

 Figure 6A-C illustrates some samples of user interfaces (UI) 
made in React Native built on top of JavaScript supported with 
several packages including Axios (promise based HTTP client) 
and MQTT-connection packages. Figure 12 portrays the key 
interface of the system which includes the NodeMCU status 
panel, water level gauge meter, water pump status, leak 
detection prompt panel and historical water level chart. 

B 
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Fig.6.  (A) Dashboard UI Including Current Water Level, Water Pump Status, 

Leakage Status & Water Level Summary (B) Nodes UI: Collection of 

Multiple Nodes (C) Notifications UI: Display The Timestamp of a Specific 
Node. 

C. Data Security 

When dealing with IoT systems, especially those handling 

critical infrastructure, are often vulnerable to security breaches, 

making data security a significant concern.  

 

Despite having an enhanced processing power over its 

predecessor, ESP32 does include secure boot, flash encryption  

 
Fig.7. Software Bootloader Validation Logical Architecture 

 
Fig.8. Application Firmware Validation Logical Architecture 

and cryptographic hardware acceleration which supports 

Advanced Encryption System (AES), Hash (SHA-2), Rivest-

Shamir-Adleman Encryption Algorithm (RSA), Elliptic Curve 

Cryptography Algorithm (ECC) and Random Number 

Generator (RNG) included in its package. Secure Boot is a 

feature that will ensure only trusted firmware can be run on the 

chip, preventing unauthorized code being executed. This means 

that after the compilation of firmware, it will be signed with a 

cryptographic key known only to the firmware developer. The 

bootloader of ESP32, responsible for loading the main 

firmware, will verify and validate the integrity and authenticity 

of the firmware by checking the digital signature using 

corresponding public key (RSA-3072) stored securely in the 

device and can be generated only once during the 

manufacturing [13]. With that, the device is immune to passive 

side attacks as there is no corresponding RSA-PSS private key 

stored on the chip. Additionally, configuring Flash Encryption 

adds an extra layer of security where it is used to encrypt the 

contents of ESP32’s flash memory. Figure 7 illustrates the 

logical architecture of software bootloader validation process. 

 

The ROM code looks up the Public Key, stored in 3072-bit 

format, from the Bootloader’s image and cross-validate with 

the digest in the eFuse. The ROM then transfer the execution 

control to the Bootloader and begins the application firmware 

validation as shown in Figure 8. 

 

Not only limited to physical security of the hardware, AWS also 

plays a crucial role in ensuring the protection of data over the 

air by implementing robust security measures. A good example 

of such implementation in AWS is the transport layer security 

protocols known as TLS for protection of data in transit from 

attacks like eavesdropping and man-in-the-middle attacks. 

Besides, access to AWS resources can be tightly controlled; for 

instance, AWS provides a facility for the restriction of SSH 

access to AWS EC2 instances to particular IP addresses, 

thereby reducing the chances of unauthorized access. Besides, 

MQTT at AWS IoT Core depends on keys and certificates to 

provide security regarding communication between IoT 
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devices and AWS, ensuring that only authenticated devices are 

able to transmit and receive data. This is such a multilayered 

approach to security that on one hand protects the data in transit 

but at the same time authenticates the devices to provide an 

integrated protection against the threats. 

 

These security features are helpful and becomes essential to 

ensure the integrity, confidentiality and authenticity of the data 

being transmitted are preserved. 

V. CONCLUSION 

After all, this paper addresses critical water management 

challenges in Malaysia, particularly the issues stemming from 

aging infrastructure and inefficient systems that compromise 

both water quality and infrastructure stability. The IoT-Based 

Water Management System (IWMS) introduced here provides 

a transformative solution by leveraging advanced technologies 

to effectively tackle these problems.  
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