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Abstract— Exercise is crucial for maintaining a healthy 

weight and reducing the risk of chronic diseases, yet over half of 

Malaysia's adult population is overweight or obese due to lack 

of activity. Accurate monitoring of energy expenditure during 

exercise is therefore important. A deep learning approach using 

micro-Doppler radar data is presented to estimate human 

energy expenditure. Traditional measurement techniques are 

complex and expensive, while existing wearable sensors have 

limitations. The method captures micro-Doppler radar 

signatures from 11 participants performing treadmill walking 

and running exercises using a 24 GHz continuous-wave radar. 

The radar signals are preprocessed into time-frequency 

spectrograms and inputted to a convolutional neural network 

(CNN) model for training to predict energy expenditure values. 

The CNN's performance yielded a root mean squared error of 

12 kcal/min, providing valuable insights into energy expenditure 

estimation.  

Keywords— human energy expenditure, radar sensor, deep 

learning, convolutional neural network   

I. INTRODUCTION 

Over half of Malaysia's adult population is considered 
overweight or obese, a statistic raising major public health 
concerns [1]. A key factor contributing to these high rates is 
the lack of regular physical exercise among Malaysians. To 
address this and increase activity levels, the Malaysian 
Ministry of Health released the Malaysian Physical Activity 
Guidelines. These guidelines align with the Global Non-
Communicable Diseases (NCD) Target for 2025, which aims 
to reduce physical inactivity from 35.2% to 30% [2]. 
However, a large proportion of the population does not adhere 
to the national physical activity guidelines [2]. Consequently, 
there is a need for effective tools to objectively monitor energy 
expenditure from physical activity. Measuring exercise 
intensity in terms of energy expenditure is crucial for 
preventing obesity [3] and lowering the risk of developing 
chronic diseases [4].  

The demand for an accurate and reliable method to 
estimate energy expenditure (EE) in free-living conditions 
has grown in recent years since it is important to a better 
understanding of the role of energy expenditure as a factor in 
human health. The gold standard for assessing human body 
energy expenditure in a free-living environment is to use the 

doubly labelled water (DLW) [5] and calorimetry method [6]. 
However, these methods are expensive and rely on complex 
measurement techniques. Recent research has shown that the 
combination of heart rate (HR) and motion sensors such as 
Inertial Measurement Unit (IMU) could be used to evaluate 
energy expenditure [7]. However, the measurement of heart 
rate is more sensitive to many factors including body size, 
fitness level, person’s emotional stress, environmental 
temperature and humidity [8]. For IMUs, this method might 
not be as effective with some physical activities that primarily 
include upper- or lower-body motion, which can be 
challenging to identify from a single motion sensor.  

Recent developments in predicting energy expenditure 
during daily activities include the use of radar sensors. These 
sensors operate by emitting electromagnetic waves and 
analysing the Doppler shift of the reflected signal caused by 
human body movements. Radar-based systems offer several 
advantages over existing methods. Firstly, they guarantee user 
privacy, as they do not capture visual information. Secondly, 
they function reliably in all lighting conditions, unaffected by 
ambient light levels. Finally, radar sensors are generally less 
expensive and require simpler processing compared to vision-
based systems. 

Research into using radar to measure physical activity is 
plentiful, with most studies focusing on recognising human 
activities like walking, running and sitting [9], [10], [11]. 
However, estimating energy expenditure during exercise 
remains less explored. Over the past decade, researchers have 
attempted to estimate energy expenditure using the mass of 
radar micro-Doppler estimated from spectrogram [12]. 
Building on this idea, [13] created regression models for 
walking and running, achieving an estimation error of under 
14% for both activities. However, the complexity of radar 
spectrograms presents a challenge for these regression 
models. Human motions during many physical activities can 
result in intricate micro-Doppler signatures, making it difficult 
to accurately predict energy expenditure based on simple 
linear regression model.  

Therefore, the objective of this study is to predict energy 
expenditure using a non-linear model based on deep learning 
techniques. Specifically, we employ a convolutional neural 
network (CNN) to estimate energy expenditure from radar 
spectrogram data. Previous research has demonstrated that 
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CNN models can learn complex patterns directly from micro-
Doppler data, thus eliminating the need for manual feature 
engineering, such as calculating the mass of the spectrogram. 

The rest of this article is organized as follows. In Section 
II, we describe the details of the proposed methodology which 
includes details on the system overview, data collection, data 
pre-processing, Convolutional Neural Network model, and 
image dataset and CNN training. In Section IV, we present our 
findings and discuss the paper. Section V, concludes the work. 

II. METHODOLOGY 

A. System Overview 

 Fig. 1 illustrates the proposed system. The core of the 
system utilises a Convolutional Neural Network (CNN) model 
to predict energy expenditure during exercise on a treadmill. 
The model is trained on micro-Doppler signals captured by a 
24 GHz Continuous-Wave (CW) radar (RF Beam K-LC2 
radar [14]) while participants (university students) walked or 
ran. During exercise, heart rate was also recorded as a ground 
truth of expanded energy. The captured radar signal is first 
segmented into short segments, then transformed into 
spectrograms using Short-Time Fourier Transform (STFT). 
which serve as the input features for the CNN model. 

B. Data Collection 

In this study, micro-Doppler data were collected from 
treadmill exercise using a radar positioned 3 metres behind 
participants. Eleven volunteers from Universiti Teknologi 
MARA (UiTM) participated. All participants were in good 
health and reported no known medical conditions. The study 
adhered to ethical guidelines and received approval from the 
Universiti Teknologi MARA ethics committee [15]. 

Data collection began with a five-minute warm-up walk at 
5 km/h. In the main data collection phase, participants started 
at 5 km/h and the treadmill speed was increased by 0.5 km/h 
every two minutes, reaching a maximum of 10 km/h. This 
phase captured ten minutes of walking data (5-7 km/h) and 
twelve minutes of running data (7.5-10 km/h). In total, 22 
minutes of data per participant were collected. Each 
participant contributed 22 data points (one per minute): 10 for 
walking and 12 for running. The final dataset comprised 
29,040 one-second in-phase and quadrature-phase signals, 
representing a total recording time of eight hours. 

 
Fig. 2 The experimental setup of a radar-based exercise energy expenditure 

C. Data Pre-processing 

Data preprocessing is divided into two main parts: noise 
reduction using a low-pass filter with a cut-off frequency and 
processing using the short-time Fourier transform (STFT) 
technique. To obtain a spectrogram, a sliding window is used 
to divide the digital radar signal into fixed-length samples. 
The sliding window length is defined by  

                             � � �� � 1�∆�                                  (1) 

where � is the length of the segment in seconds and ∆� is the 
sampling interval. We used Hamming window to reduce 
spectral leakage. Next, we employed short-time Fourier 
transform (STFT) to convert the one-dimensional radar signal 
into a time-frequency (TF) representation. For a given discrete 
radar signal 	
�� the discrete Fourier transform (DFT) 
employing a time-shifted sliding window function of fixed 
�

� size  is defined by  

               �
�, �� � � 	
� � 
��

��������
�

���

���
             (2) 


, � � 1,2,3, … , " � 1 

 

Fig. 1 System proposed  
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Fig. 3 Proposed CNN architecture 

where, � [
, �] represents the time-frequency matrix, where 
� is the frequency bin, t is the frame period, 
 is the amount 
of shift and # is the window length.  Squaring the magnitude 
of the STFT, yields the spectrogram. A DFT size of 256 is 
used. To capture the signal changes that occur between two 
windows, a 50% overlapping is employed in the sliding 
window. Any spectral magnitude below -40 dB is removed to 
noise. Each spectrogram image is visualised with RGB colour 
and are fixed to a small 128x128 size. 

D. Convolutional Neural Network (CNN) 

This study utilised a convolutional neural network (CNN) 
architecture. The first layer used a kernel size of 7x7 to capture 
large-scale features within the spectrogram. The second 
convolutional uses a smaller 5x5 kernel. Finally, the third 
convolutional layer is implemented with even smaller 3x3 
kernels. We increased the number of filters used with 8, 16, 
and 32 for layer 1, 2 and 3 respectively. Following each 
convolution, a max pooling layer of size 3x3 and a ReLU 
activation function were implemented. The data was then 
flattened before feeding into dense layers containing 512, 
1024, and 2048 nodes each. Dropout layers were incorporated 
throughout the network to prevent overfitting and improve 
generalizability. The entire CNN architecture requires 
approximately 12.3 MB of RAM. Fig. 3 show the overall 
architecture of our proposed CNN. 

E. CNN Training 

The collected dataset is split randomly into 80% for 
training and 20% for validation in order to train the models 
using 5-fold cross-validation. We choose Adam as the 
optimisation algorithm with a learning rate of 10�% and batch  

size of 32. Additionally, we implemented early stopping with 
patience set to 10, meaning that after 10 epochs, if the losses 
do not diminish, the training will stop. Two open-source 
libraries, TensorFlow and Keras, were used to implement the 
pre-trained networks. Training was conducted using Google 
Colab Pro (https://colab.research.google.com) on a Tesla 
V100 graphics processing unit (GPU). 

The root mean square error (RMSE) was used to analyze 
the performance of the EE models. This metric is commonly 
used in the field of EE estimation. For additional evaluations, 
the coefficient of determination (R2) was employed. 

III. EXPERIMENTAL EVALUATION AND DISCUSSION 

Table 1 presents participants statistical characteristics for 
EE estimation, included the metrics of the root mean squared 
error (RMSE) and the coefficient of determination (&') of the 
architecture of CNN. The results obtained using the train and 
test sets display estimation’s performance &'  scores that 
approach 0.75 and RMSE equal to 12 kcal/min. Fig. 4 
provides the scatter plot of predicted energy expenditure 
versus measured energy expenditure. Considering &' , the 
correlation coefficient between the predicted and measured of 
EE is relatively high.  

 From the table 1, reveals that the CNN was able to catch 
relevant information in the inputs to increase its generalization 
of different subjects, supported with the low standard-
deviation observed. By analysing Fig. 4, our model was 
revealed to be accurate since an above 0.75 was achieved, 
indicating that both predicted and measured share the same 
monotony.  

Parameter Metrics 

 No. of par�cipants Age  

(years) 

Height  

(cm) 

Weight  

(kg) 

EE Es�mated 

(kCal/H) 

Coefficient of 

determina�on (()� 
 

RMSE 

Data are 

mean ± SD 

11 22.18 ± 1.8 165.2 ± 7.2 

 

67.36 ± 3.6 

 

514.3 ± 6.3 0.7473 12 

TABLE I. PARTICIPANTS STATISTICAL CHARACTERISTICS AND METRICES 
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Fig. 4 Scatter plots of predicted energy expenditure vs. measured energy 

expenditure 

IV. CONCLUSION 

This work presents and validates a CNN tool for energy 
expenditure estimation by comparing the predicted EE values 
to those measured during exercise. A total of 11 individuals 
participated in the exercises and the results from these studies 
were promising. It was found that the CNN model provided 
the accurate estimation of EE, with a root mean squared error 
of 12 kcal/min. While the research showed encouraging 
results, the main issue identified is that these techniques were 
developed and tested using data collected from a limited set of 
exercises performed. This restricted data may not account for 
the variability encountered during more diverse activities and 
in free-living conditions. Addressing this limitation by 
expanding the data collection to encompass a wider range of 
real-world activities could improve the generalizability and 
robustness of the micro-Doppler energy expenditure 
estimation models. 
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