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A B S T R A C T   

Assessing riverine pollutant loads is a more realistic method for analysing point and non-point anthropogenic 
pollution sources throughout a watershed. This study compares numerous mathematical modelling strategies for 
estimating riverine loads based on the chosen water quality parameters: Biochemical Oxygen Demand (BOD), 
Chemical Oxygen Demand (COD), Suspended Solids (SS), and Ammoniacal Nitrogen (NH3–N). A riverine load 
model was developed by employing various input variables including river flow and pollutant concentration 
values collected at several monitoring sites. Among the mathematical modelling methods employed are artificial 
neural networks with feed-forward backpropagation algorithms and radial basis functions. The classical multiple 
linear regression (MLR) statistical model was used for the comparison. Four widely used statistical performance 
assessment metrics were adopted to evaluate the performance of the various developed models: the root mean 
square error (RMSE), mean absolute error (MAE), mean relative error (MRE), and coefficient of determination 
(R2). The considerable number of errors (with RMSE, MAE, and MRE) discovered in estimating riverine loads 
using the multiple linear regression (MLR) statistical model can be attributed to the nonlinear relationship be-
tween the independent variables (Q and Cx) and dependent variables (W). The feed-forward neural network 
model with a backpropagation algorithm and Bayesian regularisation training algorithm outperformed the radial 
basis neural network. This finding implies that, in addition to suspended sediment loads, riverine loads may be 
predicted using an artificial neural network using pollutant concentration (Cx) and river discharge (Q) as input 
variables. Other geographical and temporal fluctuation characteristics that may impact river water quality, on 
the other hand, may be incorporated as input variables to enhance riverine load prediction. Finally, riverine load 
analyses were successfully conducted to reduce the riverine load.   
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1. Introduction 

Rivers, the lifeblood of environmental ecosystems, and the corner-
stone of human civilisation are indispensable not only for their ecolog-
ical importance, but also for their vital roles in personal hygiene, 
drinking water, agricultural irrigation, industrial processes, and as 
pivotal sources of hydroelectric power [1–3]. The quality of these vital 
waterways, encompassing a complex interplay of physical, chemical, 
and biological characteristics, transcends metrics that reflect the health 
of ecosystems and their capacity to support human life [4,5]. However, 
this crucial resource is under siege from anthropogenic activities; ur-
banization and industrialization have led to the deterioration of river 
water quality through the discharge of pollutants from urban drains, 
agricultural runoff laden with pesticides and fertilizers, and industrial 
effluents [6–8]. This escalating crisis highlights the urgent need for 
innovative engineering solutions, which are being addressed by 
exploring new methodologies to assess, monitor, and enhance river 
water quality. In doing so, it aims to redefine our interactions with these 
natural resources, merging environmental stewardship with engineering 
prowess to safeguard the irreplaceable lifelines of our planet for future 
generations. 

Malaysian river systems face a multitude of pollution sources, pri-
marily sewage disposal, effluent discharge from small- and medium- 
sized industries that lack sufficient effluent treatment facilities, exten-
sive earthwork operations, and land clearing activities [9]. Notably, in 
1999, alarming 42% of Malaysia’s river basins exhibited pollution 
attributable to suspended solids (SS), a consequence of poorly planned 
and unregulated land clearing activities. An additional 30% of these 
river basins were contaminated by organic matter originating from in-
dustrial effluents, whereas 28% were contaminated with ammoniacal 
nitrogen (NH3–N) resulting from sewage disposal and animal husbandry 
practices [10,11]. The adverse consequences of this pervasive degra-
dation of river water quality extend far beyond the environmental 
domain, encompassing significant ramifications for human health, 
ecological stability, and national economic well-being [12–14]. Thus, 
there is an imperative for a comprehensive and continuous assessment 
and monitoring, serving as the foundational step required to facilitate 
the formulation and implementation of more efficacious strategies 
aimed at safeguarding and preserving this invaluable water resource. 

Historically, the collection of water quality data hinged upon the 
labourious practice of on-site monitoring, a method characterised by its 
resource-intensive nature, necessitating not only a cadre of trained 
professionals but also the allocation of consistent resources [15] How-
ever, as contemporary research endeavours delve into the intricate 
complexities of water quality dynamics, a pivotal shift in methodology 
has become apparent. Although deterministic [16,17] and stochastic 
models [18,19] for water quality prediction have emerged as note-
worthy endeavours, they present formidable challenges. Their imple-
mentation requires assimilation of extensive datasets and intricate 
model structures to support robust analysis [20]. Within this evolving 
landscape, paradigmatic transformation towards statistical modelling 
has found its genesis. These novel statistical models, underpinned by the 
assumption of linear relationships and normal distribution properties 
between the response and predictor variables, represent a significant 
departure from traditional methods [16]. However, as water quality 
emerges as an increasingly multifaceted concern, characterised by 
intricate nonlinear relationships between numerous influencing factors, 
these conventional linear data analysis methods gradually reveal their 
limitations [21]. 

In response to this burgeoning complexity, the scientific community 
has begun to pivot towards Artificial Neural Networks (ANNs) as a 
promising alternative approach for water quality parameter prediction. 
ANNs, which have witnessed significant advancements since their 
inception, stand at the forefront of data-driven modelling methodolo-
gies. Their capacity to model intricate nonlinear interactions between 
multiple variables in complex systems renders them invaluable tools 

[11,22–25]. In recent decades, ANNs have been demonstrated to predict 
a diverse array of water quality parameters across various aquatic en-
vironments, including salinity, total dissolved solids (TDS), electrical 
conductivity, turbidity, chemical oxygen demand (COD), biochemical 
oxygen demand (BOD), dissolved oxygen (DO), ammoniacal nitrogen 
(NH3–N), and water quality indices (WQI) [20,21,24,26,27]. This shift 
towards ANNs represents not just a departure from traditional methods 
but a strategic response to the evolving demands of modern water 
quality assessment, catering to the multifaceted nature of the challenges 
faced in safeguarding this critical natural resource. 

Artificial Neural Networks (ANNs) are remarkable innovations in 
river water quality prediction that offer several advantages. First, ANNs 
excel at capturing intricate nonlinear relationships among a multitude of 
influencing factors, a feature that is unattainable by traditional linear 
models [21,28]. This nonlinear modelling capability is particularly ad-
vantageous in the water quality domain, where the interactions between 
variables are often complex and dynamic. Additionally, ANNs exhibit 
adaptability and resilience in handling missing or noisy data, thereby 
enhancing their robustness in real-world applications [27]. Their 
inherent ability to self-learn and adapt to evolving conditions renders 
them suitable for accommodating the temporal and spatial fluctuations 
characteristic of river ecosystems [20]. The versatility of ANNs has been 
harnessed across diverse research domains, particularly in water quality 
prediction, where their application has yielded significant advance-
ments [22,25,29]. This burgeoning body of research underscores the 
pivotal role of ANNs as a transformative tool in the contemporary 
landscape of water quality assessment, offering unparalleled predictive 
capabilities and opening new horizons for understanding and managing 
vital aquatic ecosystems [30]. 

The predominant focus on pollutant concentration prediction within 
artificial neural network (ANN) applications for water quality research 
has obscured a critical research gap concerning the assessment of 
pollutant loads, particularly in the context of both point and nonpoint 
pollution sources within the entire watershed. This gap is particularly 
relevant, given the increasing global concern regarding water quality 
and environmental conservation. Therefore, this study introduces a 
pioneering approach that harnesses the advanced capabilities of a Feed- 
Forward Backpropagation Neural Network (FFBP NN) for riverine 
pollutant load modelling, which has not been employed in previous 
studies. By shifting from a traditional concentration-centric paradigm to 
one that emphasises pollutant load assessment, this innovation offers 
several advantages. First, the FFBP NN-based approach provides a more 
comprehensive and holistic understanding of watershed pollution by 
capturing the intricate interplay between key pollutants including 
biochemical oxygen demand (BOD), chemical oxygen demand (COD), 
ammoniacal nitrogen (NH3–N), and suspended solids (SS) across all 
watersheds. This departure from concentration-centric modelling allows 
for a more accurate evaluation of the contributions of point and 
nonpoint pollution sources, thereby enhancing the overall accuracy of 
environmental assessments [31]. Furthermore, the method is equipped 
with policymakers and environmentalists with a robust and scalable tool 
for data-driven interventions, thereby establishing new standards for 
environmental monitoring and river conservation. In an era marked by 
escalating environmental degradation and the urgent need for sustain-
able resource management, this innovative FFBP NN-based approach 
represents a significant leap forward in addressing this critical research 
gap and advancing the field of riverine pollutant load modelling. The 
principal aim of this study was to develop a comprehensive riverine load 
model encompassing the following key water quality parameters based 
on an Artificial Neural Network model: biochemical oxygen demand 
(BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3–N), 
and suspended solids (SS). To achieve this goal, we leveraged a feed-
forward backpropagation neural network (FFBP NN), which is a 
powerful computational tool known for its capacity to effectively cap-
ture complex nonlinear relationships within environmental datasets. 
The inherent ability of the FFBP NN to adapt and optimise model 
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parameters, coupled with its capacity to handle intricate in-
terdependencies, makes it a robust choice for modelling riverine loading 
water quality dynamics. To rigorously assess and validate the predictive 
performance of the model, we conducted comparative analyses with 
alternative predictive analytical methods, specifically, the radial basis 
neural network (RBNN) and multiple linear regression (MLR). This 
research not only advances the field of environmental modelling but also 
underscores the advantages of utilising FFBP NN for enhancing the ac-
curacy and predictive capabilities of riverine loading water quality 
assessments. 

2. Methodology 

2.1. Study area description 

The Muda River was chosen as the study area to develop an ANN 
model for predicting riverine loads. It is the longest river in the state of 
Kedah, with a total length of 180 km and a catchment area of 4210 km2 

[32] The river basin land is primarily used for forestry and cultivation 
such as paddy, palm oil, and rubber [33]. This is supported by the 
ArcGIS mapping of the Muda River, as shown in Fig. 1. In the 1000 m 

Fig. 1. ArcGIS mapping of monitoring stations in the Muda river basin.  
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buffer zone scale, the majority of land along the Muda River is agri-
cultural. The land was also covered by vegetation (forests), residential 
areas, water bodies, community areas, barren land, and industrial areas. 
In this study, a 1000 m buffer zone was used because Huang et al. 
discovered that buffer zone scales greater than 1000 m of land cover and 
land use have a negative correlation with river water quality [34]. This 
means that land use and cover 1000 m away have a significant impact on 
river water quality. Non-point sources of pollutants from agricultural 
areas, vegetation areas, residential areas, water bodies, community 
areas, and barren land make the Muda River a suitable study area for 
predicting riverine loads. 

The Muda River plays a vital role in distributing water sources for 
domestic use and irrigation, such as paddy field irrigation in catchment 
areas [33]. However, the water quality of the Muda River is deterio-
rating owing to unsustainable human activities, mainly logging, agri-
culture, and agro-based industries such as rubber and palm oil 
processing factories [32]. According to the annual Environmental 
Quality Report (EQR) of the Department of Environment (DOE), the 
Muda River is classified as a clean (C) river (categorised as Class II), as 
shown in Table 1 [35]. Although the Muda River is still classified as 
clean because its WQI values are in the range of 81–100, the WQI values 
showed a significant decrease from 2013 to 2014, a continuous decrease 
from 2015 to 2017, and a slight increase in 2018, as shown in Table S1. 
Water quality and river discharge data used in this study were obtained 
from the Department of Environment (DOE), Malaysia, and the 
Department of Irrigation and Drainage (DID), Malaysia. The empirical 
data were obtained from 2013 to 2018. Fig. 1 shows four (4) monitoring 
stations that cover most of the Muda River Basin area, and the stations 
are listed in Table S2. 

2.2. Preliminary assessment of water quality data 

This study used monthly water quality data from 2013 to 2018 to 
develop an accurate riverine load prediction model. The parameters 
used were the BOD (mg/L), COD (mg/L), SS (mg/L), and NH3–N (mg/L). 
In developing the riverine load model, 70% of the water quality data 
(2013–2016) were used for training, and 30% (2017–2018) were used 
for testing and validation. Table 1 shows the descriptive statistics of the 
water quality parameters of the Muda River from 2013 to 2018 at 
different monitoring stations. 

To characterise the water quality conditions of the Muda River, the 
obtained data were compared with the National Water Quality Stan-
dards (NWQS). According to the NWQS, the concentrations of BOD, 
COD, SS, and NH3–N should not exceed the Class IIA/IIB concentration 
standards of 3, 25, 50, and 0.3 mg/L, respectively [35]. Breaches in 
water quality standards depend largely on river discharge. Water quality 
variations under low-, medium-, and high-flow river discharge 

conditions were studied using concentration-flow boxplots. Further-
more, the means of BOD, COD, SS, and NH3–N were plotted using ArcGIS 
based on individual monitoring stations and years. 

2.3. Statistical analysis 

Based on the descriptive statistics of the Muda River water quality 
data shown in Table 1, the kurtosis and skewness were outside the range 
of − 2 to +2; therefore, the water quality data demonstrated a non- 
normal distribution [36]. Hence, in this study, the water quality data 
were analysed using non-parametric tests. The Kruskal-Wallis ANOVA 
test was performed using the statistical package in the OriginPro soft-
ware. The Bartlett test was conducted to assess the suitability of the 
water quality data before the Kruskal–Wallis ANOVA test was performed 
using the R-Studio software. Bartlett’s test showed that the water quality 
data were suitable for the Kruskal Wallis ANOVA test, with a p-value 
>0.05, indicating that the variance was equal. Because there were four 
monitoring stations, the Kruskal Wallis ANOVA test was performed with 
α = 0.05, and a degree of freedom (df) equal to 3. The critical 
chi-squared (�2) is shown in Fig. 2. 

2.4. Geographical information system (GIS) models 

The Muda River land-use data were derived from map adaptation 
and digitisation using Google Earth Pro (version 7.1.8) and the 2020 
Cadastral USGS Projection Map. A Digital Elevation Model (DEM) was 
obtained from USGS Earth Explorer (SRTM Second-Arc Global Bil TIFF). 
90 m) and captured on December 14, 2019 was used to recreate the 
Muda River polygon. The map was constructed with a single buffer zone 
that was 1000 m along the Muda River using both the buffer function in 

Table 1 
Descriptive statistics for Muda River water quality parameters from 2013 to 2018.  

Variables Unit Stations No. of samples Min. values Max. values Median values Mean values Kurtosis Skewness 

BOD mg/L 2MD04 140 2.00 12.19 6.29 6.00 0.32 0.42 
2MD06 2.00 11.58 6.26 7.00 − 0.76 − 0.14 
2MD01 3.00 19.00 6.85 6.00 6.77 2.20 
2MD15 3.00 11.39 6.56 6.76 − 0.58 0.19 

COD mg/L 2MD04 172 5.64 28.00 16.29 16.38 − 0.77 0.08 
2MD06 5.09 31.00 15.93 16.00 0.06 0.26 
2MD01 5.55 44.00 18.23 16.89 1.45 0.97 
2MD15 9.99 29.52 19.88 19.19 − 0.27 − 0.01 

SS mg/L 2MD04 132 12.00 599.00 140.30 156.93 3.84 1.82 
2MD06 14.24 471.00 122.00 166.44 0.21 1.08 
2MD01 14.69 336.00 91.17 116.67 0.24 1.07 
2MD15 11.00 477.00 82.00 112.88 4.03 1.92 

NH3–N mg/L 2MD04 168 0.02 1.8300 0.45 0.54 − 0.28 0.74 
2MD06 0.0100 1.8300 0.1500 0.5014 − 0.42 0.81 
2MD01 0.0100 7.6500 0.9000 0.9100 25.47 4.51 
2MD15 0.0100 1.9400 0.6250 0.5752 − 0.02 0.69  

Fig. 2. Chi-squared distribution for Kruskal Wallis ANOVA test.  
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ArcGIS 10.4.3 and ArcMap. 

2.4.1. Inverse Distance Weighting (IDW) 
Inverse Distance Weighting (IDW) is a spatial process used in GIS. 

The IDW is an interpolation model in which statistical values are used to 
run the model. The algorithm used in the measurement consisted of 
several setup points, locations (spatial), and probability points, which 
were later used to test the function of and experiment with the model 
when a null location was found on a spatial map. The weight is typically 
determined using the inverse square distance and its functions as shown 
in Eq. (1), where zp is the elevation at each point and dp is the distance at 
each point [37]. 

zp =

∑n

i=1

(
zi

di
p

)

∑n

i=1

(
1

di
p

) (1) 

Interpolation using IDW makes the explicit assumption that items 
that are close together are more similar than are those that are further 
apart. IDW forecasts a value for any unmeasured location based on the 
measured values surrounding the predicted location. The measured 
values closer to the predicted location had a greater impact on the 
anticipated value than those farther away. Subsequently, the interpo-
lation analysis results can be visualised in either a stretched or classified 
layout. However, in this study, the visualisation focused on the classified 
version of symbology because it was the easiest way to understand the 
map [38]. 

2.5. Riverine load equation 

The riverine load was determined using a simple mass balance 
equation by dividing the Muda River system into four segments based on 
monitoring stations. The assumption behind this method is that the 
pollutant concentration (C) is uniform with respect to the different Muda 
River segments. Thus, the concentration of pollutants is related to 
riverine load (W) and river discharge (Q), as shown in Eq. (2) [39,40]: 

C=(1 /Q) × W; W = C × Q (2)  

In this study, the total riverine load of the Muda River Basin was rep-
resented by the summation of the riverine loads (Eq. (3)) from four 
monitoring stations (Table S2). 
∑

W=W2MD04 + W2MD06 + W2MD01 + W2MD15 (3) 

Based on the ArcGIS mapping of the monitoring stations in the Muda 
River Basin shown in Fig. 1, 2MD04 station was near agricultural, 
vegetation, residential, community, and industrial areas 1000 m away. 
Meanwhile, 2MD06 station was near agricultural, residential, and 
community areas 1000 m away. Moreover, 2MD01 station was near 
agricultural and vegetation areas 1000 m away. Finally, 2MD15 station 
was near agricultural areas, residential areas, and community areas 
1000 m away. 

2.6. Development of ANN models for riverine loading pollutant models 

The artificial neural network model was constructed using MATLAB 
R2015a to determine the riverine load. The input and target data were 
imported from EXCEL Microsoft 365 and saved horizontally in MATLAB 
workspace. The input data are denoted as ‘x’ and the target data are 
denoted as ‘t’. The network type, training function, adaption learning 
function, fitting network, division of data, plot function, network 
training, and testing of the feedforward backpropagation neural 
network (FFBP NN) were written as algorithms in the MATLAB code in 
the editor tab. The model was then run to optimise the number of 
neurones. For the radial basis neural network (RB NN), the training 
function, spread constant, and optimised hidden layer nodes from the 

FFBP NN were written as algorithms in the MATLAB code in the Editor 
tab. Subsequently, the FFBP NN and RB NN models were run ten times. 
The results were averaged, saved in a MATLAB file, and analysed. 

2.7. Feed-forward backpropagation neural network 

In 1986, Rumelhart and McClelland introduced the concept of 
backpropagation neural networks within the framework of artificial 
neural network (ANN) algorithms, employing nonlinear neuron pro-
cessing functions. This theoretical architectural design comprises a 
multilayer feedforward network trained using an error back- 
propagation algorithm, which is notable for its inherent simplicity, 
adaptability, and practicality. Such attributes render it particularly well 
suited for investigating nonlinear phenomena such as surface subsidence 
resulting from coal mining activities [41]. This artificial intelligence 
model has also found widespread application in various civil engineer-
ing domains [42]. Lee et al. synergistically combined this artificial 
neural network model with a geographic information system to evaluate 
and forecast land subsidence patterns within an abandoned coal mining 
site in South Korea by leveraging existing land subsidence data. Their 
empirical investigation substantiated the capability of the ANN to 
accurately predict evolving subsidence trends, which closely aligned 
with observed real-world conditions [43]. 

In this study, a feedforward backpropagation neural network (FFBP 
NN) was employed to develop a riverine load model for BOD, COD, SS, 
and NH3–N using five input variables and one output variable, as shown 
in Fig. 3. The FFBP NN model architecture for riverine load prediction 
was developed on the basis of the broad conceptual ANN network out-
lined by Basant et al. [44]. Fig. 3 shows the FFBP NN model architecture 
for riverine load development, which consists of an input layer, hidden 
layer, and output layer. The former indicates the river discharge (Q) and 
the concentration of a pollutant at different monitoring stations (Cx). 
This is connected to the hidden layer by a specific weight, denoted by 
wij, and a tansig transfer function. The hidden layer was connected to the 
output layer (targeted riverine load) with a specific weight, denoted as 
wjk, and tansig transfer function. The feedforward neural network was 
equipped with a backpropagation training function. A feed-forward 
neural network with a backpropagation algorithm was used to predict 
the riverine load because it has been extensively used to predict river 
water quality [45–47]. Fig. 4 illustrates the mechanism of the feedfor-
ward backpropagation neural network. The theory behind the feedfor-
ward backpropagation algorithm is that the computed outputs from the 
function of the inputs, weight, and bias are introduced. The error ob-
tained from the subtraction of the output and target was back-
propagated, and the weight and bias were adjusted until a specified 
error tolerance or epoch number was achieved [27,48]. 

Furthermore, the Bayesian regularisation training function was used 
with the backpropagation training algorithm to obtain a small error, 
despite the longer time required to converge than when using Levenberg 
Marquardt. Subsequently, to accelerate the feed-forward back-
propagation neural network convergence with the Bayesian regularisa-
tion training function, each layer was connected using the tansig transfer 
function [49]. In this study, the epoch number and the number of neu-
rones were selected by trial and error. This approach is essential because 
too few neurones would result in underfitting, whereas too many neu-
rones would result in overfitting [48]. To obtain the optimum number of 
hidden layer nodes, the numbers of neurones tested were 1, 2, 3, 4, and 5 
for the NH3–N and SS models and 1, 2, 3, 4, 5, and 6 for the COD and 
BOD models, as suggested by Heaton [50]. As a rule of thumb, the 
number of neurones in the hidden layer should not exceed twice the 
number of inputs. 

2.8. Radial basis neural network 

The radial basis neural network was chosen for comparison with the 
feed-forward backpropagation because it consists of three layers (input, 
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hidden, and output). Using an RB NN, the input layer is connected to the 
hidden layer using a nonlinear Gaussian function. The hidden layer is 
then connected to the output layer using the purelin transfer function, as 
shown in Fig. 5 [51]. The RB NN model architecture for riverine load 
prediction was developed based on the broad conceptual ANN devel-
oped by Basant et al. [26]. The nonlinear Gaussian function equation is 
given by Eq. (4), where μ is the centre of the Gaussian function (mean 
value of x) and d is the distance (radius) from the centre, providing a 
measure of the spread of the Gaussian curve [11]. The spread constant 
d is used in this study as the maximum spread constant for the radial 
basis function [52]. The hidden layer nodes used for the RB NN are 
similar to the optimum hidden layer nodes obtained from the 
trial-and-error approach using the FFBP NN. 

φ (x, μ)= e
x-μ2

2d2 (4)  

2.9. Multiple linear regression 

In this study, multiple linear regression (MLR) was used as a refer-
ence model for the developed nonlinear neural network models: FFBP 
NN and RB NN. The linear regression equations used to link Q, C2MD06, 
C2MD04, C2MD01, and C2MD15 are shown in Eq. (5). 

Riverine Load=α0 +α1(Q)+α2(C2MD06)+ α3(C2MD04)+ α4(C2MD01)

+ α5(C2MD15) (5)  

where, 
α0 is the intercept; 
α1,α2, α3, α4,and α5 are the coefficients of each input; 
Q is the river discharge.where CX is the concentration of pollutants at 

different monitoring stations. 

2.10. Performance determination parameters 

The performance of the developed data-driven models was deter-
mined using four statistical equations to quantify the error between the 
observed (O) and predicted (P) riverine load values, and to quantify the 
correlation between the observed and predicted riverine load values. 
The statistical equations used for error quantification were root mean 
square error (RMSE), mean absolute error (MAE), and mean relative 
error (MRE). The correlation between predicted and observed values 
was quantified using the correlation of determination (R2). Eq. (6) to Eq. 
(9) provided the error and correlation metrics [8]. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Oi-Pi)

2

√

(6) 

Fig. 3. FFBP NN model architecture for riverine load development.  

Fig. 4. Mechanism of feed-forward backpropagation neural networks.  
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MAE=
1
n
∑n

i=1

⌈

Oi-Pi

⌉

(7)  

MRE=
1
n
∑n

i=1

⌈Oi-Pi⌉

Oi
(8)  

R2 =

∑n
i=1

(
Oi-Oavg

)(
Pi-Pavg

)

∑n
i=1

(
Oi-Oavg

)2∑n
i=1

(
Pt-Pavg

)2 (9)  

3. Results and discussion 

3.1. Muda River receiving water quality characterization 

The Muda River water quality data for the riverine load study indi-
cated violations of Class II of NWQS. Concentration-flow boxplots 
(Figs. 6–9) were used to document the changes in the concentrations of 
BOD, COD, SS, and NH3–N with respect to river discharge. The observed 
BOD in the Muda River ranged from 3 to 11.39 mg/L. Overall, 94% of 
the 35 samples had BOD values exceeding Class II of NWQS: 3.0 mg/L. 
This clearly shows that the Muda River was depleted of dissolved oxy-
gen, signifying low water quality. As shown in Fig. 6, the mean value 
(7.2 mg/L) at low flow was higher than that at mid-flow (5.2 mg/L) and 
high-flow (3.7 mg/L). 

As shown in Fig. 7, the concentration observed for the chemical 
oxygen demand (COD) ranged from 9.99 to 29.52 mg/L. Of the 43 
samples, 16.3% had COD values exceeding the NWQS for Class II (25 
mg/L). The mean value (20.37 mg/L) at low flow was slightly higher 
than that (20.15 mg/L) at mid-flow, whereas the mean value (11 mg/L) 
at high flow was the lowest. 

The observed suspended solid (SS) concentrations ranged from 11 to 

477 mg/L. Of the 33 samples, 70% had SS values exceeding the NWQS 
for Class II (50 mg/L). This suggests that the Muda River has faced 
enormous surface runoff and soil erosion from nearby forests and 
cultivated land. The maximum (477 mg/L), median (100.83 mg/L), and 
mean (128.74 mg/L) suspended solid values at low flow were higher 
than the corresponding mid-flow (271, 82, and 95.42 mg/L) and high 
flow (63, 50.26, and 50.26 mg/L) values, respectively, as shown in 
Fig. 8. 

The ammoniacal nitrogen (NH3–N) concentrations ranged from 

Fig. 5. Rb NN model architecture for riverine load development.  

Fig. 6. Comparison of BOD under low-, medium-, and high-flow conditions.  
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0.01 mg/L to 1.94 mg/L. Of the 42 samples, 62% had NH3–N values 
exceeding Class II of the NWQS: 0.3 mg/L. River quality deterioration 
might be due to nutrient runoff from paddy fields, palm oil plantations, 
and rubber plantations along the Muda River. As shown in Fig. 9, the 
mean value (0.62 mg/L) at low flow was higher than the mean values 
obtained in mid-flow(0.51 mg/L) and high flow (0.12 mg/L) conditions. 

As mentioned above, the water quality constituents of the Muda 
River were found to violate Class II of the NWQS, because the highest 
pollutant concentration occurred when the streamflow was low. The 
water quality standard violations occurred between 2013 and 2018. The 
concentration-flow boxplot (Figs. 6–9) indicates that low streamflow is a 
critical condition that determines whether violations occur. These 
findings was generally consistent with previous work [32,33]. 

Table 2 shows the coloured indicators used on the Muda River GIS 
map based on the NWQS classification. Figs. 10–13 illustrate GIS maps 
representing the water quality parameters (BOD, COD, SS, and NH3–N) 
of the Muda River at various monitoring stations (2MD04-2MD06- 
2MD01-2MD15) between 2013 and 2018. Spatial distribution maps 
(Figs. 10–13) were developed using the monitoring station latitudes and 
longitudes before the integration of the average water quality data from 
the Muda River at each monitoring station. Based on the coloured 
indication of the water quality parameters shown in Table 2 and 
Figs. 10, 12 and 13, BOD, SS, and NH3–N were categorised as classes III 
and IV, indicating that the water supply required extensive treatment 
and was unsuitable for the long-term conservation of the natural envi-
ronment and agricultural irrigation. However, according to Fig. 11, the 
COD value for the Muda River remained Class II because it did not 
exceed Class II of the NWQS for COD values, which was 25 mg/L. Ac-
cording to the Kruskal Wallis ANOVA test results shown in Table 3, the 
water quality parameters obtained from the monitoring stations did not 
differ significantly each year, based on the (�2 < 7.815 and p > 0.05) at 
α = 0.05 and df = 3. This result strongly corresponds to the land-use 
activities of the Muda River, as shown in Fig. 1 and previous work 
[53], with agriculture being the most significant source of pollutants 
along the Muda River 1000 m away. 

The Biochemical Oxygen Demand (BOD) is a crucial metric for 
assessing the extent of organic pollution in aquatic ecosystems. Elevated 
BOD values signify a heightened presence of organic constituents, often 
stemming from non-point sources, such as agricultural runoff. As 
depicted in Fig. 10, the average BOD levels in 2013 ranged from 5.088 to 
6.932 mg/L. Specifically, stations 2MD01, 2MD04, 2MD06, and 2MD15 
recorded the average BOD values of 6.9325, 5.0875, 6.6025, and 5.775 
mg/L, respectively. Statistical analysis using the Kruskal–Wallis ANOVA 
test revealed no significant variance in the populations among the 
monitoring stations (p > 0.05, p = 0.5580, df = 3, �2 = 2.0700), as 
presented in Table 4. Similarly, from 2014 to 2018, a lack of substantial 
disparity in BOD values was observed across different monitoring sta-
tions along the Muda River (p > 0.05 and �2 < 7.815). Notably, in 2014 
and 2016, the downstream station (2MD01) of the Muda River exhibited 
notably high average BOD values of 9.1911 mg/L and 8.7425 mg/L, 
respectively, surpassing the NWQS Class II BOD limit of 3 mg/L by 
approximately threefold. 

The Chemical Oxygen Demand (COD) is a critical parameter for 
assessing water body contamination, encompassing both organic and 

Fig. 7. Comparison of COD under low-, medium-, and high-flow conditions.  

Fig. 8. Comparison of SS under low-, medium-, and high-flow conditions.  

Fig. 9. Comparison of NH3–N under low-, medium-, and high-flow conditions.  

Table 2 
Color indicators for BOD, COD, SS, and NH3–N values in the GIS map.  

Parameter Value Unit Class Color 

BOD 3 < x ≤ 6 mg/L III Yellow – Orange 
6 < x < 12 mg/L IV Orange – Red 

COD 10 < x ≤ 20 mg/L II Dark green – Light green 
20 < x < 25 mg/L II Orange – Red 

SS 25 < x ≤ 50 mg/L II Yellow 
50 < x ≤ 150 mg/L III Orange 
150 < x ≤ 300 mg/L IV Red 

NH3–N 0.3 < x ≤ 0.9 mg/L III Yellow - Red  
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inorganic pollutants. As depicted in Fig. 11, the downstream station 
(2MD01) of the Muda River recorded the highest average COD values in 
2014 and 2016, at 21.4 mg/L and 25.51 mg/L, respectively. In 2014, the 
average COD value remained within the compliance limit of the NWQS 
Class II COD limit of 25 mg/L, whereas in 2016 it exceeded this limit by 
approximately 2.04%. Intriguingly, the same monitoring station re-
ported the highest average COD concentrations in 2014 and 2016. 
Fig. 11 illustrates that the average COD values in 2013 exhibited a range 
from 12.64 mg/L to 17.04 mg/L, with stations 2MD01, 2MD04, 2MD06, 
and 2MD15 recording average COD values of 17.0388 mg/L, 12.6425 
mg/L, 15.9313 mg/L, and 13.5888 mg/L, respectively. Statistical anal-
ysis using the Kruskal–Wallis ANOVA test revealed no significant vari-
ation in populations among the monitoring stations (p > 0.05, p =
0.6664, df = 3, �2 = 1.5693). Similarly, from 2014 to 2018, no signif-
icant disparities in average COD values were observed among the 
various monitoring stations along the Muda River (p > 0.05 and �2 <
7.815). 

Suspended Solids (SS) represent a pivotal parameter for evaluating 
the water quality of the Muda River, particularly given its susceptibility 
to annual flooding during the rainy seasons of April–May and Septem-
ber–November [54]. As shown in Fig. 12, the average SS values 
exhibited an annual increase between 2013 and 2017, with ranges of 
34.67 mg/L – 84.67 mg/L, 62.68 mg/L – 122.7 mg/L, 69.63 mg/L – 

151.1 mg/L, 40.12 mg/L – 162.6 mg/L, and 147 mg/L 254 mg/L, 
respectively. However, a significant reduction in the average SS value 
from 147 mg/L to 254 mg/L in 2017 to 90.95 mg/L – 166.7 mg/L in 
2018 was observed. This decline was attributed to a comprehensive 
flood mitigation project undertaken in 2017 by the Department of Irri-
gation and Drainage of the Ministry of Environment and Water in 
Malaysia [33]. The project included measures such as river deepening, 
widening, improved river mouth management, construction of a new 
barrage, drainage system enhancements, flood control gate installation, 
riverbank erosion control, and relocation and adjustment of public 
amenities [33]. Statistical analysis, as detailed in Table 4, demonstrated 
negligible variations in average SS values across monitoring stations (p 
> 0.05 and �2 < 7.815). 

Agricultural regions were predominantly concentrated in proximity 
to the Muda River, as depicted in Fig. 1, and were anticipated to exert a 
notable influence on average NH3–N concentrations. The analysis pre-
sented in Table 2 and Fig. 13 reveals that the mean NH3–N concentration 
consistently surpassed the threshold set by NWQS Class II (0.3 mg/L), as 
indicated by the gradient of colours from yellow to red. Notably, the 
NH3–N classification remained Class III across the monitoring points 
along the Muda River from 2013 to 2018. This observation is robustly 
supported by statistical outcomes obtained through the Kruskal–Wallis 
ANOVA test, as detailed in Table 3, yielding p-values of (p = 0.8469, p =

Fig. 10. Average BOD (mg/L) in Muda river at various monitoring stations from 2013 to 2018.  
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0.8065, p = 0.4196, p = 0.8886, p = 0.4897, and p = 0.7204) for the 
years 2013, 2014, 2015, 2016, 2017, and 2018, respectively. This sta-
tistical analysis unequivocally underscores the absence of statistically 
significant disparities in average NH3–N concentrations among distinct 
monitoring stations encompassing upstream (2MD04), midstream 
(2MD06 and 2MD01), and downstream (2MD15) locations. Shamsuddin 
et al. recently reported similar findings [55]. 

3.2. Optimal hidden layer neuron number determination 

The optimal number of hidden layer nodes for the Feed-Forward 
Backpropagation Neural Network (FFBP NN) model was determined 
using a meticulous trial-and-error process. It is well known that an 
insufficient number of neurones in the hidden layer can result in 
underfitting, whereas an excessive number can lead to overfitting [56]. 
The performance of each neural network model was evaluated using key 

metrics: the Mean Absolute Error (MAE), Mean Square Error (MSE), Sum 
Square Error (SSE), and Coefficient of Correlation (R). These evaluations 
were performed for NH3–N, COD, BOD, and SS, as shown in Figs. 14–17. 
The optimal configuration for the NH3–N and SS models involved four 
hidden layer nodes, which exhibited the lowest error and the highest 
correlation with the target, as shown in Figs. 14 and 17. Conversely, the 
optimum hidden layer configurations for the COD and BOD models were 
four and five, respectively, as illustrated in Figs. 15 and 16. 

In a distinct approach, Nhantumbo et al. (2018) employed the 
Lippman Rule of Thumb to determine the optimal number of hidden 
nodes as four, effectively handling three input variables, one output 
variable, and major ions [57]. Similarly, Heydari et al. achieved an 
optimal configuration of five hidden nodes when dealing with three 
independent input variables and one output variable, dissolved oxygen 
(DO) [58]. Although these studies employed feedforward back-
propagation neural networks, they utilised a different activation 

Fig. 11. Average COD (mg/L) in Muda river at various monitoring stations from 2013 to 2018.  
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function: logsig. The performance metrics displayed in Figs. 14, 15 and 
17 indicate a linear decrease in MAE, MSE, and SSE with increasing 
number of hidden nodes until four nodes were reached, beyond which 
an increase was observed at five or more hidden nodes. Conversely, the 
Coefficient of Correlation (R) demonstrated a linear increase with the 
increase in the number of hidden nodes up to four, after which a 
decrease was observed beyond five nodes. Accordingly, the optimal 
number of hidden nodes for NH3–N, SS, and COD was four, reflecting the 
lowest error and the highest correlation with the target variable. In the 
case of the BOD model, the optimal configuration involved five hidden 
nodes aligned with patterns of minimised error and maximal correlation 
with the target variable, as shown in Fig. 16. To ensure a consistent 
comparison, the optimal hidden layer node configurations (4,4,4, and 5) 
determined through the trial-and-error approach with the FFBP NN were 
subsequently employed in the development of Radial Basis Neural 
Network (RB NN) models for NH3–N, SS, COD, and BOD. 

3.3. Model calibration and validation 

Riverine load models for Biochemical Oxygen Demand (BOD), 
Chemical Oxygen Demand (COD), Suspended Solids (SS), and Ammo-
niacal Nitrogen (NH3–N) were subjected to rigorous calibration and 
validation processes involving partitioning of pollutant concentration 
and river discharge data into distinct subsets. Specifically, 70% of the 
data was allocated to the training phase, whereas 15% was reserved for 
the validation and testing phases. The training dataset encompassed 
data spanning from 2013 to 2016, with 2017 data serving validation 
purposes and 2018 data designated for testing. To assess the perfor-
mance of the model, the coefficient of determination (R2) values were 
meticulously computed for each iteration. This iterative process was 
repeated ten times to ensure robust calibration and validation results, 
which is a necessary step given the random selection of weights and 
biases in each run [59,37]. Examination of Tables 4–7 reveals the 

Fig. 12. Average SS (mg/L) in Muda river at various monitoring stations from 2013 to 2018.  
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effectiveness of this calibration and validation procedure, as evidenced 
by the closely aligned average R2 values for the training, validation, and 
testing datasets, underscoring the model’s robust performance. 

3.4. Comparative analysis of riverine load prediction 

The primary objective of this investigation was to assess the efficacy 
of data-driven techniques in predicting riverine loads, with specific 
emphasis on their inherent simplicity and reduced data requirements. 
The predictive model chosen for this study was an artificial neural 
network (ANN), a well-established approach renowned for its capability 
to model the intricate nonlinear relationships prevalent in water quality 
applications. Additionally, a multiple linear regression (MLR) model 
was employed as a reference point to gauge the predictive accuracy of 
the developed ANN model. A comprehensive comparison of these 
models is presented in Table 8. As delineated in Table 8, the feed- 

forward neural network (FFBP NN) model exhibited superior predic-
tive performance across all evaluation criteria when forecasting riverine 
loads of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand 
(COD), Suspended Solids (SS), and Ammoniacal Nitrogen (NH3–N). 
Compared to multiple linear regression, the FFBP NN model yielded 
notably enhanced predictions. Multiple linear regression yielded 
considerably larger Root Mean Square Error (RMSE) values when 
applied to riverine load predictions of BOD, COD, SS, and NH3–N. The 
FFBP NN model successfully reduced the RMSE by 89.5%, 80.8%, 
87.9%, and 79.0% for the BOD, COD, SS, and NH3–N, respectively. 
Conversely, the radial basis neural network (RB NN) displayed the 
highest RMSE values among the evaluated models for riverine load 
prediction parameters, indicating its suboptimal performance in this 
context. This disparity in performance suggests that the RB NN model 
exhibits limited sensitivity in capturing the intricate relationships be-
tween the input and output variables, particularly when employing 

Fig. 13. Average NH3–N (mg/L) in Muda river at various monitoring stations from 2013 to 2018.  
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fewer hidden nodes, mirroring the configuration determined for the 
FFBP NN model [60]. 

Furthermore, as depicted in Fig. 18(a and b,c,d), a noteworthy 
concurrence is evident between the observed and predicted riverine load 
values for Biochemical Oxygen Demand (BOD), Chemical Oxygen De-
mand (COD), Suspended Solids (SS), and Ammoniacal Nitrogen 
(NH3–N) when employing a feedforward backpropagation neural 
network (FFBP NN). This alignment signifies a close adherence to the 
variation patterns exhibited by the observed and predicted riverine load 
values across these critical water quality parameters. This observation 
aligns with previous findings by Banejad and Olyaie and He et al., who 
similarly reported a robust correspondence between observed and pre-
dicted variables when utilising the FFBP NN [48,61]. Basant et al. re-
ported minimal disparities between observed and predicted Dissolved 
Oxygen (DO) values using a feed-forward neural network model char-
acterised by a backpropagation network type, employing distinct 
transfer functions for the hidden and output layers, specifically Tansig 
and Purelin [44]. 

Additionally, it is noteworthy that a substantial portion of the pre-
dicted values converged with the observed values when employing 
Multiple Linear Regression (MLR). However, a limited number of pre-
dicted values aligned with the observed values when employing the 
Radial Basis Neural Network (RB NN), as shown in Fig. 18 (a-d). The 
suboptimal performance of MLR in prediction can be attributed to the 
intricate nonlinear relationships inherent in the pollutant concentration, 
river discharge, and riverine load dynamics. Conversely, the subpar 
performance of the RB NN can be attributed to the insufficiency of 
hidden nodes, which hinders the capacity of the model to deliver precise 
riverine load predictions. Notably, the calculated Coefficients of Deter-
mination (R2) for the riverine loads of BOD, COD, SS, and NH3–N were 
0.9998, 0.9990, 0.9996, and 0.9987, respectively, when the feedforward 
neural network model was employed, whereas the corresponding values 
for the Radial Basis Neural Network model were 0.8946, 0.7613, 
0.8580, and 0.7973, respectively (Table 8). This discrepancy un-
derscores the superior performance of the former compared with the 
latter. 

In summary, these outcomes underscore the capacity of the feed-
forward neural network, which incorporates a backpropagation algo-
rithm and Bayesian regularisation training methodology, to discern 
intricate pollutant load patterns across various monitoring stations. This 
capability facilitates precise prediction of riverine loads of BOD, COD, 
SS, and NH3–N within the Muda River. These findings align with the 
assertions of Senthilkumar et al., who asserted that an artificial neural 
network model employing a backpropagation algorithm provides su-
perior insights compared to alternative modelling approaches, such as 
decision tree models, radial basis functions, and fuzzy logic [62]. 

3.5. Load reduction allocation 

Fig. 19 (a-d) provide a comprehensive representation of the riverine 
loads pertaining to Biochemical Oxygen Demand (BOD), Chemical Ox-
ygen Demand (COD), Suspended Solids (SS), and Ammoniacal Nitrogen 
(NH3–N) within the confines of the Muda River. To determine the actual 
riverine load, we measured the actual concentrations of BOD, COD, SS, 
and NH3–N in the Muda River. The target riverine load was determined 
using concentration values adhering to Class IIA/IIB standards of the 
National Water Quality Standards (NWQS). As shown in Fig. 19 (a-d), 
the riverine load pattern exhibited a direct correlation with the volume 
of river water discharge. Augmented river water discharge signifies an 
increased capacity of the river to assimilate pollutants emanating from 
both point and nonpoint sources. However, it is disconcerting to note 
that riverine loads of BOD, SS, and NH3–N consistently transgress Class 
II standards of the NWQS. Furthermore, these parameter violations were 
exacerbated under conditions of elevated river discharge, as shown in 
Fig. 19 (a-d). 

Typically, when the BOD surpasses the Class II criteria of the NWQS, Ta
bl
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it is anticipated that the COD will exceed the stipulated standards by a 
factor of two to three. However, in this instance, the COD load did not 
breach Class II standards of the NWQS. This deviation may be attributed 
to ineffective oxidation of nitrogen during COD determination, sug-
gesting an abundance of nitrogen and nitrate in the Muda River. The 
principal source of nitrogen predominantly emanates from fertilised 
agricultural lands, encompassing approximately 55% of the Muda River 
Basin [33,53]. Additionally, the sampling stations (2MD06, 2MD04, 

2MD01, and 2MD15) were situated close to palm oil plantations, palm 
oil processing facilities, and paddy fields, as substantiated by the GIS 
data. Consequently, substantial pollution contributions are anticipated 
from non-point sources, notably agricultural runoff, which further 
augments ammonium and nitrate levels through the use of organic fer-
tilisers [55]. 

As shown in Fig. 19 (c), it is noteworthy that 30% of the SS load 
exceeded 5000 tons per day, with a peak SS load reaching 19,022.39 

Fig. 14. NH3–N model performance at various hidden nodes.  

Fig. 15. Cod model performance at various hidden nodes.  
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tons per day at a river discharge of 355.01 m3/s. This observation un-
derscores the substantial daily influx of Suspended Solids into the Muda 
River. Factors contributing to this heightened sediment load include 
logging activities, deforestation associated with residential and com-
mercial development, and population expansion within the Muda River 
Basin. The principal consequence of elevated SS loads in the river is the 

recurrent inundation during the biannual rainy season. 
The core objective of this study was to achieve a reduction in riverine 

loads to ensure compliance with the Class II standards of the NWQS, 
stipulating concentration limits of 3, 25, 50, and 0.3 mg NH3–N/L. It was 
estimated that an average reduction of 52% in BOD load would be 
required to achieve compliance. Simultaneously, the COD load required 

Fig. 16. Bod model performance at various hidden nodes.  

Fig. 17. SS model performance at various hidden nodes.  
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a nominal reduction of approximately 2% to align with the prescribed 
25 mg COD/L standard. Moreover, substantial reductions averaging 
60% for SS load and NH3–N load were essential to attain Class II stan-
dards of the NWQS, signifying limits of 50 mg SS/L and 0.3 mg NH3–N/ 
L, respectively. 

Table 4 
Data calibration and validation of BOD model.  

Run Number Training Validation Testing 

1 0.99970 0.99998 0.99762 
2 0.99074 0.97659 0.98814 
3 0.99218 0.99307 0.99159 
4 0.99932 0.99997 0.99240 
5 0.99801 0.99952 0.98949 
6 0.99875 0.99996 0.99503 
7 0.99747 0.99980 0.99121 
8 0.99896 0.99977 0.99295 
9 0.99611 0.99992 0.99438 
10 0.99864 0.99999 0.99537 
Average 0.99699 0.99686 0.99282  

Table 5 
Data calibration and validation of COD model.  

Run Number Training Validation Testing 

1 0.99901 0.99975 0.99749 
2 0.99992 0.98912 0.99975 
3 0.99799 0.99991 0.99765 
4 0.99518 0.99266 0.97985 
5 0.99522 0.99789 0.99248 
6 0.99669 0.99747 0.98915 
7 0.99918 0.99940 0.99697 
8 0.99877 0.99845 0.97413 
9 0.99274 0.99938 0.99829 
10 0.99928 0.99989 0.99940 
Average 0.99740 0.99739 0.99252  

Table 6 
Data calibration and validation of SS model.  

Run Number Training Validation Testing 

1 0.99958 0.99960 0.99993 
2 0.99501 0.99993 0.99423 
3 0.99304 0.99097 0.99737 
4 0.99827 0.99999 1.00000 
5 0.99996 0.96581 0.94749 
6 0.99928 0.99476 0.99872 
7 0.98013 0.99676 0.90887 
8 0.98555 0.99746 0.99664 
9 0.99523 0.99990 0.99473 
10 0.99936 0.99898 0.99779 
Average 0.99454 0.99442 0.98358  

Table 7 
Data calibration and validation of NH3–N model.  

Run Number NH3–N 

Training Validation Testing 

1 0.99874 0.99468 0.99807 
2 0.99781 0.99214 0.99135 
3 0.99862 0.99734 0.99809 
4 0.97584 0.99227 0.99879 
5 0.99089 0.99848 0.99651 
6 0.96769 0.98096 0.99859 
7 0.99707 0.99360 0.99832 
8 0.99847 0.99884 0.99751 
9 0.97817 0.99914 0.99831 
10 0.96074 0.99811 0.99689 
Average 0.98640 0.99456 0.99724  

Table 8 
Comparison criteria for the riverine load prediction models.  

Parameter (tonne/ 
d) 

Method RMSE MAE MRE R2 

BOD MLR 30.5326 18.8764 0.2384 0.9805 
FFBP NN 3.2019 2.2172 0.0471 0.9998 
RB NN 70.9584 52.6285 0.8616 0.8946 

COD MLR 94.7057 69.3731 0.3222 0.9737 
FFBP NN 18.1964 11.6976 0.0757 0.9990 
RB NN 285.3626 222.9565 1.3177 0.7613 

SS MLR 1007.6990 749.3521 0.5453 0.9779 
FFBP NN 121.1806 58.9920 0.0801 0.9996 
RB NN 2556.5280 1876.3930 1.8293 0.8580 

NH3–N MLR 3.5832 2.5615 0.3786 0.9680 
FFBP NN 0.7511 0.4599 0.0991 0.9986 
RB NN 9.0205 6.9272 1.3055 0.7973  

Fig. 18a. Comparison of BOD load prediction results for the FFBP NN, RB NN, 
and MLR. 

Fig. 18b. Comparison of COD load prediction results for FFBP NN, RB NN, 
and MLR. 
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4. Conclusions 

This study presents a comprehensive comparative analysis of diverse 
mathematical modelling techniques aimed at forecasting riverine loads, 
focusing on crucial water quality parameters, including Biochemical 
Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Suspended 
Solids (SS), and Ammoniacal Nitrogen (NH3–N). The riverine load 
model under examination was established by amalgamating various 
input variables, notably, river discharge and pollutant concentration 
data procured from diverse monitoring stations. Among the mathe-
matical modelling methodologies under scrutiny are Artificial Neural 
Networks (ANNs) that employ feedforward backpropagation algorithms 
and radial basis functions. To facilitate rigorous comparisons, a con-
ventional Multiple Linear Regression (MLR) statistical model was 
incorporated. A robust assessment of the model performance was carried 
out using four standard statistical evaluation metrics: the Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Mean Relative Error 
(MRE), and Coefficient of Determination (R2). 

Notably, the elevated error rates (manifested in RMSE, MAE, and 
MRE) observed in the prediction of riverine loads, attributed to the 
Multiple Linear Regression (MLR) statistical model, can be attributed to 
the intricate nonlinear associations inherent in the independent vari-
ables (Q and Cx) concerning the dependent variables (W). Furthermore, 
it is evident that the feedforward neural network model, featuring a 
backpropagation algorithm and Bayesian regularisation training meth-
odology, outperforms the Radial Basis Neural Network, particularly 
when operating with a reduced number of hidden nodes. This observa-
tion underscores the fact that the Radial Basis Function requires a 
greater number of hidden nodes to introduce the required nonlinearity 
into the network. In addition, it is worth noting that the Feedforward 
Backpropagation Neural Network effectively assimilates the underlying 
process during calibration. This pivotal finding suggests the feasibility of 
predicting riverine loads beyond suspended sediment loads using an 
Artificial Neural Network, wherein the pollutant concentration (Cx) and 
river discharge (Q) function as key input variables. Such an approach 

Fig. 18c. Comparison of SS load prediction results for FFBP NN, RB NN, 
and MLR. 

Fig. 18d. Comparison of NH3–N load prediction results for FFBP NN, RB NN, 
and MLR. 

Fig. 19a. Bod load of Muda river with respect to the river discharge from 2013 
to 2018. 

Fig. 19b. Cod load of Muda river with respect to the river discharge from 2013 
to 2018. 
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would obviate the need for extensive data pertaining to variables such as 
phytoplankton concentration, refractory particulate organic nitrogen, 
labile particulate organic nitrogen, and kinetic coefficients, which are 
typically mandated using comprehensive water quality deterministic 
models for riverine load prediction. However, to enhance riverine load 
prediction, integration of other spatial and temporal variation parame-
ters that may influence river water quality as additional input variables 
is recommended. Ultimately, this study underscores the significance of 
riverine load studies in facilitating informed decisions regarding load- 
reduction allocation. 
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[5] F. García-Ávila, M. Guanoquiza-Suárez, J. Guzmán-Galarza, R. Cabello-Torres, 
L. Valdiviezo-Gonzales, Rainwater harvesting and storage systems for domestic 
supply: an overview of research for water scarcity management in rural areas, 
Results in Engineering 18 (2023) 101153, https://doi.org/10.1016/J. 
RINENG.2023.101153. Jun. 

[6] G. Fu, Y. Jin, S. Sun, Z. Yuan, D. Butler, The role of deep learning in urban water 
management: a critical review, Water Res. 223 (2022), https://doi.org/10.1016/j. 
watres.2022.118973. Sep. 

[7] A. Rabak, K. Uppuluri, F.F. Franco, N. Kumar, V.P. Georgiev, C. Gauchotte-Lindsay, 
C. Smith, R.A. Hogg, L. Manjakkal, Sensor system for precision agriculture smart 

Fig. 19c. SS load of Muda river with respect to the river discharge from 2013 
to 2018. 

Fig. 19d. NH3–N load of Muda river with respect to the river discharge from 
2013 to 2018. 

K. Khairudin et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.rineng.2024.102072
https://doi.org/10.1016/j.rineng.2024.102072
https://doi.org/10.1016/j.jclepro.2022.130649
https://doi.org/10.1016/j.jclepro.2022.130649
https://doi.org/10.1038/S43017-022-00299-4
https://doi.org/10.1038/S43017-022-00299-4
https://doi.org/10.3390/SU14020867
https://doi.org/10.3390/SU14020867
http://refhub.elsevier.com/S2590-1230(24)00326-8/sref4
http://refhub.elsevier.com/S2590-1230(24)00326-8/sref4
http://refhub.elsevier.com/S2590-1230(24)00326-8/sref4
http://refhub.elsevier.com/S2590-1230(24)00326-8/sref4
https://doi.org/10.1016/J.RINENG.2023.101153
https://doi.org/10.1016/J.RINENG.2023.101153
https://doi.org/10.1016/j.watres.2022.118973
https://doi.org/10.1016/j.watres.2022.118973


Results in Engineering 22 (2024) 102072

19

watering can, Results in Engineering 19 (2023) 101297, https://doi.org/10.1016/ 
J.RINENG.2023.101297. Sep. 

[8] M.A. Islam, F. Hossen, M.A. Rahman, K.F. Sultana, M.N. Hasan, M.A. Haque, J. 
E. Sosa-Hernández, M.A. Oyervides-Muñoz, R. Parra-Saldívar, T. Ahmed, M. 
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