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Around the world, breast cancer is among the most terminal type of illness. Infiltrating
ductal carcinoma, a case of breast cancer, accounts for 80% of the total diagnosed. The
global impact of breast cancer signifies the need for the development of prompt and
efficient diagnostic strategies. Morlet wavelet transform is a continuous wavelet
transform that captures both spatial and frequency domains. The majority of its
applications are in the field of signal processing and image analysis. Image processing
helps extract features and examine patterns. This study introduces the model
integrating Morlet wavelet transformation within the Kolmogorov Arnold Network
(KAN).IDC_regular_ps50_idx5 dataset containing histopathological images is balanced
using an augmentation technique. Training of the proposed model is done on the
balanced dataset. This integration of Morlet wavelet transform within the Kolmogorov
Arnold Network demonstrated impressive performance metrics values. The model
achieved a specificity of 91.07%, precision of 90.83%, recall of 88.87%, F1 score of
89.83%, and overall accuracy of 89.97%. The model's output highlights the model's
capability in breast cancer prediction.

1. Introduction

Breast cancer is a deadly case of disease affecting women worldwide, as per the study conducted
by Kathleen et al,, [1]. To increase survival rate, prompt and efficient diagnosis is essential. Tissue
structures and cellular irregularities can be observed in histopathological images to differentiate
between tissues. Examination of Histopathological photos with the help of Artificial Intelligence can
improve diagnostic accuracy. The conventional method of examining histopathological images is
time-consuming and susceptible to biases, as concluded by Karim Lekadir et al., [2]. Jadhav and Patil
[3] discussed the application of decision trees for developing accurate prediction models. Atam P.
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Dhawan and Dhawan [4] employed wavelet transform instead of traditional Fourier transform.
Lokenath Debnath [5] explained how the wavelets can capture information related to frequency and
spatial aspects. This ability of wavelets plays a vital role in studying images containing various
features and textures. The Morlet wavelet is a continuous wavelet transform employed for examining
histopathological images. It combines a wavelet with a Gaussian window to capture subtle and broad
features. Its capacity to highlight features at various scales and perspectives is advantageous in
histopathological images. The Kolmogorov Arnold Network (KAN) presents a method for constructing
networks through the seamless integration of wavelet transforms into its framework. This idea was
proposed by Zavareh Bozorgasl and Hao Chen [6]. This integration of wavelet transform enhances
the KAN model's ability to analyze images by allowing it to extract subtle and specific details from the
given data.

Identification and categorization of breast cancer depend on the correct examination of
histopathological images. Regarding the literature, Researchers have conducted predictive modeling
using a wide range of machine learning and deep learning strategies on histopathological image
datasets. Yungang Zhang et al., [7] studied a mix of neural networks and Random Subspace
technique. Fabio Alexandre Spanhol et al., [8] employed Convolutional Neural Networks on BreaKHis
dataset. Zhongyi Han et al., [9] constructed a deep-learning model that achieved an impressive
accuracy of 93.2% in identifying various breast cancer subtypes. Anuranjeeta et al., [10] emphasized
that computer-aided diagnosis CAD systems enhance the precision and effectiveness regarding
cancer detection in screening facilities. They achieved this by examining digitized histopathological
images to differentiate between non-cancerous and cancerous cells. In their study, Teresa Aradjo et
al.,, [11] employed a CNN to analyze biopsy images, reaching an accuracy of 77.8% in overall
classification and demonstrating a sensitivity of 95.6% for detecting cancer. In their study, Ferreira et
al., [12] applied transfer learning utilizing Inception ResNet V2 to analyze breast cancer histology
images. They attained an accuracy rate of 76% when testing on the BACH Challenge blind test set. In
their study, Alexander Rakhlin et al., [13] employed deep convolutional neural networks and
gradient-boosted trees to analyze breast cancer histopathological images. In a study, Abdullah-Al
Nahid et al., [14] proposed a deep neural network model integrated with a restrained Boltzmann
machine RBM to have more accurate breast cancer detection through histopathological images. Yaqi
Wang et al., [15] applied a hybrid model integrating Convolution Neural Network and Support Vector
Machine. Silvia Cascianelli et al., [16] extracted feature vectors with the help of CNN and explored
dimensionality reduction techniques like PCA, GRP, and a cross-correlation method to classify
histopathological images. Aditya Golatkar et al., [17] applied the pre-trained CNN model Inception_v3
to categorize breast tissue images. Their approach achieved an overall accuracy rate of 85%. Sulaiman
Vesal et al., [18] employed the Inception V3 and ResNet50 neural networks. Dalal Bardou et al., [19]
in 2018 studied the effectiveness of traditional learning approaches versus convolution Neural
Networks. In 2019, Yugian Li et al., [20] proposed a method utilizing convolutional neural networks
to categorize breast cancer histopathology images. They extracted image segments using clustering
techniques. Jonathan de Matos et al., [21] studied a two-step transfer learning approach. They
employed the Inception_v3 neural network model, pre-trained on ImageNet for extracting features.
Juanying Xie et al., [22] employed deep learning methods such as Inception V3 and Inception
ResNet V2 and transfer learning. Rui Yan et al., [23] studied a hybrid model combining CNNs and
RNNs to differentiate breast cancer images. Their experiment resulted in an accuracy rate of 91.3%.
Mesut Togacar et al., [24] proposed BreastNet, a convolutional neural network. This model
incorporates attention modules and employs data augmentation strategies. Yasin Yari et al., [25]
applied transfer learning techniques with ResNet50 and DenseNet121 architectures. Xin Yu Liew et
al., [26] presented DLXGB, a model that integrates deep neural network Learning and XGBoost
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techniques. Deepika Kumar et al., [27] introduced a voting classifier. The predictions from seven deep
neural network learning models, such as CNN variations and transfer learning, were merged. This
approach achieved an accuracy of 96.91%. Yan Hu et al., [28] presented an approach to detect breast
cancer in histopathological images by employing three-channel features and support vector
machines. Elbetel Taye Zewde et al., [29] introduced an automated breast cancer detection system
using the ResNet50 model, achieving a classification accuracy of 96.75% for benign and 95% for
malignant ones. Swaminathan et al., [30] developed a system that utilized CT scans to forecast the
likelihood of lung cancer. The CT images were processed through GAN segmentation. For
classification purposes, the VGG16 CNN model was employed. Duodu et al., [31] introduced a system
that utilized loT (Internet of Things) and machine learning. This system combines loT technology to
gather data with a Convolutional Neural Network known as VGG16. Swati B. Bhonde et al., [32]
conducted a study on deep learning methods' applicability to forecast cancer outcomes through
genome sequencing analysis. Jadhav Pratibha et al., [33] compared the results of two prediction
models, regression trees and linear regression, using a dataset from the UCI Machine Learning
Repository (UCI). Muthu et al., [34] studied data mining techniques like SVM, KNN, and Decision Tree
to detect gastric carcinoma. Khaw et al., [35] analyzed brain MRI images with the help of a modified
VGG16 model and Transfer learning. Suhaili et al.,, [36] applied gray level transformation and
brightness manipulation for FPGA-based image processing.

Despite the progress made in leveraging learning for analyzing medical images, especially breast
cancer detection, many conventional deep-learning approaches still depend on extracting features
from raw pixels or using rudimentary pre-processing methods. These methods overlook essential
spatial and frequency domain elements found in histopathological images. Conventional approaches
often struggle to capture the details needed to distinguish between non-cancerous and cancerous
tissues, leading to limitations in predictive accuracy. Furthermore, while wavelet transforms have
shown promise in enhancing feature extraction across different medical imaging fields, their synergy
with advanced neural networks such as the Kolmogorov Arnold Network KAN remains an area that
has not been extensively explored.

This research aimed to forecast breast cancer by combining Morlet wavelet transformations with
a KAN model. The primary focus was evaluating Morlet wavelets' effectiveness in extracting unique
characteristics from histopathological images to improve accuracy and dependability. The
comprehensive workflow of the study is shown in Figure 1.

Image Classification through Morlet Wavelet Integrated KAN Model

Data Preprocessing Morlet Wavelet Integrated KAN Model
« Image Augmentation Model Training
+ Data Balanacing = Layer (type) Output Shape  Param # »| « Adam Optmizer
+ Resizing (128x128) » » Cross Entropy Loss
« Data Normalization BatchNorm1d-1 [-1,128] 256
KANLinear-2 [-1,128] [1]
BatchNorm1d-3 [-1,128] 256
KANLinear-4 [-1,128] 0
BatchNorm1d-5 [-1, 64] 128 Model Evaluation
KAMNLinear-6 [-1,64] [1] « Accuracy
BatchNormid-7 [-1,32] 64 * Precision
KANLinear-8 [-1,32] 0 * Recall
Linear-9 [-1,2] 66 * F1_Score
« Specificity
» Confusion Matrix

Fig. 1. Comprehensive workflow
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2. Dataset and Pre-processing

The IDC_regular_ps50_idx5 dataset is a collection of histopathological image patches sized 50x50
pixels. It is helpful in the detection of Infiltrating Ductal Carcinoma (IDC), which is the most common
type of breast cancer. The images in the dataset are labeled as IDC positive for Malignant (Class 1) or
IDC negative for Benign (Class 0). The images are organized based on patient IDs, and within each
patient's folder, there are subfolders for IDC positive and IDC negative patches. Sample images are
shown in Figure 2 and Figure 3

This study uses this dataset consisting of 277,524 histopathological images depicting breast
tissue. Out of these images, 198,738 are categorized as benign, while 78,786 are deemed malignant.
Due to the significant imbalance between the quantities of benign (Class 0) and malignant (Class 1)
images, malignant images are augmented by applying rotation, flipping, scaling, and translation. After
using these augmentation methods, the dataset achieved equilibrium with an equal count of benign
and malignant images. As a result, the revised dataset now comprises 198,738 benign images and
198,738 malignant images, totaling 297,476 images. The resulting balanced dataset has been
organized into a directory called "Balanced," containing subfolders labeled 1 for Malignant (Class 1)
samples and 0 for Benign (Class 0) samples.
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Fig. 3. Sample Malignant images

3. Methodology
3.1 Wavelet Transform

Lokenath Debnath [5] explained that Wavelet transform is a mathematical tool that analyzes the
signal into parts at different scale levels. It gives time and frequency information, which is especially
valuable for working with non-stationary signals such as images.

3.1.1 Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT) of a signal y(}‘) is defined as,

W,(p.q)= ﬁ [vow (%’J d (1)

Where,

y(¢) is the mother wavelet, a function localized in both time and frequency, p is the scale
parameter regulating wavelet width g and is the translation parameter handling the position of the
wavelet and denoting the complex conjugate v .

3.1.2 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is a case study of the CWT, using discrete values for the
scaling and translating parameters. The DWT of a signal y(m) is given by:

W, [p.ql=2. v(my, [m] (2)

Where,

v [m]= 1 v m—q-2%
g JZ 2p

p and g are integers representing the scaling and translating indices, respectively.

3.1.3 Morlet wavelet

Morlet Wavelet is the type of wavelet transform primarily used in signal processing and image
analysis based on the time-frequency analysis of signals. The Morlet wavelet function w (¢) is defined

as:
-1 -2

w(t)=mr*e™e? (3)

Where 4y, is a dimensionless frequency parameter that determines the central frequency of the

wavelet, and 7 is the imaginary unit?

The Morlet wavelet stands out due to its exceptional frequency representation with a central
focus on zero in the frequency domain. This quality makes it highly efficient in detecting oscillatory
patterns within signals. One of its capabilities is the simultaneous localization of time and frequency
aspects, which proves highly efficient in detecting transient events and specific signal characteristics.
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Image processing helps extract features and examine patterns. It preserves the nuances and general
texture of an image. It is a valuable tool in diverse areas, such as signal assessment and advanced
image processing.

3.1.3 Kolmogorov-Arnold representation theorem

The Kolmogorov-Arnold representation theorem [37] extends the Weierstrass theorem. It
suggests that the continuity of multiple functional variables can be expressed through the
combination of several functional variables. This idea proposes that a function of variables can be
represented using more straightforward functions

S (V15335 V350008,) = ié{ m %(VJ,-)J (4)

Where f the function is to be approximated y, are continuous functions.

3.2 Wavelet-KAN Model Architecture by Zavareh Bozorgas! and Hao Chen [6]

Wavelet transformations can be smoothly incorporated into the structure of the Kolmogorov-
Arnold Network. This integration allows for the effective extraction of specific features from
histopathological images. In this architecture, every layer incorporates a KAN Linear module that
substitutes conventional fully connected linear layers. Instead of applying transformations, the KAN
Linear module utilizes wavelet transforms on the inputs as they progress through the network. This
assures the model retains key details about frequency and time-frequency aspects before applying
the activation functions. The Morlet wavelet, known for its localization capabilities, is specifically
designed for these layers, enabling the extraction of transient and complex characteristics across
different scales.

We utilize a Kolmogorov Arnold Network (KAN) structure (Table 1) that incorporates Morlet
wavelets instead of conventional weights in the linear layers. What sets this method apart is its use
of the mathematical characteristics of Morlet wavelets for extracting features directly within the
neural network. Instead of feeding in wavelet data, we process the raw input through layers that
employ Morlet wavelets to extract features dynamically. Within the Kolmogorov Arnold Network
KAN framework that incorporates wavelet transformations, the process starts at the layer that
handles pre-processed images referred to as X. Every image is thoroughly examined in the Wavelet
Transformation Layer by applying the wavelet transform function. This function can be represented

asy .
W (a,b)= %_};X(t)//*(%)dt (5)

The process involves breaking down images into wavelet coefficients representing various
frequency elements, enabling a thorough examination of the picture's intricate and subtle details.
After the wavelet transformation, the modified coefficients go through several hidden layers for
further processing. Each hidden layer 7 applies a series of changes to the wavelet coefficients. Each
hidden layer's output 7, can be represented as,
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h, = W(a’s O, + bz) (6)
where,
@, is the [-th layer weight matrix.

O,_,is the previous layer output.
b,is the [-th layer bias vector.

v represents the wavelet transform applied to the linear integration of inputs. Here, i is used
on the weighted sum of inputs, permitting the network to capture intricate characteristics and trends
in the images transformed through wavelet analysis.

In terms of architecture, the neural network incorporates a BatchNorm1d layer (BatchNorm1d-
1) that standardizes the inputs. This normalization process aids in maintaining equilibrium in the
dataset throughout training and promotes quicker convergence. This layer comprises 256
parameters obtained by computing the mean and variance for normalizing 128 features. In the
subsequent layer, named KANLinear-2, the Morlet wavelet transformation is utilized in place of
conventional neurons. This choice leads to a parameter count of 0, as wavelets are established
mathematical functions. Following this step, BatchNorm1d-3 applies normalization to the output of
KANLinear-2 just like BatchNorm1d-1 without using conventional neurons. In KANLinear-4, we again
apply the Morlet wavelet transformation without any trainable parameters or neurons being
involved. The sequence repeats with BatchNorm1d layers, taking turns with KANLinear layers. Each
BatchNorm1d layer normalizes the input data while each KANLinear layer performs predetermined
Morlet wavelet transformations. Throughout the process, the dimensionality of the feature space is
decreased (from 128 to 64 and subsequently to 32) through the application of BatchNorm1d layers.
These layers condense the extracted features while retaining crucial information. This gradual
reduction enables the network to hone in on the features streamlining its decision-making workflow.

The final layer is a classification layer known as Linear-9. It has 66 parameters and utilizes weights
that can be adjusted to determine whether the input is benign or malignant. This layer employs a
sigmoid activation function.
y=ol(o,, -0, +b,,) (7)
Where,

®,,, and b, are the weights and biases of the output layer and the sigmoid function. The sigmoid

function takes the last mix of features and converts them into a probability score ranging from 0 to
1. This score indicates the probability of an image being categorized into a particular category.
Through the utilization of this approach, the procedure ensures that the model effectively utilizes the
wavelet-transformed attributes along with the modifications in the hidden layer to achieve accurate
and reliable classifications.

Implementing Morlet wavelets in KAN offers several advantages. One notable advantage is the
minimization of the number of parameters, with the whole network consisting of just 770
parameters, mainly concentrated in the normalization layers. Replacing traditional weight matrices
with Morlet wavelets decreases the number of parameters required to be adjusted, making the
training process more efficient. In this approach, wavelets enhance the capacity to generalize by
reducing the chances of overfitting. This aspect is vital in medical imaging scenarios where data is
often limited.
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3.1.4 Model evaluation

The KAN wavelet model was trained using a dataset of histopathological images over 50 epochs.
The data was passed into the model in batches to improve efficiency and optimize memory usage.
Images were simultaneously processed to complete the training process rapidly. The main objective
of the model was to reduce loss, which was calculated through the loss function (cross-entropy).

Various metrics commonly used in binary classification were employed to evaluate the
effectiveness of the Morlet KAN model. Precision calculates the ratio of accurately predicted
cancerous tissues to all predicted cases. A high precision score reflects the model's ability to reduce
false positives. Sensitivity, known as recall, assesses how well the model can accurately detect
malignant tissues. It is the ratio of true positive cases out of all the real positive instances. Recall
highlights how the model identifies cancerous tissues without missing any cases. The F1 score uses
both recall and precision to offer a perspective on the effectiveness of the models. Precision and
recall can occasionally be at odds with each other. However, the F1 score provides a balanced
assessment by assigning importance to both measures.

Moreover, the metric accuracy evaluates the model's performance. Accuracy assesses how well
the model classifies both classes (1 and 0) regarding all instances in the dataset. The combined
analysis of these metrics evaluates the Morlet KAN model.

4. Results and Discussion
4.1 Training and Validation Loss

This section discusses training, validating, and testing results of the Morlet KAN model.

The loss plot in Figure 4 shows a continuous decrease in training and validation losses,
establishing that the model has effectively learned to minimize classification mistakes throughout
the training process. The loss value is typically high at the beginning of training, although this is
expected. It soon decreases rapidly, showing that the model is improving its optimization attempts.
The starting loss is around 0.6963 for the training set and approximately 0.6918 for the validation
set. By the final epoch, the training loss decreased to about 0.1410, while the validation loss settled
at 0.3321. This low validation loss suggests that the model has effectively learned the data without
overfitting significantly, as indicated by the minimal divergence between the training and validation
loss curves. The smooth convergence of both curves showcases the stability and effectiveness of
Morlet wavelet feature extraction in supporting model learning. Typically, overfitting is marked by a
gap between these two curves, but such an occurrence is not observed in this case.

0.7 —e— Training Loss

l'.' -
"‘-:._ = Validation Loss

o ] & -2 ° &
Epochs

Fig. 4. Training Vs. validation loss over epochs
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4.2 Training and Validation Accuracy

The accuracy graph (Figure 5) shows that the model steadily improves over the epochs for both
the training and validation sets. Initially, it starts with an accuracy of approximately 0.5194, indicating
random guessing, but quickly increases as it learns relevant features. In the early stages, the accuracy
is around 0.5194, reflecting a point where the model faces challenges in classifying tasks. By the end,
training accuracy is 0.9470, and validation accuracy is 0.8989. The slight difference between training
and validation accuracy suggests that the model is well-balanced and does not overfit the training
data. The final validation accuracy of 0.8989 indicates that the model effectively operates on unseen
data. This high accuracy level and minimal variations throughout the epochs indicate that the Morlet
wavelet transformation effectively enhances features, enabling the model to distinguish between
classes.

+— Training Accuracy i3 1
- Validation Accuracy
0.9 - -

0.8- s
&
z .-
m A
5 c_]-i-"'l
(] =
[~ e
Jo7 o
.,}
s
¥ A
0.6 ;//
-
'/:/
0.5
° > » S ® X
Epochs

Fig. 5. Training Vs. validation accuracy over epochs
4.3 Training and Validation Precision

Precision evaluates the proportion of predicted samples that are genuinely positive. The precision
chart (Figure 6) shows consistent values during the training and Validation phases. By the final epoch,
the training precision is 0.9543, and the validation precision is 0.9035. A precision value indicates that
the model is effectively reducing false positives. This is most important in healthcare settings where
incorrectly classifying a benign case as malignant could lead to unnecessary concern or action. The
high precision value indicates that the model accurately detects malignant cases while minimizing
misclassifications of benign ones. The steady rise and absence of variations in precision over epochs
indicate a reliable model.
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Fig. 6. Training Vs. validation precision over epochs
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4.4 Training and Validation Recall

In this context, recall plays a role in assessing how well the model can accurately identify all true
positive instances, specifically in capturing all malignant cases. The recall chart (Figure 7)
demonstrates that the model achieves recall scores, suggesting that it correctly classifies most
positive samples. It reaches approximately 0.9390 for training after the training phase. This indicates
that the model effectively recognizes nearly all malignant cases with very few false negatives
(malignant cases misclassified as benign). A high recall rate in cancer diagnosis is crucial to ensure
that no malignant cases go undetected since such an oversight could have serious consequences. The
relatively stable recall rates suggest that the Morlet wavelet transformation has proven
advantageous in extracting essential features associated with the positive class (malignant cases).

—e— Training Recall

=- Validation Recall =
0.9: il
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-
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v
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.
o K o o © &»
Epochs

Fig. 7. Training Vs. validation recall over epochs

4.5 Training and Validation F1_Score

Recall and precision averaged together give F1 _Score. It offers a perspective on how good a
model is. From (Figure 8), the Final F1 Score is around 0.9466 after training. This impressive F1 score
showcases the model's ability to strike precision and recall balance, which is crucial to avoid the
dilemma of high precision compromising recall or vice versa. With the final F1 score being closely
aligned with both precision and recall (0.9543 and 0.939, respectively), the model consistently finds
true positives while minimizing false positives.
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Fig. 8. Training Vs. validation F1_score over epochs
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IP+IN 35247 + 36280

Accuracy = = =0.8997 (8)
TP+TIN +FP+FN 35247 +36280+3557+4411
Precision = e = 35247 =0.9083 (9)
TP+ FP 35247+ 3557
Recall = P = 33247 =0.8887 (10)
TP+ FN 35247+4411
Specificity = IN 36280 =0.9107 (11)

TN+ FP 36280+3557

F, Score=2x (Recall x Pr ecision) _5 0.9083x 0.8887 — 0.8983 (12)

=2x
(Precision+ Recall) 0.9083 + 0.8887

4.6 Confusion Matrix

The confusion matrix (Figure 9) offers insight into how the classification is performed by
displaying the true positives, true negatives, false positives, and false negatives for both the benign
and malignant classes. True Positives (Malignant Correctly Classified): the matrix reveals that a
significant portion of malignant cases are accurately identified at an accuracy rate of 88.87% for this
category. True Negatives (Benign Correctly Classified) Approximately 91.07% of benign cases are also
correctly recognized, demonstrating the model's effectiveness across both categories. False Positives
(Benign Misclassified as Malignant): the incidence of false positives is relatively low (around 8.92%),
indicating the model's precision. False Negatives (Malignant Misclassified as Benign) Likewise, false
negatives are minimal (around 11.12%), which aligns with the high recall metric. The confusion matrix
reveals that the model's performance is strong in both categories, with only a few misclassifications.
While these errors are relatively minor, they could still deserve consideration. Using the Morlet
wavelet technique seems to assist the model in identifying key features specific to each class that

reduce mistakes overall.
35000
- 30000
3557
25000

- 20000

- 15000

- 10000

0 1

Fig. 9. Confusion matrix
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5. Conclusion

This research concludes that integrating Morlet wavelet transformation in the Kolmogorov
Arnold Network achieved impressive performance metrics. Morlet wavelet increased the model's
ability to extract characteristics from histopathological images, essential for breast cancer diagnosis.
The effectiveness of the Morlet wavelet in feature extraction has played a role in the success of the
classification model. The model achieved precision, recall, F1 score, specificity, and accuracy at
90.83%, 88.87%, 89.83%, 91.08%, and 89.97%, respectively. The low loss and consistent validation
metrics indicate strong generalization without overfitting. In addition, the confusion matrix shows
that the model has a low misclassification rate. Wavelet transformations enhance accuracy in
diagnosing cancerous areas. This allows for detecting tumors, potentially leading to prompt
treatment actions and better patient results. Integrating wavelet transformations into the KAN
framework may present difficulties regarding computational requirements, particularly in real-time
settings and limited resources. However, despite these challenges, the KAN model integrated by
Morlet wavelet transformations shows potential as a promising tool that deserves further testing in
future research and comparative studies to evaluate its effectiveness in real-world clinical settings.

6. Future Work

Further investigation based on these results is required. The use of different wavelets could
improve feature extraction and diagnostic accuracy. Integrating data sources like structural and
functional imaging through wavelet processing might enhance cancer diagnosis and staging
precision. Optimizing the model for real-time image analysis could facilitate its implementation in
clinical environments, supporting timely and informed decisions. These advancements promise to
enhance the efficacy of diagnostic tools significantly, leading to better patient management and
outcomes.
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