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ABSTRACT The unprecedented growth of Renewable Energy Sources (RES) positions solar power as a
leading contender in the global energy mix. Solar energy offers a sustainable alternative to fossil fuels,
mitigating carbon emissions and promoting environmental sustainability. This study explores the crucial
role of forecasting algorithms within photovoltaic (PV) systems. We aim to provide a comprehensive
understanding of methodologies, datasets, and recent advancements for enhancing predictive accuracy
in solar power generation forecasting. While machine learning has dominated previous research, recent
studies highlight challenges in achieving optimal efficiency and accuracy. A significant obstacle lies in
the deficiency of real-world application for large-scale specifically for solar power generation forecasting.
To address this gap, this study defines prevalent forecasting methodologies and illuminates datasets with
diverse characteristics and their relevance. This study meticulously provides and explore recent advanced
methods and datasets, emphasizing their impact on forecasting performance. This study not only deepens
our understanding of existing methodologies but also provides valuable insights for future advancements in
solar power generation forecasting.

INDEX TERMS Solar power, machine learning, PV, solar energy.

I. INTRODUCTION
Electricity demand is increasing rapidly year by year. All
sectors, such as industrial, residential, and others, need
the power to provide their activities and business steadily.
For the past few years, we have needed more fuel, diesel,
and gas in electricity production. It has a significant
impact on climate change and global warming. Hence,
renewable energy is widely used to substitute common
sources for various purposes. There are solar energy, wind
energy and ocean, geothermal energy, hydropower, and
bioenergy [1]. One of the popular is Solar energy. Everyone
has moved and implemented this Renewable Energy Source.
Solar Photovoltaic (PV) capacity additions increased yearly
from 2010 to 2023 [2].
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There are several challenges to solar power generation
implementation in the real world. Weather conditions and
parameters play the main role in producing the power.
It depends on the climate conditions and intensity of sunlight
in a specific place. Due to this challenge, accurate forecasting
of solar power generation algorithms is essential. Hence,
It can reduce the impact of PV power uncertainty on the
grid, improve system reliability, maintain power quality, and
increase the penetration level of PV systems [3].

Previous studies have used several statistical, Machine
Learning (ML), and hybrid methods. Mathematical tech-
niques have disadvantages in terms of accuracy caused by
the increasing forecasting horizon [4]. Other studies showed
ML has often been used to achieve better performance. Long
Short-Term Memory (LSTM) is repeatedly used as a base
algorithm to be analyzed in these studies [5], [6], [7], [8],
[80]. Recently, hybrid methods have outperformed traditional
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and basic ML algorithms regarding performance. However,
previous studies proved that using the combined method
affects the complexity of training [4], [30], [40].

The critical role of accurate solar power generation
forecasting is well-established for integrating renewable
energy into the smart grid. Numerous review papers have
explored various forecasting methodologies, showcasing the
dominance of Machine Learning approaches and delving
into their strengths and limitations [4], [9], [10], [11],
[12], [13], [14]. However, a gap exists in comprehensively
addressing the performance and datasets that underpin these
forecasting methods. This research field still faces challenges
with real-world applications. This study aims to bridge
this gap by systematically reviewing solar power generation
forecasting. We will not only examine the limitations of
existing methodologies but also strongly emphasize the
various recent advanced methods and datasets available and
their suitability for different forecasting tasks.

This study provides a comprehensive review of solar power
generation forecasting methodologies. Recent algorithms
described include architecture and workflow. This study’s
contributions can be summarized as follows:

1) Classification of forecasting methods: Provided an
overview of different forecasting methods and cat-
egorized them according to different algorithms in
building a prediction model for solar power generation
forecasting.

2) Datasets available for research: Identified and
explained relevant datasets that researchers can utilize
to train and test various forecasting techniques.

3) Recent advancements: Explored the latest develop-
ments and frequently utilized in forecastingmethodolo-
gies

4) Comparative review: Conducted a comprehensive
review of recent studies (2019-2024) on solar power
generation forecasting. Our analysis focused on
the datasets used, forecasting horizons, methods
employed, results achieved, and evaluation metrics.
This comparative overview empowers researchers
to make informed decisions when selecting the
most suitable forecasting technique for their specific
research objectives.

This study is organized as follows: Section II describes the
foundation of PV systems and highlights solar power integra-
tion to the grid. Section III delves into solar power forecasting
classifications. Section IV analyzes diverse datasets available
for solar power forecasting. Building on this data foundation,
Section V explores recent advances in solar power generation
forecasting methods, examining prominent algorithms and
their strengths and limitations in this context. Section VI
acts as a critical juncture, presenting a comparative review
of the forecasting methods and datasets explored earlier,
identifying optimal combinations for achieving the most
accurate and reliable solar power generation forecasts.
Finally, Section VII acknowledges the ongoing challenges

and proposes avenues for future research to refine forecasting
methodologies further. Section VIII concludes this review
paper by summarizing the key findings and reiterating the
significance of accurate solar power generation forecasting
for a sustainable and reliable energy future.

II. METHODOLOGY
A comprehensive review of recent advancements and future
solar power generation forecasting challengeswas conducted.
To investigate and execute our contributions, we utilized the
following processes:

• Research question: we initiated several questions to be
searched in the next step, which include:

1) What forecasting algorithms are commonly used
for solar power generation prediction?

2) What types of datasets are commonly utilized for
solar power forecasting tasks?

3) What recent innovations and developments have
shaped the solar power forecasting methodologies
field in the past few years?

4) How do various forecasting algorithms compare
accuracy, computational efficiency, and robust-
ness?

• Comprehensive Search: We extensively explored these
leading databases, IEEE Xplore, ScienceDirect, Else-
vier, MDPI, Springer, Hindawi, and Google Scholar,
to gather relevant research. The keywords used to
collect all the references were: ‘‘PV power generation,’’
‘‘solar power forecasting,’’ ‘‘machine learning,’’ ‘‘deep
learning,’’ and ‘‘time series forecasting,’’

• Screening: We conducted a comprehensive literature
search, identifying 278 relevant references. To narrow
our focus, we filtered these references to include
only those specifically related to solar or PV power
generation forecasting. This process yielded 139 rele-
vant sources, encompassing journal articles, conference
papers, and dataset sources. When selecting all refer-
ences, we prioritized highly cited articles.

III. PHOTOVOLTAIC SYSTEMS
Photovoltaic (PV) systems have been beneficial in providing
electricity and could decrease carbon emissions. Today,
researchers still find methods for obtaining power from
renewable sources to achieve zero-emission and avoid cli-
mate change. However, there are some challenges regarding
efficiency and cost for saving the excess power from
PV systems. Buying batteries to store the overabundance
of electricity will be a high cost. Hence, PV systems
connected to the grid can be a solution to reduce tariffs and
maintenance [15]. Grid-connected PV systems can be shown
in Figure 1.
The conventional grid we use today has many issues, such

as undependable, low efficiency, losses and interruptions, and
so on [16]. Researchers found the solution for these limita-
tions is creating a smart grid. A smart grid is a sophisticated
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network with an automated control and monitoring system.
It can communicate, store information, make decisions based
on the situation, and integrate and deliver the benefits of an
electricity network to all parties involved [17].

Smart grid parts include an integrated communication
system, modernized hardware, intelligent control and instru-
mentation, and smart software [18]. Artificial intelligence
(AI) is part of intelligent control that predicts energy
production and monitors the system. Nevertheless, there are
limitations to the unpredictable weather that could cause
the performance of forecast power generation from the
PV system. Therefore, researchers are still studying and
developing accurate forecasting algorithms for PV power
generation to achieve a potential and reliable smart grid.

FIGURE 1. Grid-connected PV systems.

IV. CLASSIFICATION OF PV POWER GENERATION
FORECAST METHOD
Researchers could consider several approaches to achieving
the study’s objectives. In this study, the classification of PV
power generation forecasting is divided into four categories:
physical, statistical, hybrid, and AI-based methods. The
diagram of classification based on our review is shown in
Figure 2.

A. STATISTICAL METHOD
In this section, the classification of statistical methods is
divided as follows: based on forecast horizon, area scale, time
step, direct and indirect, and deterministic and probabilis-
tic [9], [14]. The perspectives mentioned earlier should be
considered before starting the experiment and choosing the
model or algorithm. Statistical models that have been used
in previous studies, such as ARMA [19], ARIMA [20], and
SARIMA [21] should be considered. Moreover, performance
metrics would be affected by non-suitable methods and
approaches.

1) FORECAST BASED ON HORIZON
Forecast Horizon can be categorized into four types: very
short-term (1 second to less than 1 hour), short-term forecast
(1 to 24 hours), medium-term forecast (1 week to 1 month),
and long-term forecast (1 month to 1 year) [6]. Very
short-term is applicable for optimal reserves, power smooth-
ing, and electricity dispatch, while short-term is functional

FIGURE 2. Classification of PV power generation forecast method.

TABLE 1. Classification based on forecast horizon.

to raise the grid’s security. Medium-term helps sustain
the power system planning and maintenance schedule by
forecasting the obtainable electric power in the future. Lastly,
Long-term is helpful for electricity generation planning,
transmission, distribution authorities, energy bidding, and
security operations [4]. The summary of the forecast horizon
is shown in Table 1.

2) FORECAST BASED ON AREAL SCALE
Models for predicting the power output of PV systems can
be classified into two categories based on the scope of
their application: single-field and regional forecasts. The
single-field category focuses on forecasting for a single PV
plant [9]. In contrast, regional forecasts consider a broader
area, encompassing multiple PV plants distributed across a
larger region [14]. Classification of the areal scale forecast
can be shown in Figure 3.
Previous studies related to regional forecasting [75], [80],

[129], [130] have been researched and investigated. Regional
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Forecast approaches can be split into Bottom-up and Up-
scaling [14]. For the bottom-up approach, the output of each
plant in the regional area will be predicted first. Subsequently,
these individual results are statistically combined to produce
the overall regional forecast. The upscaling approach involves
either substituting individual PV sites with a hypothetical
power plant at the regional level or selecting representative
PV sites to predict regional power output, adjusting for
differences in capacity.

FIGURE 3. Types of areal scale forecast.

3) FORECAST BASED ON DIRECT AND INDIRECT
Direct and indirect forecast methods have been used in
previous studies. Direct forecasting models analyze historical
data to determine the relationship between the input variables
and PV output power [9]. Some studies have implemented
direct forecasts [22], [23]. Indirect forecasting is divided
into two steps: the weather factors that affect solar PV
output power, such as solar irradiation, are modeled, while
the second step transforms the result of the first step into
predicted PV output power.

The procedure to forecast PV power by indirect method is
as follows: First, collect solar irradiance and meteorological
data, PV plant location information, PV panel, and inverter
characteristics. Second, data-driven models can forecast solar
irradiance on a horizontal plane. Third, use combination
models to calculate the plane of array solar irradiance. Fourth,
POA irradiance is applied as an input in PV performance
models to forecast solar power [10]. However, the indirect
method has limitations due to overlay error hindering the
improvement of PV prediction accuracy [24].

4) FORECAST BASED ON DETERMINISTIC AND
PROBABILISTIC
A forecast based on deterministic makes a forecast of the PV
output power into the future without considering the forecast
uncertainties [9]. Probability forecasts can provide prediction
intervals in addition to precise values with which the
forecast is expected to fall with some predefined confidence
level or probability [14]. In [25] implemented, deterministic
and probabilistic based on wavelet transform and deep
convolutional neural network.

5) FORECAST BASED ON TIME STEP
A forecast model that predicts only the next immediate
time step, such as a minute, 5 minutes, 15 minutes, or an

hour, is known as a single-time step forecast. Contrarily,
a forecast model that predicts more than one future time
step is called a multiple-time-step forecast [14]. One of the
previous studies forecast based on multiple-time-step from
15-min to 24 hours [26].

B. PHYSICAL METHOD
The physical method employs a physics-based model to
simulate solar energy conversion into electricity. By using
weather parameters like cloud cover, temperature, and solar
irradiance as inputs, the model predicts power output through
physical equations [9]. The physical Method can be divided
as follows: Based on Numerical Weather Prediction (NWP),
sky images, and satellite images [27]. This approach is critical
as part of a feasibility study to determine the amount of PV
generation before it is constructed [14].

C. HYBRID METHOD
Hybrid methods combine two or more techniques, often
incorporating an optimization theorem. This combination
enhances the overall accuracy of the hybrid by leveraging
the advantages of each method [4]. In [28], a hybrid GCN-
BiLSTM model was used to predict solar power generation
from seven PV sites, and the proposed method proved
to outperform time-series forecasting methods. GRU-CMM
model was used in [29] and achieved the lowest error rates
using this hybrid method. Also, other studies implemented a
hybrid method recently [30], [31], [32], [33], [34]. It proved
that it enhances the performance better than other methods.

D. AI-BASED METHOD
The AI-based method uses machine learning or Deep
Learning (DL) algorithms to solve a specific task. Today,
ML or DL is frequently used to predict PV power generation.
Figure 4 provides an overview of AI, ML, and DL algorithms
commonly used for solar power generation forecasting tasks.

Machine learning is a subset of AI. Machine learning
algorithms can be broadly categorized into three types: super-
vised learning, unsupervised learning, and reinforcement
learning. Unsupervised learning encompasses dimensionality
reduction and clustering techniques. Principal Component
Analysis (PCA) is a widely used dimensionality reduction
algorithm that can benefit the preprocessing of complex solar
power generation data [89]. Clustering algorithms, such as
K-means, are widely employed [37]. Supervised learning is
frequently used in solar power generation forecasting due to
its ability to learn from labeled data. Common supervised
learning algorithms include regression models [97], decision
trees [29], and support vector machines [106]. Reinforcement
learning is less commonly used in solar power generation
forecasting due to the poor fit between the workflow and the
needs of this task.

Deep learning, a subset of machine learning, utilizes neural
networks to learn complex patterns within data. Deep learn-
ing models have the advantage of directly learning features
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from datasets, enabling them to capture more complicated
patterns and potentially improve training efficiency [51].
Several deep learning models have been studied previously,
are ANN [124], CNN [56], RNN [84], ELM [85], and so on.

FIGURE 4. AI-Based algorithms and types for PV power generation
forecasting tasks.

V. DATASET
The availability of high-quality datasets is crucial for training
and evaluating ML algorithms in solar power generation
forecasting. However, the field has historically beenHindered
by a lack of openly accessible data, with prior studies relying
on private datasets [54]. This has limited the reproducibility
and generalizability of research findings.

Fortunately, a recent trend toward open data sharing has
emerged in the solar power generation forecasting. Several
academic journals now publish detailed datasets explicitly
designed for this purpose [46], [47], [49], [24]. This section
presents a selection of these datasets, many of which are
publicly accessible and freely downloadable. We prioritized
datasets that include photovoltaic (PV) power generation
records. This allows researchers to choose the most suitable
data for their research needs. These datasets are summarized
in Table 2.

A. POWER GENERATION DATA
a comprehensive dataset was collected from a 20 kW rooftop
PV power station in Shaoxing City, Zhejiang Province,
China [44]. This dataset covers a four-year timeframe, span-
ning October 2014 to September 2018. The data acquisition
frequency is prominently high, with measurements captured
every 7.5 minutes. This granular resolution provides valuable
insights into the dynamic behavior of the PV system under

real-world operating conditions. The dataset specifically
includes two key variables: PV power output and PV module
temperature. This dataset has been used as referred to in its
article [121]. The specification details of the dataset can be
shown in Table 3.

B. SOLETE
SYSLAB, a renowned laboratory for distributed energy
resources situated in Denmark, has documented the perfor-
mance of SOLETE [45], a comprehensive energy system.
This system comprises a meteorological station alongside
an 11 kW wind turbine and a 10 kW PV array, meticu-
lously capturing various parameters. These measurements,
involving a timeframe from June 1, 2018, to September 1,
2019, have been diligently transferred to a centralized server
for analysis. The dataset embraces critical variables such as
timestamp, air temperature, relative humidity, pressure, wind
speed, wind direction, global horizontal irradiance, plane of
array irradiance, and active power derived from both the
wind turbine and the PV inverter. Recorded at a sampling
rate of 1 Hz, the data has been aggregated into 5-minute
and hourly intervals, with timestamps adhering to the UTC
format ‘‘yyyy-mm-dd hh:MM:ss’’. The dataset specifications
are detailed in Table 4.

C. PVOD
The PV power output dataset (PVOD) includes a wealth
of information crucial for understanding PV system perfor-
mance, drawing from a diverse array of sources including
metadata, numerical weather prediction data, and localized
measurements [46]. Spanning ten PV systems situated in
China, this dataset offers a comprehensive overview of the
complexities involved in PV power generation within varying
geographical and environmental contexts. By incorporating
metadata alongside both regional and site-specific weather
data, researchers gain valuable insights into the factors
influencing PV system output, facilitating more accurate
modeling and analysis. One of the previous studies that used
PVOD dataset is Yao et al. The dataset specifications are
outlined in Table 5.

D. SKIPP’D
a SKy Images and PV Power Generation Dataset (SKIPP’D)
Originating from Stanford University’s Environmental
Assessment and Optimization (EAO) Group [47]. These
images are extracted at 1-minute intervals from daytime video
recordings (6:00 AM - 8:00 PM) captured by a commercially
available 6-megapixel fish-eye camera mounted on Stanford
University’s Green Earth Sciences Building (37.427◦,
−122.174◦). The PV power generation data are from a PV
panel approximately 125 meters away from the camera
on the roof of the Jen-Hsun Huang Engineering Center at
Stanford University, which are logged by Stanford Utility
and shared with us. The SKIPP’D dataset provided two types
of data as follows:
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TABLE 2. Solar power generation datasets.

TABLE 3. Specification details of power generation dataset.

TABLE 4. Specification details of SOLETE dataset.

1) Processed (benchmark) data contains 1-min 64 ×

64 sky images (.npy) and PV power generation
(.npy) pairs, partitioned into model development set
(training+validation) and test set, and further struc-
tured and stored as.hdf5 format.

2) Raw data: 2048 × 2048 sky videos recorded at
20 frames per second (.mp4), 1-min 2048 × 2048 sky
images (.jpg) and PV power generation (.csv).

TABLE 5. Specification details of PVOD.

To ensure consistent image quality, the camera maintains
constant settings for aperture, white balance, and dynamic
range. The high-resolution video (2048 × 2048 pixels at
20 fps) is then converted into individual JPEG images and
down-sampled to a more manageable size of 64 × 64 pixels
for further analysis. This approach provides a cost-effective
and efficient method for capturing sky conditions relevant to
solar power generation forecasting. Recent studies used this
dataset for research purposes [50], [82], [83], [84]. The details
of SKIPP’D dataset can be shown in Table 6.

E. NIST
The dataset comprises one-minute averaged values and
one-second instantaneous values spanning 2015 to 2018,
extracted from three grid-connected PV arrays on the NIST
campus inGaithersburg,Maryland, USA [7]. These arrays are
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TABLE 6. Specification details of SKIPP’D dataset.

TABLE 7. Specification details of NIST dataset.

equipped with sensors to capture essential parameters such as
irradiance, temperature, wind, and electrical measurements,
providing a detailed insight into the operational dynamics of
the PV systems across varying temporal scales. A historical
PV power dataset collected from a parking lot canopy array
monitored by NIST has been used for short-term PV power
generation forecasting [70]. The specification of the NIST
dataset is summarized in Table 7.

F. UNISOLAR
The UNISOLAR dataset represents a comprehensive repos-
itory of high-resolution data on PV solar energy generation,
solar irradiance, and weather conditions, derived from 42 PV
sites distributed across five campuses within La Trobe
University, Victoria, Australia [49]. This dataset briefs an
extensive collection of PV solar energy generation data
spanning approximately two years, precisely recorded at 15-
minute intervals. By encompassing such a diverse range of
locations, researchers are afforded a unique opportunity to
examine the complexity of solar energy production in a
real-world context. The dataset specifications are detailed in
Table 8.

G. PV POWER AND WEATHER PARAMETERS
The dataset provided covers PV power production data
collected at the SolarTech Lab, situated at Politecnico di

TABLE 8. Specification details of UNISOLAR dataset.

TABLE 9. Specification details of PV and weather parameters dataset.

Milano, Italy. This dataset is made freely available for
scientific research purposes and can be accessed through
IEEE Dataport [65], [81]. The dataset consists of several
key variables recorded at a temporal resolution of 1 minute,
offering detailed insights into the performance of the PV
system. These variables include timestamp information in
the format ‘‘dd-MM-yyyy hh:mm:ss’’ (stated in Central
European Time), PV module power output (Pm) at a fixed
tilt of 30◦, ambient temperature (Tair) obtained from the
lab’s weather station, Global Horizontal Irradiance (GHI),
Global irradiance on the plane of array (GPOA) also at a
tilt of 30◦, measured Wind speed (Ws), and Wind direction
(Wd) concerning cardinal directions. Dataset specifications
are outlined in Table 9.

VI. RECENT ADVANCES METHODS AND PERFORMANCE
METRICS
A. AI-BASED METHOD
Artificial Intelligence-basedd method is one of the popular
methods utilized in recent years. In the solar power forecast-
ing field, supervised and unsupervised are mostly used [51].
As shown in Figure 4, many ML and DL algorithms have
been used for the task. The diversity of ML algorithms from
the previous studies is stated in Table 10.
In this section, the widely used and selected AI-based

algorithm will be explained. The methodology for each
method will be described.
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FIGURE 5. Architecture of CNN for time series forecasting.

1) LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) is a Recurrent Neural
Network (RNN) type designed to handle the vanishing
gradient problem in traditional RNNs. It does this by
introducing memory cells and gates that can regulate the
flow of information. This allows the network to remem-
ber important information for longer periods and forget
irrelevant information. Matrices and Vectors are described
below [128]:

1) Wi, Wf , Wg, Wo: These are weight matrices with
dimensions nNxnf .

2) Ri, Rf , Rg, Ro: These are recurrent weight matrices with
dimensions nNxnN .

3) bi, bf , bg, bo: These are bias vectors with dimensions
nNx1.

In the network’s LSTM layer, the following computations
are carried out:

i(k) = σ (Wix(k) + Rih(k − 1) + bi), (1)

f (k) = σ (Wf x(k) + Rf h(k − 1) + bf ), (2)

g(k) = tanh(Wgx(k) + Rgh(k − 1) + bg), (3)

o(k) = tanh(Wox(k) + Roh(k − 1) + bo), (4)

c(k) = f (k) ◦ c(k − 1) + ik ◦ g(k), (5)

h(k) = o(k) ◦ tanh(c(k)). (6)

LSTM models can also have a multi-sequence input
configuration where various lags of the same or different time
series can be presented as model inputs [72]. The algorithm
flow can be shown in Figure 6.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
One kind of deep algorithm learning used to analyze data
with pattern-like visuals is the Convolutional Neural Network
(CNN) [73]. Convolution layers, pooling layers, and fully
linked layers make up CNN’s architecture. The scientific
mechanisms by which the structure of the animal visual
cortex generates patterns of neuronal connection are the
source of inspiration for CNN. It performs a neuron-like
function by multiplying an input by certain weights and
returning the result. Figure 5 details the step-by-step process
of the CNN algorithm for time series forecasting.

One Dimensional Convolutional Neural Network is uti-
lized for solar power generation forecasting tasks. In a con-
volutional layer, the output (ykj ) is calculated by multiplying
the previous layer’s input (xki ) with a set of filters (wkij) and
adding a bias term (bkj ) for adjustment [30]. The convolution
process can be calculated using Eq. (7).

ykj =

∑
i

(xki ∗ wkij) + bkj (7)

3) MULTI-LAYER PERCEPTRON (MLP)
TheMulti-layer Perceptron (MLP) is a specific artificial neu-
ral network architecture commonly used for regression and
classification tasks [5]. It consists of an input layer receiving
raw data, hidden layers with interconnected artificial neurons,
and an output layer generating predictions [76]. Each hidden
neuron applies an activation function (e.g., ReLU) to a
weighted sum of its inputs from the previous layer, introduc-
ing non-linearity and enabling the network to learn complex
patterns. Information flows forward through the network,
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FIGURE 6. The architecture of LSTM.

with neurons in each layer receiving weighted inputs,
applying activation functions, and passing their activations
onward. During training, the MLP employs backpropagation
to adjust connection weights, minimizing the difference
between predicted and actual outputs. This iterative process
allows the MLP to learn complex relationships within the
data, making it a valuable tool for solar power generation
forecasting. The sequence of operations within the algorithm
is illustrated in Figure 7.

FIGURE 7. Architecture of multi-layer perceptron.

4) GATED RECURRENT UNIT (GRU)
Gated recurrent unit (GRU) is a kind of Recurrent Neural
Network RNN and looks like LSTM, but is easier to calculate
and use [77]. LSTM and GRU are very similar to each other,
but they have some key differences: LSTM contains three
gates (input, output, and forget), compared to two for GRU
(reset and update). In a GRU, an update gate determines how
much of the prior state must be retained, while a reset gate
controls how new inputs are integrated with old memory. The
input and forget gates in an LSTM perform the same function
as the update gate. The ct memory is not present in everyGRU
gate unit [78]. The workflow of GRU method can be shown
in Figure 8.

FIGURE 8. Architecture of GRU.

5) TRANSFORMER
The Transformer, introduced in 2017, represents a novel
neural network architecture with significant potential for
solar power generation forecasting [79]. Unlike traditional
architectures that rely solely on recurrent connections, the
Transformer leverages a powerful mechanism called ‘‘self-
attention.’’ This mechanism allows the model to dynamically
assess the relative importance of different parts of the
input sequence (e.g., historical power data and weather
forecasts) during the prediction process. By attending to
the most relevant segments of the input, the Transformer
can capture complex long-term dependencies within the
data, which is crucial for accurate solar power forecasting,
especially for tasks requiring consideration of historical
trends or seasonal patterns. This self-attention mechanism
empowers the Transformer to learn involved relationships
within the input sequence, potentially leading to superior
forecasting performance compared to previous architectures.
The Transformer’s workflow is visually represented in
Figure 9.
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B. STATISTICAL ALGORITHM
The statistical technique uses regression analysis to develop
the model. In the solar power generation field, ARIMA
and other regression techniques have been used to achieve
better performance in solar generation prediction tasks [92].
However, the techniques have limitations in solving non-
linear data. This section explains two traditional algorithms,
including ARMA and ARIMA.

1) AUTOREGRESSIVE MOVING AVERAGE (ARMA)
Autoregressive Moving Average (ARMA) is a kind of
time-series model used in statistical analysis. It can be
applied to answer problems involving a lot of historical
observed data in the domains of mathematics, finance, and
engineering [68]. The Auto-Regressive (AR) and Moving
Average (MA) components comprise its two halves. Whereas
the MA process smoothes oscillations around a time series’
mean, the AR process fits a time series using a linear function
of its historical values [69].

2) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)
Autoregressive Integrated Moving Average (ARIMA),
an extension of ARMA models, accommodates non-
stationary cases. In ARIMA, the non-stationary nature of a
time series is addressed by applying finite differencing to the
data points, transforming them into a stationary form [66].
ARIMA models come in two variations: non-seasonal and
seasonal. A seasonal ARIMA model is employed when the
time series data exhibits seasonality. Otherwise, for general
cases without seasonality, the non-seasonal ARIMAmodel is
applied [67].

FIGURE 9. Architecture of transformer network.

C. PERFORMANCE METRICS
To analyze the accuracy of the forecast model, some metrics
are mainly used and calculated such as Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Normalized Root Mean Squared
Error (NRMSE), and Coefficient of Determination (R2).
RMSE can be calculated given by Equation 8. It provides

a global error measure during the entire forecasting period,
where pi represents the actual solar power generation at the
ith time step, p is the corresponding solar power generation
estimated by a forecasting model, and N is the number of
points estimated in the forecasting period [63].

RMSE =

√√√√ 1
N

N∑
i=1

(p̂i − pi)2 (8)

The MAE has been widely used in regression problems
and by the renewable energy industry to evaluate forecast
performance. It is also a global error measure metric, which,
unlike the RMSE metric, does not excessively account for
extreme forecast events [63]. It can be calculated as shown
in Equation 9.

MAE =
1
N

N∑
i=1

|p̂i − pi| (9)

MAPEmeasures prediction accuracy as a percentage of the
error [64]. It can be calculated as shown in Equation 10.

MAPE =
1
N

∑
i

|
pi − p̂i
pi

| (10)

NRMSE measures the average error of higher importance
to outliers [64]. It can be calculated given by Equation 11.

NRMSE =
1
p

√∑
i (pi − p̂i)2

N
(11)

R2 is the measure of variability that represents how the
model fits the observed data [64]. It can be calculated given
by Equation 12.

R2 = 1 −

∑
i (p̂i − pi)2∑
i (p̂i − pi)2

(12)

VII. DISCUSSION
The previous sections defined the PV power generation
forecast methods and the several datasets utilized in the
previous studies. Solar power generation forecasting has
witnessed significant advancements in recent years, with
a wide range of methods and techniques being explored.
As illustrated in table 10, a comprehensive overview of
recent solar power generation forecasting advancements is
stated. It includes studies conducted between 2019 and 2024,
utilizing various datasets in specific locations and forecasting
horizons with diverse methods for solar power forecasting
tasks.
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TABLE 10. Recent advances methods in solar power generation forecasting.

Photovoltaic (PV) data is crucial for developing models
that predict solar power generation; however, access to
specific online datasets is often limited or restricted, posing
challenges for researchers who rely on internet sources
without institutional support to collect or establish their own

PV systems. As detailed in table 2, a selection of datasets
is predominantly publicly accessible and available for free
download, making it essential to examine data specifications
thoroughly before developing a solar power forecasting
model. Long-term forecasting requires careful consideration

168914 VOLUME 12, 2024



N. Jannah et al.: Recent Advances and Future Challenges of Solar Power Generation Forecasting

TABLE 10. (Continued.) Recent advances methods in solar power generation forecasting.
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TABLE 10. (Continued.) Recent advances methods in solar power generation forecasting.
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TABLE 10. (Continued.) Recent advances methods in solar power generation forecasting.
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TABLE 10. (Continued.) Recent advances methods in solar power generation forecasting.

of the appropriate period for training data; for instance, the
study referenced in [120] utilized both short-term and long-
term datasets, sourced from their collection and public access
through IEEE Dataport, covering data from 2014 to 2018,
which provided a suitable basis for training a long-term fore-
casting algorithm. In another study, Yao et al. employed the
PVODataset to investigate very short-term forecasting [46],
with PVOD offering a temporal resolution of 15 minutes and
data from 2018 to 2019. Yao et al. organized the training data
chronologically, splitting it into 80% for training and 20%
for testing over every five days, ensuring the test set is evenly
distributed and avoiding training in summer while testing in
winter [96].
Solar power generation forecasting in different seasons

has been investigated [6]. Hossain et al. utilized hourly
historical weather data from Desoto solar farm data and
the city of Arcadia in Florida downloaded from the NREL
website for the period of 2012-2018. This study employed
the K-means algorithm to classify historical irradiance
data into distinct dynamic types of the sky for each
hour of the day during the same season. Another study
referenced as [47] employed a model trained on the SKIPP’D

dataset, integrating convolutional layers, Max pooling, batch
normalization, filters, and fully connected layers within its
architecture. SKIPP’D dataset contains PV power generation
data, sky images, and sky videos. However, this model exhib-
ited limitations in accurately forecasting power generation
during cloudy conditions, indicating the need for further
refinement.

Data preprocessing is key to refining and enhancing the
quality of a dataset, significantly impacting the accuracy
of predictions. Solar power generation data is often raw
and unprocessed, with noisy and missing values that can be
addressed through data preprocessing and feature engineer-
ing. For instance, partial and Pearson correlation coefficients
are used to select the most influential variables for the
model [115]. Das et al. handled missing data by filling
in gaps with values from corresponding days within the
same timeframe, identifying solar irradiance, humidity, and
temperature as the most relevant variables from a PV dataset
using Pearson’s and Spearman’s correlation coefficients [57].
Additionally, Xie et al. preprocessed PV data in Oregon using
an isolated forest algorithm to detect outliers and Multiple
Imputations by Chained Equations (MICE).
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Following data preprocessing, an important consideration
for achieving the study’s objectives is selecting a suitable
forecasting horizon for the algorithm. Tables 10 show
that studies conducted between 2019 and 2024 indicate
that short-term solar power generation forecasting is the
predominant focus. For example, Zhou et al. and Pan
et al. concentrate on short-term forecasting using various
methodologies. While short-term forecasting is prevalent,
some studies explore long-term and very short-term fore-
casting horizons. Long-term forecasting is essential for
planning and investment decisions in the renewable energy
sector; for instance, Lesmaoui et al. focus on long-term
forecasting using SVR, ANN, DT, RF, GAM, and XGBoost.
Their results indicate that ANN outperformed the other
models for long-term solar power forecasting in Morocco.
In contrast, very short-term forecasting is critical for real-time
grid operations, as investigated by Piotrowski et al., who
demonstrated thatMLP achieved higher performance than the
other trained models.

A diverse array of forecastingmethods have been explored,
including physical models, machine learning algorithms,
statistical models, and hybrid approaches. Early studies
primarily utilized statistical methods such as ARIMA for
time series forecasting. For instance, Fara employed ARIMA
alongside ANN (Artificial Neural Networks) for short-term
forecasting and utilized data location in Romania, proving
that ARIMA was more efficient than ANN. Moreover,
another investigation deployed the XGBoost algorithm with
the UNISOLAR dataset, aiming to analyze the impact
of weather parameters on solar power generation [49].
The findings explained that the model trained on data
from the summer season yielded the lowest error rates
compared to other seasons, underscoring the significance of
season-specific training data. Hossain et al. investigated dif-
ferent horizon lengths in different seasons using LSTM NN,
and Synthetic weather forecasts achieved higher accuracy.
However, this paper proved that autumn and winter achieved
the lowest error than spring and summer seasons [84].
Previous studies cited showed that solar power generation
forecasting accuracy depends on the weather parameters and
affects the research purpose.

In addition, expanding upon the insights gleaned from
previous statements, it becomes evident that the efficacy of
PV power generation forecasting relies not only on the quality
of the datasets employed and forecasting horizon but also on
the adaptability of the underlying algorithms. While CNN
has shown promise in capturing spatial dependencies within
PV datasets, as evidenced by the utilization of convolutional
layers in [47], their performance may weaken under certain
meteorological conditions, such as cloud cover, as noted in
the same study. Furthermore, a significant number of studies
employing Long Short-Term Memory (LSTM) networks for
solar power generation forecasting [6], [8], [24], [29], [30],
[37], [39], [40], [42], [43], [52], [53], [56], [57], [58],
[61], [62], [85], [87], [88], [90], [94], [96], [99], [101],
[104], [106], [107], [108], [111], [115], [116], [117], [119],

[120], [121], [124]. LSTM is popular due to its ability to
handle time-series data and learn long-term dependencies.
For instance, AlKandari et al. compare LSTM with other
methods like GRU and Auto-LSTM, while Chai et al. use
LSTMwith adaptive hyperparameter adjustment. BesidesAI-
based methods, hybrid and ensemble learning methods have
played essential roles in the recent advances in the past few
years. In 2019, ensembled models named T-MLSHM were
developed based on deep learning and statistical learning
methods [119].

Moreover, a study has developed a hybrid learning which
proposed a combined Bi-Directional Long Short-TermMem-
ory (BD-LSTM) model and an Artificial Neural Network
(ANN) model [24]. In 2021, a hybrid learning method
that integrates Principal Component Analysis (PCA) and
Particle Swarm Optimization (PSO) with a Back Propagation
(BP) neural network was developed [91]. This combina-
tion is aimed at enhancing the accuracy of photovoltaic
power generation predictions. The ensemble learning method
combines three-dimensional convolution (Conv3D) networks
with bidirectional long short-term memory (BiLSTM) net-
works [37]. This approach is designed to learn the non-linear
spatial-temporal relationships between inputs and outputs
automatically. In 2024, [116] combined data decomposition,
linear models, Transformer models, LSTM networks, and
CNN-LSTM architectures, allowing the model to address the
complexities of the data involved effectively.

Various metrics are employed to evaluate forecasting
models’ performance, including MAE, RMSE, MAPE,
NRMSE, and R2. Thesemetrics are crucial for comparing dif-
ferent methods and identifying the best-performing models.
As referred to [62] and [97], these metrics assessed the accu-
racy, reliability, and suitability of forecasting models for solar
power generation. In [62], LSTM models were evaluated
using MAE, MAPE, RMSE, and R2, while in [97], nMAPE,
nAPEmax, and MBE were used to assess the performance of
prediction methods for microgrid applications.

Solar power generation forecasting is rapidly evolving,
with continuous advancements in methods and techniques.
By carefully considering factors such as dataset selection
and quality, forecasting horizon, and evaluation metrics,
researchers can select the most appropriate approaches to
contribute to the progress of this critical field.

VIII. CHALLENGES AND FUTURE WORK
Accuracy and reliable solar power generation forecasters
are necessary in the deployment stage. Besides, there are
huge challenges, and future work is needed to improve and
innovate in the solar energy area. Challenges and future work
are listed below:

1) Weather Conditions: The performance of solar PV
systems is heavily dependent on weather conditions,
which are subject to change and can affect the
accuracy of power forecasts. Preprocessing and select-
ing variables highly correlated with power generation
is recommended for further research.
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2) Forecasting Horizons: Select a specific forecast hori-
zon to be studied to accomplish the research’s purpose
and objective.

3) Data Availability and Quality: The availability and
quality of historical PV power generation data and
weather forecasts are crucial for training accurate
and reliable Machine Learning models. Providing
comprehensive dataset sources and descriptions would
benefit future research.

4) Model Generalization: Models trained on data from
specific locations may not perform well when applied
to other locations due to differences in climate and solar
PV system configurations. Future work will establish
strategies to enhance model generality across various
sites while considering climate and solar PV system
design variables.

5) Robustness and Versatility: To guarantee dependable
performance, looking at the forecasting models’ flex-
ibility and robustness is critical.

6) Performance Metrics: Using consistent and accurate
performance metrics for fair comparisons between
different ML models is challenging, especially when
operating on different scales of PV systems. Therefore,
future research should focus on selecting suitable
objectives and metrics.

7) Hyperparameter Optimization: Optimizing ML model
hyperparameters to achieve the best performance can
be computationally intensive and time-consuming.
Exploring efficient methods through literature review
to shorten the process of hyperparameters optimization.

8) Comparison with Existing Literature: Developing stan-
dardized benchmarks and methodologies to facilitate
meaningful comparisons of ML model performance
across diverse studies in the solar power generation
field.

9) Suitable Algorithm for the Grid: Implementing the
relevant and reliable algorithms on the embedded
platform will bring grid dispatching closer to its actual
demands.

10) Explore Diverse Algorithms: Testing and validating
the hybrid model on other machine learning models
and statistical methods. It is necessary to explore
techniques that increase the variety within the data
used to train the model. This could involve dividing
the training data by different parameters or introducing
more variation in the data itself. Developing other
ensemble techniques that combine multiple models to
improve forecasting accuracy.

11) Efficient and Effective Method: Addressing model
complexity through a single architecture for extracting
diverse features and producing a high-performance
model at the same level as hybrid models.

IX. CONCLUSION
The field of solar power forecasting remains dynamic and
ever-evolving, driven by the need to employ the potential of

renewable energy sources. Over the years, significant strides
have been made in developing and applying methods and
algorithms to provide accurate and reliable forecasts in this
research area. Despite these advancements, one persistent
challenge has been the need for real-world deployment
on a large scale, specifically for solar power generation
forecasting research. This limitation has underscored the
importance of establishing robust systems that can facilitate
rigorous comparative analyses and benchmarking forecasting
methodologies.

In this study, we have attempted to address this chal-
lenge by presenting and categorizing forecasting methods,
identifying relevant datasets, exploring recent advancements,
and comparing their advantages. Purposely empowering
researchers in solar power generation forecasting to choose
the most effective technique for specific research questions,
providing a one-stop resource for navigating this dynamic
field. To further expand on this foundational study, future
research could involve a more comprehensive review of
solar power generation forecasting methods. This in-depth
analysis could analyze each classification, including statisti-
cal methods. Detailed review for forecasting based on area
scales (single, regional), forecast horizon (very short-term,
short-term, medium-term, long-term), direct and indirect
approaches, deterministic and probabilistic approaches, and
time step (hourly, daily, monthly) would be valuable.
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