	English ~	III Products	
Web of Science [™]	Sign In 🗸	Register	
You are accessing a free view of the Web of Science			

Learn More

MENU

 \bigcirc

Results for SVGPM: EVOLVI... >

SVGPM: evolving SVM decision function by using genetic programming to s...

SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem

Ву	Pozi, MSM; Azhar, NA; Ajrina, LH	
Source	PROGRESS IN ARTIFICIAL INTELLIGENCE Volume: 11 Issue: 1 Page: 65-77 DOI: 10.1007/s13748-021-00260-4	
Published	MAR 2022	
Early Access	AUG 2021	
Document Type	Article	
Abstract	In supervised learning, imbalanced class dataset is a state where the class distribution is not uniform among the classes. Most standard classifiers fail to properly identify pattern that belongs to minority class because most of those classifiers are built to minimize the error rate. As a result, a biased classification model is highly anticipated, as higher accuracy metrics can solely be represented by the majority class. In order to tackle this problem several methods have been proposed, mainly to reduce the classifier's bias, such as performing resampling on the dataset, modification on a classifier optimization problem, or introducing a new optimization task on top of the classifier. Our proposal is based on a new optimization task on top of a classifier, combined	

SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem-Web of Sc...

	as a part of the learning process. Specifically, a hybrid classifier based on genetic programming and support vector machines is proposed. Our classifier has shown to be competitive enough against several variations of support vector machines in solving imbalanced classification problem from the experimentation carried out.				
Accession Number	WOS:000686997000001				
ISSN	2192-6352				
eISSN	2192-6360				
	– See fewer data fields				

Citation Network

In Web of Science Core Collection

1

Citation

58

Cited References

How does this document's citation performance compare to peers? Data is from InCites Benchmarking & Analytics

This record is from:

Web of Science Core Collection

• Emerging Sources Citation Index (ESCI)

Suggest a correction

If you would like to improve the quality of the data in this record, please **Suggest a correction**

Clarivate[™] Accelerating innovation

11/22/24, 4:30 PM

SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem-Web of Sc...

© 2024 Clarivate Data Correction Copyright NoticeManage cookie preferences Follow Us

Training Portal Privacy StatementCookie Policy

Product SupportNewsletter

Terms of Use

