Scopus

Documents

Ahmad, Y.A.^a , Gunawan, T.S.^a , Rahman, A.I.A.^a , Shukur, H.H.A.^a , Sanusi, H.^b , Yusoff, N.M.^c

Doppler Shift Analysis for Enhanced Satellite Communication in Low Earth Equatorial Orbits (2024) *Proceeding of the IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA*, (2024), pp. 92-97.

DOI: 10.1109/ICSIMA62563.2024.10675552

- ^a International Islamic University Malaysia, Electrical and Computer Eng. Department, Kuala Lumpur, 53100, Malaysia
- ^b Universiti Kebangsaan Malaysia, Electrical Electronic & Systems Eng. Dept., Bangi, Malaysia

^c Universiti Tekologi Malaysia, Faculty of Artificial Intelligence, Kuala Lumpur, 51400, Malaysia

Abstract

Satellite communications are crucial to the global telecommunications infrastructure, with approximately 2000 satellites orbiting Earth to relay analog and digital signals. These satellites, moving at an average speed of 27,358 km/h, induce Doppler frequency shifts that can significantly impact communication reliability. This study investigates the Doppler frequency shift across various carrier frequency bands (L, S, X, Ku, and Ka) in Low Earth Equatorial Orbit (LEEO) satellites. Utilizing Matlab simulations to model orbital paths at different altitudes, this research quantifies the Doppler shifts and corresponding rates for each frequency band. Results indicate a direct correlation between higher carrier frequencies and increased Doppler shifts, underscoring the need for effective Doppler compensation techniques to enhance communication link performance. The findings provide essential data for optimizing Phase Lock Loop (PLL) designs in transceivers, which is crucial for future satellite operations in equatorial regions. © 2024 IEEE.

Author Keywords

doppler frequency shift; Doppler rate analysis; Ka-band; Ku-band; Low Earth equatorial orbit; phase lock loop optimization; satellite communication networks

Index Keywords

Communication satellites, Orbits, Radio transceivers, Satellite communication systems, Satellite links, Satellite relay systems, Satellite simulators, Tropics; Dopple rate analyze, Doppler frequency shift, Doppler rates, Equatorial orbits, Ka band, Ku band, Loop optimizations, Low earth equatorial orbit, Phase lock, Phase lock loop optimization, Rate analysis, Satellite communication networks; Phase locked loops

References

Bousquet, M.
 Satellite Communications and Space Telecommunication Frequencies

 (2017) Handbook of Satellite Applications, J. N. Pelton, S. Madry, and S. Camacho-Lara, Eds., Cham, pp. 325-357.
 Springer International Publishing

Sobolewski, J.S.

Data transmission media

(2003) *Encyclopedia of Physical Science and Technology (Third Edition)*, pp. 277-303. R. A. Meyers, Ed., New York Academic Press

Narayanasamy, A., Ahmad, Y.A., Othman, M.
 Nanosatellites constellation as an IoT communication platform for near equatorial countries

 (2017) IOP Conference Series: Materials Science and Engineering

(2017) *IOP Conference Series: Materials Science and Engineering*, Institute of Physics Publishing, Nov

- Ellis, P., Van Rheeden, D., Dowla, F.
 Use of Doppler and Doppler Rate for RF Geolocation Using a Single LEO Satellite (2020) *IEEE Access*, 8, pp. 12907-12920.
- Sidiku, M.B., Sani, S.M., Muazu, M.B., Mohammad, A. (2017) Development of A Modified Link Budget for Low Earth Orbiting (Leo)-Based Land

Mobile Satellite Communications System, [Online] • Zhang, Q., Sun, H., Feng, Z., Gao, H., Li, W. Data-Aided Doppler Frequency Shift Estimation and Compensation for UAVs (2020) IEEE Internet Things Journal, 7 (1), pp. 400-415. Jan Neinavaie, M., Khalife, J., Kassas, Z.M. Acquisition, Doppler Tracking, and Positioning with Starlink LEO Satellites: First Results IEEE Transactions on Aerospace and Electronic Systems, 58 (3), pp. 2606-2610. Jun. 2022 Liu, W. Multi-scene Doppler power spectrum modeling of LEO satellite channel based on atlas fingerprint method (2021) IEEE Access, 9, pp. 11811-11822. (2018) YII Doppler Compensation for LEO, Accessed: Jan 16 2023. [Online]. Available • Amiri, S., Mehdipour, M. (2007) Accurate Doppler Frequency Shift Estimation for Any Satellite Orbit. 3rd International Conference on Recent Advance in Space Technologies 602-607, June 2007 Jana, S., Rakshit, G., Maitra, A. Aliasing effect due to convective rain in Doppler spectrum observed by micro rain radar at a tropical location (2018) Advances in Space Research, 62 (9), pp. 2443-2453. **Correspondence Address** Ahmad Y.A.; International Islamic University Malaysia, Malaysia; email: yasser@iium.edu.my Publisher: Institute of Electrical and Electronics Engineers Inc. Conference name: 10th IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2024 Conference date: 30 July 2024 through 31 July 2024 Conference code: 202737 ISSN: 26406543 Language of Original Document: English Abbreviated Source Title: Proceeding IEEE Int. Conf. Smart Instrum., Meas. Appl., ICSIMA 2-s2.0-85208467016 Document Type: Conference Paper Publication Stage: Final Source: Scopus

Copyright © 2024 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

