Scopus

Documents

Ahmed, Z.E.^{a b}, Hashim, A.A.^b, Saeed, R.A.^c, Elbasheir, M.S.^c

Routing Optimization in the Internet of Vehicle: A Systematic Review (2024) 2024 IEEE 4th International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2024 - Proceeding, pp. 422-427.

DOI: 10.1109/MI-STA61267.2024.10599766

^a Uni. of Gezira, Dept of Comp. Eng., Wad Madani, Sudan

^b International Islamic University, Malaysia, KL, Malaysia

^c School of Electronic Eng., University of Science and Technology, Khrtoum, Sudan

Abstract

The Internet of Vehicles (IoV) represents a novel concept in vehicle communication, seamlessly is integrating cloud computing, the Internet of Things (IoT), and Vehicular Ad-hoc Networks (VANETs). Its popularity has been steadily rising, offering innovative solutions for efficient transportation management. Within a dynamic system replete with moving vehicles, addressing routing problems and related challenges is imperative. Optimal routes necessitate collective decision-making, considering the entire network rather than individual routes. Tackling this complexity, the adoption of optimization techniques becomes pivotal in seeking optimal solutions for intricate issues. This paper undertakes a comprehensive review and discussion of diverse optimization methods applicable to IoV routing protocols. © 2024 IEEE.

Author Keywords

Internet of Vehicles (IoV); Optimization technique; Routing Protocol

Index Keywords

Decision making, Internet of things, Routing protocols, Vehicle to vehicle communications, Vehicular ad hoc networks; Cloud-computing, In-vehicle communication, Innovative solutions, Internet of vehicle, Novel concept, Optimization techniques, Routing optimization, Routing-protocol, Systematic Review, Vehicular Adhoc Networks (VANETs); Vehicles

References

- Ahmed, Z.E.
 Optimization Procedure for Intelligent IoT Applications (2022) IEEE 2022 ICBATS, pp. 1-6.
- Ahmed, Z.E.

Energy optimization in low-power wide area networks by using heuristic techniques (2020) *LPWAN Technologies for IoT and M2M Applications*, pp. 199-223. Academic Press.

Saeed, R.A.

Energy Efficient Path Planning Scheme for Unmanned Aerial Vehicle using Hybrid Generic Algorithm Based QLearning Optimization IEEE Access,

Anatabine, L.E.

Deep and Reinforcement Learning Technologies on Internet of Vehicle (IoV) Applications: Current Issues and Future Trends (2022) *Journal of Advanced Transportation*, 2022, p. 16.

(2022) Journal of Advanced Transportation, 2022, p. 16.

- Khalifa, O.O.
 Vehicle Detection for Vision-Based Intelligent Transportation Systems Using Convolutional Neural Network Algorithm (2022) Jour. of Adv. Transp., 2022, p. 11.
- Elfatih, N.M., Mohammad
 Internet of vehicle's resource management in 5G networks using AI technologies:

Current status and trends

(2021) IET Commun., pp. 1-21. • Elaryh, M. An optimized link state routing protocol for real-time application over Vehicular Adhoc Network (2021) Alexandria Eng. Jour., 61 (6). Ali, E.S. Machine Learning Technologies for Secure Vehicular Communication in Internet of Vehicles: Recent Advances and Applications (2021) Wiley-Hindawi, Jour. of Security and Comm. Net. (SCN), 2021. Abdelgadir, M. Evaluation of Performance Enhancement of OFDM Based on Cross Layer Design (CLD) IEEE 802. 11p Standard for Vehicular Ad-hoc Networks (VANETs), City Scenario (2020) Intern. Jou. of Signal Processing Systems, 8 (1), pp. 1-7. Abdelgadir, M. Cross Layer Design Approach for Efficient Data Delivery Based on IEEE 802. 11P in Vehicular Ad-Hoc Networks (VANETS) for City Scenarios (2018) Inter. Journ. on Ad Hoc Net. Sys (IJANS), 8 (4). Abdelgadir, M. Mobility Routing Model for Vehicular Ad-hoc Networks (VANETs), Smart City **Scenarios** (2017) Veh. Comms, 9, pp. 154-161. • Eltahir. A.A. Evaluation and Analysis of an Enhanced Hybrid Wireless Mesh Protocol for Vehicular Ad-hoc Network (2016) EURASIP Jour. on Wirel. Comm. And Net., (1), pp. 1-11. Alawi, M.A. (2014) Simplified gateway selection scheme for multi-hop relay vehicular ad hoc network, 27 (12), pp. 3855-3873. John Wiley & Sons, Ltd, Intern. Jour. of Comm. Systems Amal, E.A. An enhanced hybrid wireless mesh protocol (EHWMP) protocol for multihop vehicular communications (2013) 2013 IEEE ICCEEE, pp. 1-8. Alawi, M. Internet Access Challenges and Solutions for Vehicular Ad-Hoc Network Environment (2012) IEEE ICCCE2012, • Saeed, R.A. Design and evaluation of lightweight IEEE 802. 11pbased TDMA MAC method for road side-to-vehicle communications (2010) IEEE, ICACT'10 Proceedings of the 12th ICACT, pp. 1483-1488. Korea April Khalifa, O.O. An IoT-Platform-Based Deep Learning System for Human Behavior Recognition in Smart City Monitoring Using the Berkeley MHAD Datasets (2022) Systems, 10, p. 177.

- Mukhtar, A.M.
 Performance Evaluation of Downlink Coordinated Multipoint Joint Transmission under Heavy IoT Traffic Load (2022) Wireless Communications and Mobile Computing, 2022, p. 16.
 Alnazir, A.
 - Quality of Services Based on Intelligent IoT WLAN MAC Protocol Dynamic Real-Time Applications in Smart Cities

(2021) Computational Intelligence and Neuroscience, 2021, p. 20.

- Ghorpade, S.N.
 A Novel Enhanced Quantum PSO for Optimal Network Configuration in Heterogeneous Industrial IoT (2021) IEEE Access, 9, pp. 134022-134036.
- Ghorpade, S.N.
 Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications (2021) *IEEE Access*, 9, pp. 93831-93846.
- Hassan, M.B.
- An Enhanced Cooperative Communication Scheme for Physical Uplink Shared Channel in NB-IoT

(2021) Wireless Pers Commun, 120, pp. 2367-2386.

• Nur, N.

A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications (2021) *MDPI*, Sustainability,

- Lamouik, I.

Deep neural network dynamic traffic routing system for vehicles (2018) *2018 IEEE ISCV*, pp. 1-4.

Liao, X.

An Optimal Packet Delivery Strategy Based on Deep Reinforcement Learning in IoV (2021) 2021 IEEE UCET, pp. 146-151.

Sahraoui, Y.

Deepdist: A deep-learning-based iov framework for real-time objects and distance violation detection

(2020) IEEE IoTMagazine, 3 (3), pp. 30-34.

• Kumbhar, F.H.

Novel Vehicular Compatibility-Based Ad Hoc Message Routing Scheme in the Internet of Vehicles Using Machine Learning (2022) *IEEE IoTJr.*, 9 (4), pp. 2817-2828. 15

- Ji, B.
 - Research on optimal intelligent routing algorithm for IoV with machine learning and smart contract

(2023) Digital Communications and Networks, 9 (1), pp. 47-55.

- Nayak, R.P.
 MI-MDS: Machine learning based misbehavior detection system for cognitive software-defined multimedia vanets (csdmv) in smart cities (2022) *Multimedia Tools and Applications*, pp. 1-21.
- Zhang, D.G.
 A new method of content distribution based on fuzzy logic and coalition graph

games for VEC

(2022) Cluster Computing, pp. 1-17.

• Fahad, T.O.

Compressed fuzzy logic based multi-criteria AODV routing in VANET environment (2019) *Intern. Jr. of Elect. And Comp. Eng.*, 9 (1), p. 397.

• Alzamzami, O.

Fuzzy logic-based geographic routing for urban vehicular networks using link quality and achievable throughput estimations (2018) *IEEE Trans. on Intelligent Transpor. Sys*, 20 (6), pp. 2289-2300.

Chowdhary, N.

Increasing route availability in the internet of vehicles using ant colony optimization (2017) *ICAICR*, pp. 318-331. Springer, Singapore.

- Nguyen, T.H.
 ACO-based approach on dynamic MSMD routing in IoV environment (2020) 2020 IEEE 16th IE, pp. 68-73.
- Zhao, H.T. Ant Colony Optimization Based Dynamic Scheduling Routing Algorithm on the Internet of Vehicles (2019) 2019 IEEE ICCETW, pp. 1-2.
- Dhanare, R.

Enhancing the route optimization using hybrid MAF optimization algorithm for the internetvehiclesicle

(2022) Wirel. Perso. Comm, pp. 1-21.

Islam, M.A.

Hybrid particle swarm optimization algorithm for solving the clustered vehicle routing problem

(2021) Applied Soft Computing, 110, p. 107655.

• Attia, R.

Advanced greedy hybrid bio-inspired routing protocol to improve IoV (2021) *IEEE Access*, 9, pp. 131260-131272.

• Omar, N.

Design and development of GreedLea routing protocol for Internet of Vehicles (IoV) (2020) *IOP Conference Series: Materials Sci. And Eng.*, 767 (1), p. 12034. IOP Publishing.

• Xu, H.

A hybrid ant colony optimization for dynamic multidepot vehicle routing problem (2018) *Discrete Dynamics in Nature and Society*,

- Mershad, K.
 Utilizing Roadside Units and Software Defined Networking to Route Packets Efficiently in Internet of Vehicles (2020) 2020 17th IEEE AICCSA, pp. 1-8.
- Wang, C. **SDCoR: Software defined cognitive routing for internet of vehicles** (2018) *IEEE IoTJr.*, 5 (5), pp. 3513-3520.
- Kadhim, A.J. **Routing protocol for IoV-Fog network supported by SDN** (2020) *Telecommunications and Radio Eng.*, 79 (5).

• Lu, T.

Fog computing enabling geographic routing for urban area vehicular network (2018) *Peer-to-Peer Networking and Applications*, 11 (4), pp. 749-755.

 Darwish, T.S.
 Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues (2018) *IEEE Access*, 6, pp. 15679-15701.

. Zhang, D.

A new algorithm of clustering AODV based on edge computing strategy in IOV (2021) *Wireless Networks*, 27 (4), pp. 2891-2908.

Publisher: Institute of Electrical and Electronics Engineers Inc.

Conference name: 4th IEEE International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering, MI-STA 2024 Conference date: 19 May 2024 through 21 May 2024 Conference code: 201424

ISBN: 9798350372632 Language of Original Document: English Abbreviated Source Title: IEEE Int. Maghreb Meet. Conf. Sci. Techniques Autom. Control Comput. Eng., MI-STA -Proceeding 2-s2.0-85201146781 Document Type: Conference Paper Publication Stage: Final Source: Scopus

Copyright @ 2024 Elsevier B.V. All rights reserved. Scopus @ is a registered trademark of Elsevier B.V.

RELX Group™