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Abstract
In this study, we propose a framework that enhances breast cancer classification accuracy by preserving spatial features 
and leveraging in situ cooling support. The framework utilizes real-time thermography video streaming for early breast 
cancer detection using Deep Learning models. Inception v3, Inception v4, and a modified Inception Mv4 were developed 
using MATLAB 2019. However, the thermal camera was connected to a mobile phone to capture images of the breast 
area for classification of normal and abnormal breast. This study’s training dataset included 1000 thermal images, where 
a FLIR One Pro thermal camera connected to a mobile device was used for the imaging process. Of the 1000 images 
obtained, 700 images were considered for the normal breast thermography class while the 300 images were suitable for 
the abnormal class. We evaluate Deep Convolutional Neural Network models, such as Inception v3, Inception v4, and a 
modified Inception Mv4. Our results demonstrate that Inception Mv4, with real-time video streaming, efficiently detects 
even the slightest temperature contrast in breast tissue sequences achieving a 99.748% accuracy in comparison to a 
99.712% and 96.8% for Inception v4 and v3, respectively. The use of in situ cooling gel further enhances image acquisition 
efficiency and detection accuracy. Interestingly, increasing the tumor surface temperature by 0.1% leads to an average 
7% improvement in detection and classification accuracy. Our findings support the effectiveness of Inception Mv4 for 
real-time breast cancer detection, especially when combined with in situ cooling gel and varying tumor temperatures. 
In conclusion, future research directions should focus on incorporating thermal video clips into the thermal images 
database, utilizing high-quality thermal cameras, and exploring alternative Deep Learning models for improved breast 
cancer detection.
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1  Introduction

Breast cancer is a collective phrase for a disease characterized by abnormal cell growth in the breast. People’s 
effective therapy and life chances are stage-dependent. Early detection of breast cancer improves treatment 
options and increases the chances of survival. Regular screening remains a highly effective public health strategy 
for reducing breast cancer’s impact on health and mortality. Breast thermography has the ability to identify heat 
features associated with breast tumors that are less likely to be obscured by thick breast tissue [1]. Thermography, 
as a non-invasive imaging technique that can detect subtle temperature changes associated with breast tissue 
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abnormalities. Early detection of breast cancer significantly increases the chances of successful treatment and survival. 
Thermographic imaging offers a non-invasive and radiation-free method for screening, which can be particularly 
beneficial for frequent monitoring. Our research aims to leverage the capabilities of deep learning to enhance the 
accuracy and efficiency of thermographic imaging for breast cancer detection. Our deep learning model analyzes 
these thermographic images with high sensitivity, allowing for the early detection of potential abnormalities that 
may indicate early stages of breast cancer. By integrating deep learning algorithms into the analysis of thermographic 
images, our method improves the accuracy of breast cancer screening and risk assessment. This enhanced screening 
capability enables healthcare providers to identify at-risk individuals earlier, leading to timely interventions and 
preventive measures. Early detection through thermography and deep learning translates into cost savings by 
reducing the need for invasive diagnostic procedures and intensive treatments that are typically required at advanced 
stages of breast cancer. Moreover, our approach empowers personalized medicine strategies, optimizing resource 
allocation and treatment plans for improved patient outcomes. This proactive approach not only saves lives but 
also reduces healthcare costs associated with late-stage treatments. Regarding thermal images, the term “healthy” 
might refer to the body parts having optimal thermal patterns, demonstrating a favourable physiological process. 
These parts are described in the uniform distribution of temperature and do not feature any obvious anomalies 
or discontinuities. On the contrary, “tumor” in thermal images refers to the opposite phenomenon—any apparent 
disruption or deviation in the optimal thermal pattern. Thermal images identify “tumor” from the increased or 
decreased thermal pattern localized in a region near healthy tissue, depending on the actual tumor behaviour. Tumors 
impact blood streaming and metabolism, which results in noticeable temperature differences when captured using a 
thermal camera. The proposed structure starts with the importance of early detection in clinical settings and calls for 
advanced, mobile technologies with considerable computational power. That provides the smooth transition into the 
issues with the current methods, namely insufficient usability, real-time detection, and privacy. A small reference to 
the connected works will help to position the gap targeted by the projected research. External factors such as ambient 
temperature, patient positioning, and menstrual cycle variations can influence thermographic results, potentially 
affecting accuracy and reproducibility. Applying creams or lotions to the breasts before a thermographic scan can 
alter surface temperatures and affect image interpretation. Engaging in activities such as exercise, drinking alcohol, 
or consuming hot drinks within two hours of a thermography session can influence breast temperature patterns, 
leading to inaccurate readings. These limitations were discussed in [2].

The related works are summarized as follows. Recent research works have presented a range of deep learning 
techniques and datasets to enhance breast cancer detection in thermal imaging. As for study [3], a multi convolutional 
neural network employed batch normalization and dropout layers with thermal images and patient data achieved an 
accuracy rate of over 97% and an AUC of 0.99. In the same vein, study [4] utilized spatial pyramid pooling combined 
with U-Net structure redesign from residual network model to achieve an accuracy of 96.13% on thermography 
images. On the other hand, study [5] applied the usage of multiple datasets with deep convolutional neural network 
obtained up to 96% of accuracy with ResNet50. Meanwhile, study [6] has leveraged CNN, SVM, and Random Forest 
classifiers with Kaggle dataset that reached 99.65% for the CNN classifier. With the use of Inception-v3 for classifying 
thermal images, study [7] reached 80% with the use of preprocessing techniques, including contrast limited adaptive 
histogram equalization. Furthermore, the DMR-IR dataset was used by study [8] via various CNN models obtaining 92% 
of accuracy with data augmentation. Apart from that, the Mask R-CNN on ResNet-50 used by study [9] achieved 97.1% 
accuracy in breast tumor detection work. Other approaches are study [10] employed threshold-based asymmetry 
analysis, reached an accuracy of 96.08%; this mechanism was used to detect abnormal asymmetric regions. Another 
study [11] proposed 4D U-net segmentation, Glowworm Swarm Optimization, and Binarized Spiking Neural Network 
approach and made significant improvements. The medical IoT-based diagnostic system was developed by study 
[12], which determines 98.5% with CNN and 99.2% with ANN. Study [13] introduced a smartphone approach via 
the cloud, which saved data and found high accuracy with minimal image quality loss. Study [14] optimized near 
infrared with a 21% enhanced accuracy mechanization system to get full sources and detectors. Study [15] combined 
CNNs with Bayesian Networks and detected up to 93%. Focus is likewise on small-sized cells and cells, studied [16] 
proposed AUC 96.15% through a hybrid model, entirely based on dilation. Study [17] presented Intelligence-based 
Thermography with real-time focused ultrasound therapy temperature monitoring has been correctly described and 
handled. Finally, a CAD system designed an AI classifier on thermography by study [18], which obtained 94.4% for 
classifying unhealthy and healthy thermograms.
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1.1 � Objectives formulation

The motivation behind the developed real-time breast cancer detection system comes from the need for earlier and 
more accurate diagnosis, which can lead to better treatment outcomes and higher survival rates. Traditional screening 
methods like mammography can miss up to 20% of breast cancers, and some studies have shown that real-time detection 
methods can improve detection rates [19]. The use of a real-time breast cancer detection system can improve patient 
outcomes through earlier and more accurate diagnosis. The novelty of this work is the development of real-time breast 
cancer detection using Inception v3, Inception V4, and modified Inception MV4 deep learning neural networks which 
were trained on large datasets of thermal images to detect subtle changes that may be indicative of cancer. This work 
introduces real-time breast cancer detection using Inception v3, Inception V4, and a modified Inception Mv4 deep 
learning neural network. These models were trained on large datasets of thermal images to detect subtle changes 
that may indicate the presence of cancer. Combining real-time thermographic imaging with deep learning techniques 
provides real-time feedback on tis-sue properties that may be indicative of cancer.

1.2 � Research gap

The objective of the study is to design a breast cancer real-time detection system utilizing thermography and deep 
learning. The contributions of this article are manifold. Firstly, a real-time thermographic image acquisition procedure 
using a thermal camera is proposed and utilized to acquire thermal images of patients’ breasts. Secondly, Inception 
v3, Inception V4, and modified Inception MV4 deep learning convolutional neural networks were implemented and 
evaluated in conjunction with real-time imaging to detect early breast cancer. Thirdly, a comprehensive performance 
evaluation was carried out to assess the potential of such a detection system resulting in achieving a high accuracy rate 
of x% for the modified Inception v4 in comparison to other models studied.

Limitations of Previous Studies: As we have seen from related works, a thorough examination of current literature 
highlights several significant limitations, emphasizing the necessity for our proposed approach. Firstly, many previous 
studies have predominantly relied on static or prerecorded datasets, neglecting the dynamic nature of breast tissue. 
This static methodology may not fully capture the intricate changes in tissue characteristics in real-time, resulting in 
a detection system that is less responsive and adaptable. Secondly, the absence of real-time processing hinders the 
potential for prompt identification of evolving cancerous lesions, a critical aspect for early intervention and enhanced 
patient outcomes. Moreover, the existing literature frequently overlooks a comprehensive exploration of contrast 
enhancement techniques tailored specifically for breast cancer detection and improving the contrast of tumor locations 
to facilitate more accurate localization. By addressing these gaps in the literature, our work seeks to advance breast cancer 
detection methodologies. We aim to provide a solution that not only considers the dynamic nature of breast tissue but 
also integrates real-time processing and contrast-enhancement strategies for more robust and timely diagnoses.

The application of situ cooling in thermal imaging for tumor detection in the breast is a technique aimed at improving 
accuracy by mitigating factors that can influence thermal patterns observed. Also, it involves maintaining a consistent 
and controlled temperature in the imaging environment and this stability provides a reliable baseline for temperature 
measurements, allowing for accurate comparison of thermal patterns. Fluctuations in ambient temperature can introduce 
variability that might be erroneously interpreted as abnormal, impacting the accuracy of tumor detection. Moreover, 
tumors often exhibit temperature differences compared to surrounding healthy tissue, and situ cooling helps accentuate 
these differences. In addition, it reduces environmental noise in thermal images, by minimizing temperature fluctuations 
and external interference, the imaging system can capture clearer thermal patterns. But there are some limitations such 
as: if patients are uncomfortable or reluctant to undergo cooling procedures, it may impact their cooperation during 
imaging and Small or subtle tumors might still present challenges even with enhanced contrast.

2 � Related works

The study in Sánchez-cauce et  al. [3] employed a thermal camera for breast cancer detection using a multi-
convolutional neural network, incorporating batch normalization and a dropout layer with a rate of 0.5 in the 
classification layers. They used two data sets: one with thermal images and another with patient data. The thermal 
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images database was split into 70% for training, 15% for validation, and 15% for testing, utilizing 171 healthy images 
and 41 breast cancer images. Thermal images were collected from various angles, and the model achieved a 97% 
accuracy, an area under the curve of 0.99, 100% specificity, and 83% sensitivity.

In Kanimozhi et al. [4], a convolutional neural network was used for thermal feature extraction, achieving reliable 
results by combining spatial pyramid pooling with a redesigned U-Net structure. This hybrid classification technique 
outperformed others like K-Means and fuzzy C-means, with diagnostic thermography images providing a more 
innovative approach. The model reached 96.13% accuracy with a Residual network model, demonstrating its 
effectiveness in breast cancer detection. The work in Kanimozhi et al. [5] utilized thermography from various datasets, 
transforming infrared images to RGB and normalizing them to 128 × 128 pixels using MATLAB. They employed a 
deep convolutional neural network for segmentation, focusing on feature extraction using Hu Moments and Color 
Histograms. Classifiers such as Random Forest, SVM, and Gaussian Naive Bayes were used, with ResNet50 achieving 
96% accuracy and Gaussian Naive Bayes achieving 83%.

In Lahane et  al. [6], a computer-aided diagnosis technique was proposed, classifying thermal images into 
cancerous, non-cancerous, and healthy categories. The study used CNN, SVM, and Random Forest classifiers on 
a thermal images database from Kaggle, consisting of images from approximately 150 individuals. CNN achieved 
an accuracy of 99.65%, significantly outperforming SVM and Random Forest, which achieved 89.84% and 90.55%, 
respectively. The study in Farooq and Corcoran [7] analyzed thermography from 40 individuals using a dynamic 
research method, classifying benign and cancerous conditions with an Inception-v3 model. Preprocessing involved 
sharpening filters and histogram equalization, with the final layers of the model retrained for custom breast cancer 
classification. The results showed 80% accuracy and 83.33% sensitivity.

In Masry et  al. [8], multiple CNN-based studies for breast cancer diagnosis using the DMR-IR dataset were 
implemented. The image augmentation process included flips, rotations, zoom, and noise normalization. The best 
CNN framework achieved 92% accuracy, 94% precision, 91% sensitivity, and 92% F1-score. This study introduced 
modern standards for CNN models using thermal images. The proposal in Civilibal et al. [9] involved using the 
Mask R-CNN technique on thermal images for breast tumor diagnosis, with ResNet-50 and ResNet-101 architectures 
achieving high accuracy. ResNet-50 reached 97.1% accuracy, outperforming existing literature on thermal breast 
image studies. The approach in Dey et al. [10] utilized threshold-based asymmetry analysis with textural features 
to evaluate contralateral symmetry in breast thermograms. The methodology achieved 96.08% accuracy, 100% 
sensitivity, and 93.57% specificity. A novel SVD-based technique for tumor detection was briefly introduced and 
evaluated.

The authors in Gomathi et al. [11] proposed a 4D U-Net segmentation approach for breast cancer diagnosis using 
thermography images. The process involved preprocessing with the APPDRC method and segmentation using 4D 
U-Net. The Glowworm Swarm Optimization Algorithm and BSNN were used for early-stage classification, achieving 
superior performance compared to existing methods. In Ogundokun et al. [12], an IoT-based diagnostic system using 
ANN and CNN with hyperparameter optimization was proposed for classifying malignant versus benign cases. The 
system achieved high accuracy with CNN (98.5%) and ANN (99.2%) on the WDBC dataset, emphasizing the importance 
of hyperparameter optimization and feature selection. In Al Husaini et al. [13], a tool for early-stage breast cancer 
detection was introduced, combining thermography, deep learning models, smartphone apps, and cloud computing. 
The system used the DMR-IR database and Inception V4 (MV4) for classification, achieving high accuracy. The app 
enabled rapid diagnostic processing and result transfer, maintaining image quality.

The research in Noori Shirazi et al. [14] introduced a 3D system using near-infrared light emission for accurate 
breast tumor diagnosis. Optimal placement of sources and detectors significantly reduced error rates, enhancing 
diagnosis accuracy by 21%. In Aidossov et al. [15], a smart diagnostic system combining CNNs and Bayesian Networks 
was proposed for early breast cancer detection. The system achieved high accuracy (91%-93%), precision (91%-95%), 
sensitivity (91%-92%), and specificity (91%-97%), demonstrating the effectiveness of integrating thermograms and 
medical history. The study in Aldhyani et al. [16] utilized deep learning models for detecting small-sized cancer cells 
using the BreCaHAD dataset. The hybrid dilation deep learning model addressed issues related to color divergence 
and achieved an AUC of 96.15%.

In Sadeghi-Goughari et al. [17], an Intelligence-based Thermography (IT) technique was introduced to monitor 
FUS therapy for breast cancer treatment. The system combined thermal imaging with AI for real-time monitoring, 
demonstrating its feasibility and efficiency. The researcher in Chebbah et al. [18] introduced a novel CAD system using 
AI and thermography for breast cancer detection. A deep learning algorithm (U-net model) was used for automatic 
segmentation, achieving an accuracy of 94.4% and a precision of 96.2%.
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In conclusion, the proposed technique utilizes a video infrared camera for home-based breast cancer detection, 
offering a cost-effective and accessible diagnostic tool. This approach has the potential to significantly improve breast 
cancer detection and treatment, contributing to better health outcomes.

3 � Materials and methods

The suggested framework is designed to meet the helpful requirements of all popular technic used and high-quality 
input video in real-time. The suggested structure was modeled in MATLAB 2019 and was compatible with the majority of 
standard Desktop with thermal camera installed. It takes real-time video in the higher level of quality style as input and 
outputs defined video files with classification characterizing normal breast or abnormal. It was divided into four blocks: 
thermal images database, pre-processing, feature extraction and classification. The concept of "moderately preserving 
spatial features" refers to our approach to balancing spatial information retention within convolutional neural network 
(CNN) architectures. Specifically, we investigated techniques to maintain important spatial details while leveraging the 
benefits of dimensionality reduction for computational efficiency. For a comprehensive exploration of this concept and 
its impact on model performance, readers are referred to Al Husaini et al. [2] where a deeper dive into the methodologies 
and experimental results demonstrates the effectiveness of our approach. In our current study, we build upon this prior 
research by integrating these insights into the design of our model, aiming to strike a balance between spatial fidelity 
and computational efficiency.

3.1 � Inception v3

Convolutional Neural Network Inception v3 consists of 22 layers, which were increased in size and depth. It was one 
of the most important networks approved by Google. Moreover, it consists of Input unit, 3 Inception A, Reduction A, 4 
Inception B, Reduction B, 2 Inception C, and Classification Units. Also, these layers consist of 5 * 5, 3*3 and 1*1 size of 
filters and Stred 3. In addition to layers consisting of different number of filters such as 128, 98, 256 and 386 as shows in 
Fig. 1. Moreover, there was a fully connected layer, activation layer, average pooling layer and a dropout layer of 0.7 in 
classification unit at end of Inception v3 [20].

3.2 � Inception v4

Inception V4 is a member of Inception v3 family of Deep Convolutional Neural Networks, but it has the most depth 
(more number of Inception A, B and C). It consists of Stem Unit, 4 Inception A, Reduction A, 7 Inception B, Reduction B, 

Fig. 1   Deep convolutional neural network Inception V3 [11]
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3 Inception C, and Classification Unit. In addition, all filters size were 1 * 1 and 3 * 3, and number of filters was between 
32 and 386 in each layer. Moreover, there were a few average pooling layer and max pool layer as shows in Fig. 2. Finally, 
there was a fully connected layer, an activation layer, an average pooling layer, and a 0.8 dropout layer in classification 
unit at end of Inception 4 [21].

3.3 � Inception modified mv4

The new Inception MV4 model is a family of deep convolutional neural networks. It is a deep network modified from the 
Inception v4 model. The main features of the modified model are maintaining the different number of filters but utilizing 
same filter sizes while the number of layers in each unit is reduced. This facilitates saving time and maintaining high 
accuracy. The modified Inception MV4 deep convolutional neural network consists of the 1 ×Steam unit, 4 ×Inception 
A, Reduction A, 7 ×Inception B, Reduction B, 3 ×Inception C, and Classification unit preceded by a fully connected layer. 
In addition, the number of filters per layer is changed from 32 to 386 filters, while the filter sizes are between 1 × 1 and 
3 × 3. Moreover, the classification unit consists of the middle group layer, the SoftMax layer, and the dropout layer with 
a ratio of 0.8 as shown in Fig. 3 [22].

Added one convolutional layer under average pooling with a size of 3 × 3 and 256 filters.
Increased the number of filters from 128 to 256 to maintain the number of extracted features.
Added two parallel convolutional layers with 192 filters each, both using a 3 × 3 size and 256 filters.
Removed the remaining layers in Inception B to preserve a total of 1,024 features.
Inception B consists of 7 groups, all modified according to the above settings.

where:
W = input size.
F = filter size.

(1)Output layer size =
W − F + 2P

S
+ 1

Fig. 2   Deep convolutional neural network Inception V4
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P = padding setting.
S = stride setting.
We developed classifiers using deep convolutional neural networks based on Inception V3, Inception V4, and a 

modified version called Inception MV4 for the proposal evaluation. MV4 was created to share the computational costs 
evenly amongst all layers by dividing the resulting number of features and pixel positions. The results of these deep 
learning models based on the DMR databases in thermal images classification of healthy and sick patients. Training 
was implemented with epochs from 3 to 30 and learning rates of 1 × 10−3, 1 × 10−4, and 1 × 10−5, using minibatch size 
of 10 and different optimization techniques. Based on the results of the training, it was discovered that both Inception 
V4 and MV4 achieved extraordinary results in terms of prediction accuracy when using a velocity color image due 
to 1 × 10−4 learning rate and SGDM optimization set. This training result can be replicated for epoch ranges. In V3’s 
case, grayscale images succeeded in producing a higher prediction accuracy compared to V4 and MV4 irrespective of 
optimization selection. More specifically, for Inception V3 grayscale, the 20 to 30 epochs needed to be achieved to reach 
the Inception V4 and MV4 color performance levels. Inception MV4 delivered a 7% performance boost over V4, allowing 
for a faster classification response time that improves energy and smoother arithmetic graphic processor operations 
than previous Inception v4. This meant that there was no direct implication that adding layers would increase positive 
gains in performance [23].

3.4 � Database

The FLIR One Pro serves as a thermography camera specified to connect to a mobile phone, enabling users to capture 
and analyse thermal images and videos. It utilizes a combination of thermal and visible light cameras; it generates 
images emphasizing temperature variations in the scene. The image features a temperature range of − 4°F to 752°F 
(− 20 °C to 400 °C), a thermal sensitivity of 70 mK, and can detect temperature differences as small as 0.18 °F (0.1 °C). 
With a resolution of 160 × 120 pixels, thermal pixel size of 12 µm, frame rate of 8.7 Hz, and a 55-degree field of view, it 
incorporates adjustable thermal span and level features. The FLIR One Pro also employs FLIR’s patented MSX technology, 
overlaying visible light details onto thermal images for additional context. During experimentation, the infrared camera 
recorded temperature profiles of a silicone breast every 5 min, maintaining a room temperature between 22 °C and 
26 °C with situ-cooling gel. The FLIR camera was positioned 1 m away from the breast, with a simulated tumor set at 

Fig. 3   Deep convolutional neural network Inception MV4
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1 cm and varying depths. The recording was conducted in three dimensions (3D) using two methods for both healthy 
and cancer conditions: firstly, with and without the application of a cooling gel while switching off the lamp as Healthy 
condition, and secondly, with and without using a cooling gel while switching on the lamp with a gradually increasing 
power supply [2]. 1000 thermal images (700 images for normal and 300 thermal images for abnormal)were taken by the 
thermal camera model FLIR One Pro which connected to mobile.

3.5 � Preprocessing

Videos are composed of frames, and each frame is a 3D image. The first step is to extract individual frames from the video. 
Deep CNNs often require fixed-size input as Inception mv4 was used and resizing frames to a consistent resolution is 
crucial. Inception mv4 has fixed sizes for input 299 × 299 pixels. In addition, pixel values were normalized to ensure that 
they fall within a specific range [− 1, 1] and it will help the neural network converge faster during training and can improve 
overall performance. Moreover, to increase the diversity of the training dataset and improve the model’s generalization, 
data augmentation techniques were applied and common augmentations used for video data include random cropping, 
flipping, rotation, and changes in brightness and contrast.

Feature extraction from pre-processed video frames involves transforming raw pixel data into a representation that 
captures relevant information for a given task and one of the most common approaches is to use pre-trained CNNs, such 
as Inception mv4. The earlier layers of these networks capture low-level features like edges and textures, while deeper 
layers represent more complex patterns [23].

3.6 � Classification

The classification module in a video analysis system is responsible for categorizing input video frames into predefined 
classes, such as “normal” or “abnormal” and the choices include Convolutional Neural Networks (CNNs) such as Inception 
mv4. This model was Designed the output layer to have binary classification (normal/abnormal), a single output node 
with a sigmoid activation function can be used and a SoftMax activation was employed. In addition, SGDM was Selected 
an optimizer to minimize chosen loss function and optimizer adjusts the model’s parameters during training to improve 
classification performance. Moreover, an initial learning rate was set to 1e−4. The learning rate affects the size of parameter 
updates and influences the convergence of the model. Also, thermal images database was split into training, validation, 
which can set help tune hyperparameters and evaluate final model performance. The extracting features system was set 
with the responsibility of estimating color–texture computes from pre-processed video form. More precisely, each frame 
featured vector checked utilizing Inception v3 for extracting features automatically. The set of features generated for 
each camera shot was determined by the frame dimension. Finally, the classification module was capable of classifying 
input video frame into one of two categories: normal or abnormal as shown in Fig. 4. The classification unit calculates its 
actual variables throughout training by analyzing the obtainable training datasets. The test samples were perpetrated 
and classified as normal or abnormal.

3.7 � Experiment setup

Training and testing were carried out on a desktop computer with 32 GB RAM, intel core i7 processor with GPU Asus 
GeForce GTX 1660 memory 6 GB equipped, MATLAB 2019a and a thermal camera model FLIR One Pro. Figure 5 illustrates 
the training and testing technique on deep convolutional neural network Inception v3, Inception v4 and Inception Mv4. 
Artificial intelligence is an offshoot of machine learning in which features were extracted immediately from a dataset 
utilizing deep convolutional neural networks. As a result, it accomplishes superior detection accuracy to that of humans. 
To train a deep convolutional neural network a sequence of datasets containing infrared pictures of normal and abnormal 
breasts were required. 1000 thermal images (700 images for normal and 300 thermal images for abnormal) were taken 
by the thermal camera model FLIR One Pro which connected to mobile.

In the first part of experiment, thermal camera model FLIR One Pro was installed in smartphone (Fig. 6e) and placed 
in handle parallel to level of breast with distance of 1 m from human body as shown in Fig. 6d. Second, the room 
temperature was measured between 22 and 26 degrees Celsius. Third, silicone breast 17 cm long was attached to doll 
in chest area. Fourth, lamp (tumor) was placed with diameter of 1 cm in another handle and placed inside breast at 
depth T1 and T9 from surface of breast as shows in Figs. 7 and 8. Fifth: lamp (Fig. 6f ) was connected to DC Power Supply 
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and changed voltage values from 0.5 V to 9 V Fig. 6c. video was recorded in three dimension (3D) in two ways, first 
without cooling and second using a cooling gel Fig. 6b. As for the second part of experiment, deep convolutional neural 
networks model Inception v3, Inception v4 and Inception Mv4 were designed using MATLAB 2019. These models of deep 
convolutional neural networks were trained by using thermal images databases, 70% for training and 30% for testing.

Fig. 4   Breast cancer detection (BCD) in real time using GUIDE MATLAB: a Cancer classification. b Healthy classification

Fig. 5   Breast cancer detection (BCD) in real time process
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Fig. 6   Materials used: a FLIR One Pro thermal camera, b cooling gel, c DC power supply, d 1 m distance between breast and thermal camera, 
e FLIR One Pro connected in mobile phone and f lamp (12V5W) with 1 cm diameter

Fig. 7   Breast cancer location
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We have developed a new thermal images thermal images database to conduct this study. Tumor size was 
simulated by adjusting the voltage applied to an LED, controlling its intensity and generated heat, with 0 V 
representing a healthy breast and higher voltages indicating varying tumor sizes. Measurements were taken after 
the sensor readings stabilized, typically after a 1–2 min delay. Additionally, the LED depth was varied from 2 to 
10 cm to study its impact [2]. These thermal images database includes 1000 thermal pictures of cancers and 800 
thermal images of healthy with a resolution of 160 × 120 pixels (visual resolution) that were classified into two 
parts: Cancer and Healthy.

In another effort to fine-tune the proposed framework, we varied the dataset partitions for training and testing to 
80/20, 70/30, 60/40, 50/50, and 40/60 percentages, respectively. The Inception MV4 model achieved its best results with 
a partition of 70% for training and 30% for testing [23]. 70% of thermal pictures were already separated for training 
purposes, while the rest 30% have been used for testing purposes. The pre-processing system is responsible for extracting 
video sets with a customer video quality and size that correlate to an area of interest within the source video clips. 
Another task of the pre-processing module is to resize the video frame before interring to deep convolutional neural 
network Inception v3.

Fig. 8   Tumor in different 
location [19]

Fig. 9   Detection accuracy for every video frame
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4 � Results and discussion

The advantage of utilizing a video stream lies in its ability to capture temporal information of tumor compared to single 
image, which can enhance the accuracy of tumor detection algorithms shoes in Fig. 9. By analyzing multiple frames in 
succession, algorithms can track tumor across time, improving their ability to differentiate between healthy frames and 
unhealthy frames. Moreover, real-time video streams allow for quicker responses to changing scenarios after adding situ 
cooling, making them essential for applications requiring immediate actions, such as surveillance for heat generation 
healthy cells and tumor cells. The maximum differences in skin temperatures between breasts with tumors and those 
without can vary from 0.274 °C to 2.58 °C. For more extensive insightful discussions on the sensitivity thresholds of 
our thermographic imaging system, the criteria used to determine the threshold for detecting temperature contrasts 
relevant to breast abnormalities, the quantification of the impact of in situ cooling gel on accuracy, detailed experimental 
setup, measurement protocols, and statistical analyses conducted to assess how the use of cooling gel influences the 
accuracy and reliability of thermographic imaging for breast cancer detection, readers are referred to Al Husaini et al. [2]. 
When comparing the temperature differences between healthy areas and tumor regions, it was observed that without 

Table 1   Comparing inception 
V3, V4, and MV4 for breast 
cancer detection

Configuration Inception v3 Inception v4 Inception Mv4

Number of parameters 21,806,882 156,042,082 128,174,466
Optimization method ADAM SGDM SGDM
Learning rate 1e−4 1e−4 1e−4
Software MATLAB MATLAB MATLAB
Accuracy Average 96.8% Average 99.712% Average 99.748%
Error ±1.52% ±0.27% ±0.18%

Training Time epoch 3 6.376 min with error 
±0.015 min

9.554 min with error 
±0.145 min

7.704 min with 
error ±0.01 min

Table 2   Real-time BCD 
accuracy using Inception V3 
with and without situ cooling 
at different tumor sizes (T1) 
and depths

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 65.25 65.24 65.239 77.6375 77.6355 77.6354
1 66 65.99 65.989 78.35 78.348 78.3479
1.5 66.75 66.74 66.739 79.0625 79.0605 79.0604
2 67.5 67.49 67.489 79.775 79.773 79.7729
2.5 68.25 68.24 68.239 80.4875 80.4855 80.4854
3 69 68.99 68.989 81.2 81.198 81.1979
3.5 69.75 69.74 69.739 81.9125 81.9105 81.9104
4 70.5 70.49 70.489 82.625 82.623 82.6229
4.5 71.25 71.24 71.239 83.3375 83.3355 83.3354
5 72 71.99 71.989 84.05 84.048 84.0479
5.5 72.75 72.74 72.739 84.7625 84.7605 84.7604
6 73.5 73.49 73.489 85.475 85.473 85.4729
6.5 74.25 74.24 74.239 86.1875 86.1855 86.1854
7 75 74.99 74.989 86.9 86.898 86.8979
7.5 75.75 75.74 75.739 87.6125 87.6105 87.6104
8 76.5 76.49 76.489 88.325 88.323 88.3229
8.5 77.25 77.24 77.239 89.0375 89.0355 89.0354
9 78 77.99 77.989 89.75 89.748 89.7479
9.5 78.75 78.74 78.739 90.4625 90.4605 90.4604
10 79.5 79.49 79.489 91.175 91.173 91.1729
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Table 3   Real-time BCD 
accuracy using Inception V3 
with and without situ cooling 
across various tumor sizes and 
depths

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 49.669 49.659 49.658 62.0565 62.0545 62.0544
1 50.419 50.409 50.408 62.769 62.767 62.7669
1.5 51.169 51.159 51.158 63.4815 63.4795 63.4794
2 51.919 51.909 51.908 64.194 64.192 64.1919
2.5 52.669 52.659 52.658 64.9065 64.9045 64.9044
3 53.419 53.409 53.408 65.619 65.617 65.6169
3.5 54.169 54.159 54.158 66.3315 66.3295 66.3294
4 54.919 54.909 54.908 67.044 67.042 67.0419
4.5 55.669 55.659 55.658 67.7565 67.7545 67.7544
5 56.419 56.409 56.408 68.469 68.467 68.4669
5.5 57.169 57.159 57.158 69.1815 69.1795 69.1794
6 57.919 57.909 57.908 69.894 69.892 69.8919
6.5 58.669 58.659 58.658 70.6065 70.6045 70.6044
7 59.419 59.409 59.408 71.319 71.317 71.3169
7.5 60.169 60.159 60.158 72.0315 72.0295 72.0294
8 60.919 60.909 60.908 72.744 72.742 72.7419
8.5 61.669 61.659 61.658 73.4565 73.4545 73.4544
9 62.419 62.409 62.408 74.169 74.167 74.1669
9.5 63.169 63.159 63.158 74.8815 74.8795 74.8794
10 63.919 63.909 63.908 75.594 75.592 75.5919

Table 4   Real-time BCD 
accuracy using Inception V4 
with and without situ cooling 
across various tumor sizes and 
depths

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 50.27 50.26 50.259 55.67 55.65 55.648
1 52.16 52.15 52.149 57.56 57.54 57.538
1.5 55.05 55.04 55.039 60.45 60.43 60.428
2 57.94 57.93 57.929 63.34 63.32 63.318
2.5 60.83 60.82 60.819 66.23 66.21 66.208
3 63.72 63.71 63.709 69.12 69.1 69.098
3.5 66.61 66.6 66.599 72.01 71.99 71.988
4 69.5 69.49 69.489 74.9 74.88 74.878
4.5 72.39 72.38 72.379 77.79 77.77 77.768
5 75.28 75.27 75.269 80.68 80.66 80.658
5.5 78.17 78.16 78.159 83.57 83.55 83.548
6 81.06 81.05 81.049 86.46 86.44 86.438
6.5 83.95 83.94 83.939 89.35 89.33 89.328
7 86.84 86.83 86.829 92.24 92.22 92.218
7.5 89.73 89.72 89.719 100 100 100
8 92.62 92.61 92.609 100 100 100
8.5 95.51 95.5 95.499 100 100 100
9 98.4 98.39 98.389 100 100 100
9.5 100 100 100 100 100 100
10 100 100 100 100 100 100
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Table 5   Real-time BCD 
accuracy using Inception V4 
with and without situ cooling 
across various tumor sizes and 
depths (T9, 3D)

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 36.817 36.807 36.806 47.796 47.776 47.774
1 38.707 38.697 38.696 44.286 49.666 49.664
1.5 41.597 41.587 41.586 47.176 52.556 52.554
2 44.487 44.477 44.476 50.066 55.446 55.444
2.5 47.377 47.367 47.366 52.956 58.336 58.334
3 50.267 50.257 50.256 55.846 61.226 61.224
3.5 53.157 53.147 53.146 58.736 64.116 64.114
4 56.047 56.037 56.036 61.626 67.006 67.004
4.5 58.937 58.927 58.926 64.516 69.896 69.894
5 61.827 61.817 61.816 67.406 72.786 72.784
5.5 64.717 64.707 64.706 70.296 75.676 75.674
6 67.607 67.597 67.596 73.186 78.566 78.564
6.5 70.497 70.487 70.486 76.076 81.456 81.454
7 73.387 73.377 73.376 78.966 84.346 84.344
7.5 76.277 76.267 76.266 81.856 92.126 92.126
8 79.167 79.157 79.156 84.746 92.126 92.126
8.5 82.057 82.047 82.046 87.636 92.126 92.126
9 84.947 84.937 84.936 90.526 92.126 92.126
9.5 86.547 86.547 86.547 92.126 92.126 92.126
10 86.547 86.547 86.547 92.126 92.126 92.126

Table 6   Real-time BCD 
accuracy (%) using Inception 
Mv4 with and without situ 
cooling across various tumor 
sizes and depths (T1, 3D)

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 88.43 88.42 88.419 91.808 91.8061 91.8043
1 89.32 89.31 89.309 92.698 92.6961 92.6943
1.5 90.21 90.2 90.199 93.588 93.5861 93.5843
2 91.1 91.09 91.089 94.478 94.4761 94.4743
2.5 91.99 91.98 91.979 95.368 95.3661 95.3643
3 92.88 92.87 92.869 96.258 96.2561 96.2543
3.5 93.77 93.76 93.759 97.148 97.1461 97.1443
4 94.66 94.65 94.649 98.038 98.0361 98.0343
4.5 95.55 95.54 95.539 98.928 98.9261 98.9243
5 96.44 96.43 96.429 99.818 99.8161 99.8143
5.5 97.33 97.32 97.319 100 99.9981 99.9963
6 98.22 98.21 98.209 100 100 100
6.5 99.11 99.1 99.099 100 100 100
7 100 99.99 99.989 100 100 100
7.5 100 100 100 100 100 100
8 100 100 100 100 100 100
8.5 100 100 100 100 100 100
9 100 100 100 100 100 100
9.5 100 100 100 100 100 100
10 100 100 100 100 100 100
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situ-cooling, the temperature difference at T1 was minimal, at just 0.2 °C. However, with situ-cooling, the temperature 
difference significantly increased to 10.6 °C. Finally, while single images offer static snapshots of heat contrast in the 
breast, real-time video streams provide dynamic context and temporal information that significantly enhance the 
accuracy of tumor detection algorithms.

Table 1 shows a comparison of deep convolutional neural networks Inception v3, Inception V4, and Inception MV4, 
which were used for breast cancer detection using thermography. As illustrated by the results presented in Table 1, it 
motivates selecting the modified Inception Mv4 model for the further evaluation. Three learning rates were used for 
optimizing the performance of the models namely; 1e−3, 1e−4, and 1e−5. Further, optimization algorithms such as 
ADAM, SGDM and RMSPROP were used in the experiment. However, the best accuracy results for the modified Inception 
Mv4 were achieved using the SGDM optimizer and a 1e−4 learning rate [23].

Also, we trained and validated the thermal images database for 100 epochs using the three models. To maintain 
smoothness, we took the number of feature maps equal to the number extracted automatically by the three models. 
The outcomes of our deep learning with a set of values in real-time are summarized in Tables 2, 3, 4, 5, 6 and 7. These 
results illustrate the variations in validation accuracies as tumor temperature increases using a set of values. Finally, live 
video was used in our system to detect breast cancer and record detection accuracy with breast cooling and without 
cooling. The simulation study demonstrates that heat transfer in the breast is influenced by factors like tumor depth, size, 
and breast shape. Additionally, situ-cooling was employed to increase temperature contrast, thereby enhancing breast 
cancer detection accuracy. This approach is crucial, as advancements in finite element-based infrared modelling could 
greatly improve the precision of tumor detection using thermography and situ cooling [2].

Table 2 illustrates utilizing deep learning model Inception v3, for real-time scanning of breast tumor detection. These 
results show the correlation between tumor size (simulated through voltage values), thermal videos and detection 
accuracy. In addition, the detection accuracy increased from 65 to 79%, as the tumor size increases when observed from 
frontal aspect. However, it is noteworthy that this accuracy was slightly decreased by 0.001%, when scrutinizing breast 
from the right and left sides. Moving on to Table 3, it becomes evident that employing Inception v3 model with situ 
cooling to contribute real-time detection significantly elevates accuracy. Moreover, this augmentation exceeds 10% in 
comparison to the same location T1 and same tumor size of 0.5 V. On the other hand, the detection accuracy displays 
fluctuations due to thermal variations during video recording and variations in tumor size. Also, detection accuracy at 
0.5 V without situ cooling was 65%, whereas it reached 77.6% with situ cooling. Moreover, an intriguing observation 

Table 7   Real-time BCD 
accuracy (%) using Inception 
Mv4 with and without situ 
cooling across various tumor 
sizes and depths (T9, 3D)

Voltage (V) Without using situ-cooling Using situ-cooling (2 min)

Front side Right side Left side Front side Right side Left side

0.5 82.073 82.063 82.052 85.451 85.4491 85.4473
1 82.963 82.953 82.942 86.341 86.3391 86.3373
1.5 83.853 83.843 83.832 87.231 87.2291 87.2273
2 84.743 84.733 84.722 88.121 88.1191 88.1173
2.5 85.633 85.623 85.612 89.011 89.0091 89.0073
3 86.523 86.513 86.502 89.901 89.8991 89.8973
3.5 87.413 87.403 87.392 90.791 90.7891 90.7873
4 88.303 88.293 88.282 91.681 91.6791 91.6773
4.5 89.193 89.183 89.172 92.571 92.5691 92.5673
5 90.083 90.073 90.062 93.461 93.4591 93.4573
5.5 90.973 90.963 90.952 93.643 93.6411 93.6393
6 91.863 91.853 91.842 95.078 95.068 95.067
6.5 92.753 92.743 92.732 95.968 95.958 95.957
7 93.643 93.633 93.622 96.858 96.848 96.847
7.5 95.349 95.339 95.328 98.564 98.554 98.553
8 97.843 97.833 97.822 100 99.99 99.989
8.5 99.984 99.974 99.963 100 100 100
9 100 100 100 100 100 100
9.5 100 100 100 100 100 100
10 100 100 100 100 100 100
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emerges higher temperatures correspond to enhanced detection accuracy. Additionally, the thermal recordings from 
three sides exhibit minimal discrepancies that exert negligible influence on detection accuracy of about 0.001%.

Table 3 illustrate evaluating the performance of the Inception v3 model in detecting tumor depth (T9) using infrared 
thermography, different size of the tumor and impact of situ-cooling on detection accuracy is examined, aiming to 
enhance the reliability of the detection process in real-time. It is evident from Table 3 that the accuracy of tumor depth 
detection improved significantly when situ-cooling was applied in real-time. Higher voltage values generally correlated 
with enhanced detection accuracy, with the front side consistently showing the highest accuracy compared to right 
side and left side of the breast with slightly different detection accuracy around 0.0011%. Therefore, detection accuracy 
increased from 49 to 60% without using situ cooling, but it increased 62% to 72% with situ cooling. Moreover, the results 
indicate that when the tumor was small and deeper in location, cannot be detected and it was lower than 50%. But after 
adding situ cooling will contribute to detect and it was 62%. Therefore, detection accuracy in-creased more than 11%.

In Table 4, the utilization of Inception V4 for tumor detection at depth T1 is elucidated, both without situ cooling and 
with adding situ cooling and thermal video camera. In addition, tumor sizes verified up to 20 sizes (voltage values) at the 
specific position T1. The outcomes demonstrate the precision of Inception V4 and the clarity of accuracy, reaching up 
to 100% at a value of 9.5 and 10 V. However, the table shows a very low detection accuracy at voltage values from 0.5 to 
2 V, not surpassing 59%, even with the addition of situ cooling. This indicates a limited detection rate. Furthermore, the 
detection accuracy percentages are closely aligned when thermal video recording is done from the front, right, and left 
sides of the breast, with minor differences. Moreover, situ cooling significantly contributes to improving tumor detection 
by percentages ranging from 5 to 8%. Additionally, situ cooling has played a role in elevating accuracy to 100% for tumor 
sizes of 7.5, 8, and 8.5 V.

Table 5 lists the comparison results of tumor size and effect of situ cooling on real-time tumor detection accuracy 
from 3D at a depth of T9 using deep learning Inception v4. The results indicate that the inability of Inception v4 to 
detect tumors with size from 0.5 to 2.5 V, where the detection accuracy ranged from 36.817 to 47.377%. However, by 
adding situ cooling to the breast for two minutes, the contribution of situ cooling in real-time in increasing accuracy 
of detecting tumors of size 2 V and 2.5 V becomes clear, ranging from 44.487 to 50.066%, and from 47.377 to 52.956%, 
respectively. Additionally, it improves the detection accuracy from both the right and left sides of the breast. Furthermore, 
the capability of deep learning Inception v4 is evident in detecting medium and large-sized tumors at depth of T9, around 
86.547% without situ cooling and 92.126% with situ cooling.

It can be found from Table 6 that deep learning Inception MV4 exhibits a high capability in detecting small tumors 
at T1 depth such as 0.5 V, achieving an accuracy rate of 88.43%, which further increases to 91.808% with adding situ 
cooling for two minutes. Moreover, there is an observable trend of increasing detection accuracy as the tumor size grows, 
reaching 100% when the tumor size was 7 V without using situ cooling, and reaching 100% when the tumor size was 
5.5 V with adding situ cooling.

From Table 7, it is found that the highest classification accuracy of deep learning Inception MV4 in real-time at tumor 
T9 is achieved. for example, the detection accuracy for smallest tumor, 0.5 V, reached 82.073%, 82.063%, and 82.052% 
from the front, right, and left of the breast respectively, utilizing deep learning Inception MV4 without adding situ cooling. 
However, with the inclusion of situ cooling, the detection accuracy percentages increased to 85.451%, 85.491%, and 

Fig. 10   Realtime breast cancer detection accuracy (%) without using situ cooling in different sizes of tumor at T1 depth and front side of the 
breast
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85.473%, respectively. Furthermore, the detection accuracy improves with the increase in tumor size, reaching 100% at 
tumor size of 9 V without cooling, and 100% at tumor size of 8 V with adding situ cooling.

The results indicate that deep learning Inception mv4 is capable of real-time detection of small-sized tumors at depth 
T1without using situ cooling, in comparison to Inception v3 and Inception v4, achieving detection accuracies of 88.43%, 
65.25%, and 50.27% respectively, as shows in Fig. 10. Moreover, Inception v3 outperforms Inception v4 in the detection 
accuracy in the range of tumor sizes from 0.5 to 4 V.

By adding situ cooling to the breast, detection accuracy increases over three models in real time, but Inception MV4 
is still highly accurate as shown in Figs. 11 and 12. However, Inception v3 is more improved compared to Inception v4, 
as shown in Fig. 10.

The application of situ cooling in thermal imaging for tumor detection in the breast is a technique aimed at improving 
accuracy by mitigating factors that can influence thermal patterns observed. Also, it involves maintaining a consistent 
and controlled temperature in the imaging environment and this stability provides a reliable baseline for temperature 
measurements, allowing for accurate comparison of thermal patterns. Fluctuations in ambient temperature can introduce 
variability that might be erroneously interpreted as abnormal, impacting the accuracy of tumor detection. Moreover, 

Fig. 11   Realtime breast cancer detection accuracy (%) by using situ cooling in different sizes of tumor at T1 depth and front side of the 
breast

Fig. 12   ROC plot for three different deep learning models
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tumors often exhibit temperature differences compared to surrounding healthy tissue, and situ cooling helps accentuate 
these differences. In addition, it reduces environmental noise in thermal images, by minimizing temperature fluctuations 
and external interference, the imaging system can capture clearer thermal patterns. But there are some limitations such 
as: if patients are uncomfortable or reluctant to undergo cooling procedures, it may impact their cooperation during 
imaging and Small or subtle tumors might still present challenges even with enhanced contrast.

The following link explains the process of diagnosing breast cancer. Where we used deep convolutional neural network 
Inception MV4 model to classify video in real-time. For the first minute, the tumor was put to rest, and then we gradually 
started increasing voltage.

https://​drive.​google.​com/​file/d/​1x7VZ4_​cNVtF​ciS29​pYuN3​XBqLN​awhmq5/​view?​usp=​shari​ng
Table 8 presents the performance metrics of three deep learning models Inception v3, Inception v4, and Inception mv4 

based on their evaluation using various criteria. These models demonstrate varying levels of accuracy, with Inception 
v4 and Inception mv4 achieving notably high accuracy of 99.712% and 99.748%, respectively. In addition, sensitivity, 
specificity, precision, and negative predictive value are consistently high across all models, indicating their ability to 
effectively classify true positives and negatives. Moreover, the area under curve (AUC) values, ranging from 0.967 to 
0.997, signify excellent discriminative ability as shown in Fig. 12  (see Table 9). Finally, these metrics collectively illustrate 
the robust performance of the Inception mv4 model in image classification.

5 � Conclusions

Based on our findings, we conclude that Inception Mv4 can be used in real-time to detect breast cancer and reaches 
the best efficiency and performance increases even more with using situ cooling. Additionally, we have observed 
that increasing tumor temperature improves detection and classification accuracy. Several factors do affect the 
performance of the Neural Network used, such as Thermal images database, optimization method, Network model 
and extracted features [24]. In addition, there are some factors such as blood perfusion, size, depth, and thermal 
conductivity on breast size [2]. Also, four factors have been added to influence the accuracy of thermal imaging 
diagnostics (blurry images, flipped images, tilted images, and shaken images) [13]. In future work, need to study the 
thermal images database by adding thermal video clips and more research by adding good quality thermal cameras. 
Moreover, new types of deep convolutional neural networks can be used in future work such as spiking models. 
Replicating the results of the presented approach for thermal imaging in breast cancer detection with situ cooling 
can be achieved thoroughly document all aspects of the experimental setup, including the specifications of the 
thermal imaging equipment and situ cooling system. In addition, establish standardized procedures for situ cooling, 

Table 8   Performance 
measures for three different 
deep learning models

Deep learning models Inception v3 Inception v4 Inception mv4

True positive (TP) 255.000 171.000 171.000
True negative (TN) 289.000 203.000 203.000
False positive (FP) 3.000 0.000 0.000
False negative (FN) 15.000 1.000 1.000
Accuracy 96.800 99.712 99.748
Sensitivity 0.944 0.994 0.994
Specificity 0.990 1.000 1.000
Precision 0.988 1.000 1.000
Negative predictive value (NPV) 0.951 0.995 0.995
False-positive rate (FPR) 0.010 0.000 0.000
False-negative rate (FNR) 0.056 0.006 0.006
Likelihood ratio positive (LRP) 0.010 NA NA
Likelihood ratio negative (LRN) 0.056 0.006 0.006
Area under curve (AUC) 0.967 0.997 0.997
Equal error rate (EER) 0.033 0.003 0.003
Harmonic mean of precision and recal (F1) 0.966 0.997 0.997

https://drive.google.com/file/d/1x7VZ4_cNVtFciS29pYuN3XBqLNawhmq5/view?usp=sharing
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image acquisition, and data processing. Moreover, ensure that dataset is representative of diverse clinical scenarios 
and design experiments to evaluate the impact of situ cooling on thermal image quality and detection accuracy. 
Also, consider variations in tumor size, depth, and location within the breast. In addition, maintain a controlled 
environment during experiments, paying attention to factors such as ambient temperature, humidity, and lighting 
conditions and validate approach using larger and more diverse datasets to ensure the generalizability of the results 
across different patient populations and clinical scenarios. Finally, identify and address potential limitations and 
challenges associated with the approach.
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