

http://arqiipubl.com/ams

APPLICATIONS OF

MODELLING AND SIMULATION

eISSN 2600-8084 VOL 8, 2024, 213-224

This article is distributed under a Creative Commons Attribution 4.0 License that permits any use, reproduction
and distribution of the work without further permission provided that the original work is properly cited.

213

System Identification and Control of Linear
Electromechanical Actuator Using PI Controller Based

Metaheuristic Approach

A. A. Abdullah Hashim1, N. M. Abdul Ghani1*, S. Ahmad2,3 and A. N. K. Nasir1

1Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang,
Malaysia

2College of Engineering and Technology, University of Doha for Science and Technology, Qatar
3Kulliyyah of Engineering, International Islamic University Malaysia, Malaysia

*Corresponding author: normaniha@umpsa.edu.my

Submitted 01 March 2024, Revised 03 July 2024, Accepted 12 July 2024, Available online 03 August 2024.
Copyright © 2024 The Authors.

Abstract: This study focuses on the crucial need for effective control strategies design for linear electromechanical actuators
(EMA), which are essential components in industrial automation. While the PI controller is commonly used due to its simplicity
and versatility in various control scenarios, its effectiveness is limited by its complex tuning process, which requires significant
time and effort to achieve the optimal performance. To address this issue, the paper focuses on employing metaheuristic
approaches that are Spiral Dynamic Algorithm (SDA) and Artificial Bee Colony (ABC) to fine tune the PI parameters for
controlling the position of EMA. The simulation results, implemented in MATLAB Simulink, show that PI-SDA and PI-ABC
produce better performances with minimal steady-state error, reduced overshoot, faster settling time and rise time. Hardware-
in-the-loop (HIL) testing proves the effectiveness of the controller's performance in real-world scenarios. PI-SDA achieved a
steady-state error of 0.0623, zero overshoot, faster rise time of 1.6956 s, and faster settling time of 7.2166 s. As for validation,
PI-ABC showed similar results in HIL environment with a steady-state error of -0.0314, an overshoot of 5.0007%, a rise time
of 1.3805 s, and a settling time of 9.1002 s. These results highlight the effectiveness of metaheuristic methods in real-world
implementation and outperform the traditional heuristic approaches.

Keywords: Artificial bee colony; Hardware-in-the-loop; Linear actuator; PI controller; Spiral dynamic algorithm.

1. INTRODUCTION
Linear electromechanical actuators (EMA) have become indispensable in various industries, particularly automotive and
machinery [1], [2], due to their versatility, efficiency, and accuracy. They have revolutionized mechanical motion execution
in industrial automation, offering precise and controlled movement across a wide range of processes [3]. In contrast, traditional
actuators, such as pneumatic and hydraulic systems, face limitations. Pneumatic actuators (PAs) may produce large torques
with lower inertia and enhanced safety due to air's natural compliance, yet they suffer from slow response times, compliance
issues, and nonlinear dynamics, making precise control challenging [4]. Hydraulic actuators are susceptible to leakage, leading
to pressure drops, reduced performance, significant power losses and increased operational cost [5], [6]. Furthermore, the
extensive utilization of EMA in industries like automotive, manufacturing, and robotics is crucial for improving operational
effectiveness and ensuring accurate control of critical processes. Their ability to transform electrical energy into linear motion
not only provides a dependable method for regulating the location and motion of industrial machinery but also positions them
as essential components in the development of electrified vehicles, a growing trend in today's automotive industry.

However, controlling EMA presents significant challenges. The nonlinear dynamics inherent in their operation, coupled
with stringent precision requirements, make the design of effective control systems complex. Nonlinear dynamics can lead to
unpredictable behavior under varying loads and operating conditions, which complicates the modeling and control of these
actuators [7], [8]. Additionally, achieving and maintaining precise operation necessitates a robust feedback mechanism. This
is because any deviation from the desired performance must be quickly detected and corrected to ensure stable and accurate
functionality.

To overcome these challenges, a range of control strategies is utilized for linear electromechanical actuators, with feedback
control playing a crucial role in ensuring precise and stable operation. Among these strategies, PID controllers stand out due
to their simplicity, versatility, and proven effectiveness in controlling linear motion systems [9]. Unlike more complex methods
like fuzzy logic or state-space controllers, PID controllers provide a straightforward yet powerful approach to motion control.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

214

In [10], the authors introduce a PID controller-based control strategy for electromechanical actuators in aerospace applications,
aiming to minimize power losses, heating, and current consumption while optimizing performance. Furthermore in [11], the
research aimed to construct a linear-axis research system utilizing industrial servo and stepper motors, integrating
Matlab/Simulink controllers into the Beckhoff TwinCAT 3 platform. The study confirmed the effectiveness of importing and
utilizing Matlab/Simulink PID controllers on Beckhoff soft PLCs, enabling the deployment of advanced and faster control
strategies, and facilitating the evaluation of various controller concepts such as non-linear and soft logic controllers. However,
the research faced challenges in finding the suitable PID parameters due to their reliance on manual tuning methods,
highlighting the need for more efficient tuning techniques in future studies.

In response to these challenges, researchers have begun exploring alternative tuning methods, with a particular focus on
optimization techniques that automate the process of fine-tuning PID parameters, driven by the exploration of nature-inspired
algorithms to further enhance PID controller performance in specific applications [12]. These nature-inspired algorithms
include evolutionary algorithms like Genetic Algorithms (GA) [13], Particle Swarm Optimization (PSO) [14], Differential
Evolution (DE) [15], Ant Colony Optimization (ACO) [16], Simulated Annealing (SA) [17], Artificial Bee Colony (ABC)
[18], Firefly Algorithm (FA) [19], Cuckoo Search (CS) [20], Harmony Search (HS) [21], and Grey Wolf Optimization (GWO)
[22]. Each algorithm offers unique strategies for optimizing PID parameters and enhancing control performance in other
applications. Nature-inspired optimization algorithms provide diverse strategies for efficiently exploring and exploiting the
solution space. These algorithms mimic natural phenomena such as genetic evolution, particle swarm behavior, ant foraging,
and simulated annealing to search for optimal solutions. They iteratively adjust parameters, combining exploration and
exploitation to fine-tune PID controller parameters effectively. By leveraging these algorithms, researchers can optimize
control performance in many applications, thereby enhancing system efficiency and functionality.

Numerous efforts have been devoted to enhancing PID controller performance, particularly in the domain of EMA.
Authors in [23] presented a nonlinear model of an EMA system for aerofin control, utilizing genetic algorithms for optimizing
both PID controllers and their nonlinear modifications. They introduced a fuzzy gain scheduling approach combined with
genetic optimization, demonstrating improved transient response and closed-loop frequency performance through simulations
and hardware tests. The paper in [24] also utilizes a genetic algorithm to determine the optimal PID controller parameters for
a non-linear EMA, focusing on improving transient response. The optimization targets rise time, peak time, settling time, and
maximum overshoot. Simulation results demonstrate that the genetic algorithm is a fast and flexible tuning method,
significantly reducing overshoot by about 80% compared to conventional methods while maintaining other performance
metrics. Another study [25], introduced a novel optimal PID controller for the position and stiffness control of an Antagonistic
Variable Stiffness Actuator (AVSA) using Hammerstein models. Genetic algorithms were employed to compute the optimal
PID gains for various positions and stiffness values, demonstrating significant improvements in control performance. While
genetic algorithm optimization has shown promising results in optimizing EMAs, one significant concern is the possibility of
slow convergence speeds. This means that genetic algorithms may require a significant number of iterations to find an ideal
solution. As a result, the optimization process can be time-consuming, especially for complex or large-scale optimization
problems. This highlights the critical need to investigate various optimization algorithms, especially for electromechanical
actuators, to further enhance PID controller performance in these applications.

The aim of this discussion is to delve deeper into the advancements made in PID controller optimization, particularly
focusing on EMA. This research employs metaheuristic method such as Spiral Dynamic Algorithm (SDA) and ABC, validated
through extensive simulations and hardware-in-the-loop testing. One of the key advantages of using metaheuristic methods
like SDA and ABC is their ability to efficiently optimize PID controller parameters for EMAs. These methods offer global
optimization capabilities, allowing them to explore a wide range of solutions and find optimal or near-optimal control settings.
Additionally, the adaptability of metaheuristic algorithms to nonlinear systems and their robustness in handling uncertainties
such as friction, backlash, and dead zones make them well-suited for improving control performance in EMAs.

The contribution of this work lies in introducing alternative metaheuristic optimization approaches, particularly SDA and
ABC, for EMAs. While previous studies often relied on GA for EMA optimization, this research explores the efficacy of SDA
and ABC, showcasing their power and effectiveness in this context. By introducing novel optimization techniques that have
not been extensively explored in the realm of EMAs, this study contributes to the advancement and diversification of
optimization methodologies, paving the way for improved control systems in EMAs. Furthermore, the study contributes to the
development of a model for linear EMAs using identification techniques. This approach addresses the limitations of traditional
models that rely solely on mathematical equations and often neglect uncertainty parameters such as friction, backlash, and
dead zones. By incorporating these real-world factors, the model provides a more accurate and reliable foundation for the
design and optimization of control systems for EMAs.

2. METHODOLOGY

2.1 Data Acquisition
Figure 1 shows the Simulink system design for open loop, which begins with the introduction of an input voltage. This voltage
goes through a series of Simulink blocks, first maintaining a specified range between 12 and -12, then shifting to a span of 0
to 24. The modified voltage signal is carefully converted to “uint8” format to ensure compatibility with an Arduino Uno. The
data is recorded for further analysis or utilization within the System Identification Toolbox.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

215

Figure 1. Open loop design of linear actuator system in Simulink.

2.2 System Identification for Optimization
The MATLAB System Identification Toolbox is a robust tool for analyzing and modeling dynamic systems using observed
data. It includes features like model estimation, validation, and simulation to create accurate models that capture real-world
complexities. This approach is particularly effective when physical laws are insufficient, or system dynamics are unclear. The
toolbox helps engineers and researchers develop models that enhance understanding and performance in practical applications.
Model estimation involves selecting a suitable model structure (e.g., ARX, ARMAX, NARX) based on system characteristics
and data, followed by using optimization algorithms to adjust model parameters for better accuracy. Model validation, crucial
for ensuring accuracy, includes methods like cross-validation and statistical metrics (RMSE, R2, AIC) to assess model fit and
guide improvements. The goal is to achieve the best fit, accurately representing system dynamics and enabling accurate
predictions and informed decision-making.

One of the well-known models in system identification is the Nonlinear Autoregressive with Exogenous Input (NARX)
model. This model holds significance due to its capability to address inherent nonlinearities present in the behaviour of linear
actuators. The regression model for the NARX architecture, the Equation (1). depicts the regressor model for the NARX
architecture, which includes which includes delayed values for both input, u and output, y.

𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑢𝑢(𝑡𝑡 − 1),𝑢𝑢(𝑡𝑡 − 2), . . . , 𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), . . .) + 𝑒𝑒(𝑡𝑡) (1)

where y(t) signifies the current output, u(t) represents the current input, and e(t) denotes the model error. The function f
encapsulates the system's underlying dynamics, encompassing the influence of both current and past input and output terms.
This comprehensive regressor model proves essential in accurately capturing the nonlinear complexities inherent in the
behaviour of a linear actuator, making the NARX model a valuable tool for system identification in such dynamic scenarios.
Table 1 provides a summary of the parameters used for system identification in the different models.

Table 1. Summary of model parameters for system identification.

Model
Linear

regressor
Input lag

order
Output lag

order
Sigmoid
network

Number of
poles

Number of
zeros

NARX Model Yes [1, 7] [1, 7] Yes - -
Transfer Function Model 1 - - - - 3 2
Transfer Function Model 2 - - - - 8 7

2.3 Discrete PI Controller
PI controllers are conventional and widely used in industry due to their simplicity and effectiveness in handling noise issues
and increasing system stability. Unlike PID controllers, PI controllers are preferred because they avoid the complexities
introduced by the derivative (D) term. The derivative term in a PID controller amplifies high-frequency noise present in the
system, leading to rapid fluctuations and oscillations in the control signal, which can destabilize the system [26]. While the
derivative action can improve response times and reduce overshoot by damping the system, it also introduces phase lag, making
the system more difficult to tune and potentially less stable. PI controllers, on the other hand, provide reliable performance by
using only the proportional (P) and integral (I) gains, which simplifies the tuning process and avoids the noise amplification
issues [27].

PI controllers exist in two-time domains: continuous time and discrete time. In continuous time, controllers are represented
in the s-domain using Laplace transforms, while in discrete time, they are represented in the z-domain using Z-transforms.
When testing a control system in a hardware-in-the-loop (HIL) setup, using a discrete PI controller in the z-domain is necessary
because real-world hardware operates with digital signals and discrete-time sampling. In HIL testing, the controller is typically
implemented on a digital platform such as a microcontroller, digital signal processor (DSP), or field-programmable gate array
(FPGA), which process signals in discrete time intervals. The physical system (plant) and the controller exchange signals at
discrete intervals, where continuous signals from sensors are sampled and quantized, and control signals are updated at each
sampling period. To accurately test and validate the controller's performance as it would operate in the actual system, the
controller in the HIL setup must operate in the same discrete-time manner. Thus, in the z-domain, the PI controller can be
represented as Equation (2).

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝐾𝐾 + 𝐾𝐾𝐾𝐾
𝑇𝑇

𝑍𝑍 − 1

 (2)

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

216

where Kp is the proportional gain, Ki is the integral gain, 𝑇𝑇 is the sampling period and 𝑍𝑍 is the complex frequency variable in
the Z-transform domain.

The main importance of a PI controller lies in determining optimal values for Kp (proportional gain) and Ki (integral gain).
which directly impact the controller's responsiveness, stability, and overall system performance. The process of fine-tuning
these parameters can be challenging, as it requires a deep understanding of theoretical concepts such as control theory, system
dynamics, and performance objectives. Therefore, this study includes an exploration of various methods and strategies for
fine-tuning the PI parameters, aiming to optimize the controller's performance and achieve desired control objectives.

2.4 Metaheuristic Approach for Tuning PI controller

2.4.1 Spiral Dynamic Algorithm
The SDA is an innovative metaheuristic approach inspired by nature's spiraling patterns found in various biological and
physical systems proposed by Tamura and Yashoda [30]. It integrates principles of diversification and intensification to
efficiently explore and optimize parameter spaces, particularly in complex control systems such as PI or PID controllers. By
leveraging the spiral trajectory, SDA facilitates an adaptive search process that balances exploration and exploitation,
dynamically adjusting step sizes to navigate towards optimal solutions effectively.

The SDA optimization method begins with establishing the problem's objective function, which represents the metric to
be improved. The parameter space also defines the value ranges for each parameter. The algorithm then employs a variety of
potential solutions, commonly referred to as "agents". The movement of the agents begins at the outermost layer and progresses
in a spiral trajectory towards the central optimal position. This can be achieved with a larger step size, fostering diversification
as a primary objective. As the process advances, a shift towards intensification takes place. This involves dynamically
decreasing the step size as the search points move through the innermost layer of the spiral. The combination of diversification
and intensification methods aims to effectively guide the agents towards the optimal solution within the search area.
Throughout this exploration, agents dynamically adjust their positions based on their fitness levels, providing insights into
their relative performance with respect to the objective function. Figure 2 depicts a detailed flowchart explaining the step-by-
step method by which the SDA efficiently adjusts the PI controller settings. The flowchart depicted deeply describes the
sequential stages that involve initialization, iterative optimization, and comparative study of the result, revealing how SDA
dynamically adapts agent positions based on the spiral pattern to gradually refine the PI parameters.

The spiral model is a vital component of the algorithm that specifies the spiral's characteristics and shape. The spiral model
is primarily determined by two parameters: spiral radius r and spiral rotation angle θ. These parameters are crucial to ensure
that the agents' movements align precisely with the intended spiral trajectory. Therefore, the equation mathematical modelling
for SDA is represented by Equation (3).

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) = 𝑆𝑆𝑛𝑛(𝑟𝑟, 𝜃𝜃)𝑥𝑥𝑖𝑖(𝑘𝑘) − (𝑆𝑆𝑛𝑛(𝑟𝑟,𝜃𝜃) − 𝐼𝐼𝑛𝑛)𝑥𝑥∗
 (3)

where 𝑥𝑥∗represents the center of the spiral, 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) the updated position of searching agents at iteration of 𝑘𝑘 and 𝑥𝑥𝑖𝑖(𝑘𝑘)
denotes the iteration number, r signifies the rotation radius, and θ indicates the rotation angle. 𝐼𝐼𝑛𝑛 is n×n identity matrix and
𝑆𝑆𝑛𝑛(𝑟𝑟, θ) is a stable matrix given as. where 𝑅𝑅(𝑛𝑛)(𝜃𝜃)) is n×n rotational matrix.

Figure 2. Flowchart of the implementation of spiral dynamic algorithm.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

217

2.4.2 Artificial Bee Colony
The ABC algorithm is a novel swarm intelligence method inspired by the foraging behavior of honeybees. The initial
framework designed by Karaboga, emulates the collective foraging activities of a bee swarm to find optimal solutions for
multi-variable and multi-modal continuous function [31]. In the natural world, bees foraging for food in a honeybee colony
can be categorized into three groups: employed bees, onlooker bees, and scout bees. Each food source has a corresponding
employed bee, meaning the number of employed bees is equal to the number of food sources. When a food source is abandoned,
its employed bee transforms into a scout bee. Employed bees are linked to specific food sources based on factors such as
proximity to the hive, richness or concentration of energy, and ease of energy extraction. For simplicity, the profitability of a
food source can be represented as a single quantity. Employed bees search for available food sources and gather information,
which they share with other bees in the hive through waggle dances that convey the distance, direction, and profitability of the
food sources. Onlooker bees then choose the most promising food sources based on the information provided by the employed
bees and further explore these sources. If the quality of a food source does not improve over a set number of cycles, known as
the limit (an important control parameter in the ABC algorithm), the food source is abandoned, and the employed bee becomes
a scout bee, searching for new food sources randomly near the hive. Figure 3, depicts the flowchart of the implementation of
the ABC algorithm, illustrating the processes involved in each phase of the bees' activities.

The basic ABC algorithm divides the population into three types of bees: employed bees, following bees (also known as
onlooker bees), and scout bees. Each type of bee operates in a distinct search phase: the employed bee phase, the following
bee phase, and the scout bee phase. Initially, the algorithm generates the initial population through random initialization, as
described by the following Equation (4).

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 + rand (0, 1) . �𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 �

 (4)

where 𝐾𝐾 = 1,…,SN and j=1, …, D. Here, SN denotes the population size, D represents the problem dimension, rand (0, 1) is a
random number between 0 and 1, and 𝑥𝑥𝐽𝐽𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑥𝑥𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 are the lower and upper bounds of the 𝑗𝑗-th dimension of an individual,
respectively.

In the employed bee phase, each employed bee searches for new food sources by performing a random search within the
feasible domain. This search is governed by the following Equation (5).

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛷𝛷𝑖𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑘𝑘𝑖𝑖�

 (5)

where 𝑘𝑘∈{1, …,SN} is a randomly selected index different from 𝐾𝐾, ensuring that the new candidate solution is influenced by
another solution in the population. 𝑗𝑗∈{1, …, 𝐷𝐷} is a randomly selected dimension, meaning that only one dimension is altered.
𝛷𝛷𝑖𝑖𝑖𝑖 is a random number uniformly distributed in the range [−1,1].

In the following bee phase, the following bees select food sources based on the information passed back by the employed
bees. The selection is done using a probabilistic approach, calculated by the following probability Equation (6).

𝑃𝑃𝑖𝑖 =
𝑓𝑓𝐾𝐾𝑡𝑡𝑖𝑖

∑ 𝑓𝑓𝐾𝐾𝑡𝑡𝑖𝑖𝑆𝑆𝑆𝑆
𝐽𝐽=1

 (6)

Where 𝑓𝑓𝐾𝐾𝑡𝑡𝑖𝑖 denotes the fitness value of the i-th food source. The nectar collection process by the following bee also uses the
Equation (5), to update the food source randomly.

Figure 3. Flowchart of the implementation of artificial bee colony.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

218

2.5 Simulation Model Design
Figure 4, shows the Simulink system block diagram to simulate control dynamics with a Discrete PI Controller and a linear
actuator NARX model. This simulation environment is designed to replicate the behavior of the actual system, allowing for
in-depth analysis. In this simulation, the desired position represents the target location for the linear actuator. This simulation
employs the desired position as the linear actuator target. In discrete time, the Discrete PI Controller processes the error signal
(the difference between desired and actual locations) to control the actuator. The NARX model better represents the actuator's
nonlinear behavior than linear models. The simulation provides the actuator's actual position, which reflects its dynamic
response to control signals. This complete simulation setup offers parameter adjustment and insight into the position control
system's performance under various scenarios.

A crucial aspect of this simulation requires accurately choosing the numerical methods. In this study, a fixed-step solver
employing the ode4 (fourth-order Runge-Kutta) method with a sample time of 0.2 seconds was selected for simulation
purposes. The choice of a fixed-step solver was motivated by the need for predictability in simulation timing, deterministic
behavior for repeatability, and suitability for real-time systems and hardware-in-the-loop (HIL) testing environments. The ode4
method was specifically chosen due to its balance between accuracy and computational cost, making it more accurate than
lower-order methods while remaining computationally efficient compared to higher-order methods like ode45.

2.6 Hardware-in-the-Loop Techniques

2.6.1 MATLAB Simulink Setup for Hardware-in-the-Loop (HIL)
Figure 5 illustrates the closed-loop HIL setup process, where a discrete PI controller generates a control signal based on the
discrepancy between the desired and actual positions of the linear actuator. As outlined in Figure 1, for the open-loop setup
configuration, the primary components remain unchanged.

2.6.2 Comprehensive HIL Testing Setup and Parameter Analysis
Figure 6 depicts a comprehensive HIL testing setup. In this configuration, the closed-loop control system for the linear
actuator's position is systematically executed using Simulink. The PI controller generates precise control signals, which are
then processed by various Simulink blocks to manage voltage ranges and communicate with the Arduino Uno via the L298N
Motor driver. The Arduino Uno is a critical component, converting these signals into practical commands that control the
actuator's movement with extreme precision. Meanwhile, real-time feedback from the encoder, which captures the actuator's
current position, is seamlessly integrated back into Simulink, ensuring continuous feedback loop completion. Table 2 provides
details about the parameters of the linear actuator used in this study, offering insights into its specifications and functionality
within the HIL testing setup. Additionally, in this HIL setup, as discussed in the simulation, the numerical configuration is
crucial for running MATLAB Simulink smoothly. Therefore, the setup configuration during both simulation and hardware
testing remains consistent to ensure consistency and accuracy in the system's performance evaluation.

Figure 4. Closed-loop of the PI controller in MATLAB Simulink.

Figure 5. Closed-loop of the PI controller in MATLAB Simulink for hardware in the loop.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

219

Figure 6. Hardware-in-the-loop (HIL) testing setup.

Table 2. Linear actuator parameter.

Parameter Value
Voltage 12 v

Stroke Length 50 mm
Speed 24 mm/s

Gear Ratio 19: 11
Lead Screw diameter 6 mm

Push Load 500 N
Encoder Resolution 16 LPR

Table 3. Model validation comparison.

Type of model Best fits (%)
Transfer Function model 1 10.98
Transfer Function model 2 (high zeros poles) 30.12
NARX model 90.18

3. RESULT AND DISCUSSION

3.1 System Identification and Model Selection
The performance of various models was compared, and the results are summarized in Table 3. The primary metric used for
comparison is the percentage of best fits, which indicates how well each model matches the observed data. The term best fits
percentage refers to the model's ability to closely match the observed data, with a higher percentage indicating a better fit and
less error in capturing the system's behavior. In this context, the NARX Model's exceptional accuracy in achieving the
validation signal and its highest best fits percentage highlight its strong capability in accurately capturing and predicting the
system's behavior during the system identification process. The NARX Model stands out with a best fits percentage of 90.18%,
demonstrating its superior ability to capture the underlying patterns and dynamics of the system being modeled. This high
percentage indicates that the NARX model is highly accurate and reliable in predicting the output based on the given inputs.

In contrast, the Transfer Function Model 1 shows a significantly lower best fits percentage of 10.98%. This suggests that
this model is less effective in fitting the observed data, potentially due to its simpler structure or assumptions that do not align
well with the actual system behavior. The Transfer Function Model 2, which incorporates high zeros and poles, performs better
than the first transfer function model, with a best fits percentage of 30.12%. While this is an improvement, it still falls short
compared to the NARX model. The inclusion of more zeros and poles likely adds complexity and flexibility to the model, but
not enough to surpass the NARX model's performance. In summary, the NARX model's highest best fits percentage
underscores its robustness and suitability for the given application, making it the most effective choice among the models
evaluated.

3.2 Comparative Analysis of Convergence Behavior
Figure 7 shows the convergence graph generated by the SDA over 20 iterations. This graph highlights the algorithm's rapid
convergence and optimization efficiency. The SDA, designed to minimize errors using Root Mean Square Error (RMSE) as
the cost function, typically converges within just 2 to 3 iterations. This quick convergence results from the careful configuration
of the algorithm’s parameters, particularly the PI parameters, which are restricted to ranges that consistently produce the lowest
errors. By focusing exploration within these ranges, the algorithm speeds up convergence and avoids unnecessary exploration.
The best cost function achieved during the 20 iterations is 2.9974708725032, demonstrating the effectiveness of the SDA-PI
in optimizing the objective function.

On the other hand, the convergence graph in Figure 8 produced by the ABC algorithm over 20 iterations, presents a
different convergence pattern. The ABC algorithm tends to converge approximately every 2 or 3 iterations, displaying a gradual
convergence behavior with intermittent periods of convergence and maintenance. This approach allows the algorithm to
steadily approach an optimal solution over multiple iterations, balancing exploration and exploitation in the search space. The
key strength of the ABC algorithm lies in its ability to explore the search space comprehensively. It evaluates promising regions
while avoiding premature convergence or stagnation in suboptimal solutions. Although the convergence speed may not match
that of the SDA, the ABC algorithm's thorough exploration often leads to robust optimization and a deeper understanding of
the solution space. The best cost function achieved by the ABC algorithm during these iterations is approximately 3.81,
indicating successful error minimization and optimization of the specified objective function. This gradual convergence
pattern, characterized by intermittent periods of convergence followed by maintenance, reflects the algorithm's balanced
exploration strategy.

3.3 PI Controller Simulation System
The data presented in Table 4 showcases the distinct PI parameters utilized by various tuning methods, reflecting diverse
control strategies. For instance, PI SDA and PI ABC exhibit specific parameter values that contribute to their respective
efficiency in controlling the linear actuator. Meanwhile, Figure 9 visually illustrates the position of the linear actuator under
different tuning methods, providing a clear comparison of their performance.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

220

Figure 7. Convergence comparison of SDA and ABC

algorithms.

Figure 8. Convergence plot by using artificial bee colony.

Table 4. PI parameters for different tuning method
at 25 mm step input.

Method PI parameters
P I

PI SDA 3.6428 2.0910
PI ABC 1.261047 0.617906
PI Ziegler Nichols 4.95 14.88714345
PI Trial and Error 2 3
PI Auto-Tune 6.8523 13.0526

Table 5. System performance analysis for different tuning methods
at 25 mm step input.

Method SSE OS (%) RT (s) ST (s)
PI SDA 9.8547e-04 0 1.8537 6.3901
PI ABC 5.1777 e-04 5.6094 2.0707 6.4153
PI Ziegler
Nichols 0.0029 29.3504 1.6999 6.6278

PI Trial and
Error -0.4907 23.0827 1.7152 10.8058

PI Auto-Tune -0.0066 23.4308 1.6979 7.7179
SSE – Steady state error; OS – Overshoot; RT – Rise time; ST –
Settling time.

Table 5 provides a comprehensive analysis of system performance under different tuning methods in response to a 25 mm

step input. Starting with PI SDA, it exhibits a remarkably low steady state error of 9.8547e-04, indicating high precision in
maintaining the desired position once the system stabilizes. Furthermore, it shows no overshoot, signifying a smooth and
precise response without oscillations. The rise time of 1.8537 s indicates how quickly the system reaches its final position after
the step input. Moving to PI ABC, while it maintains a low steady state error of 5.1777e-04, it experiences a slight overshoot
of 5.6094%, suggesting minor transient oscillations before stabilizing. The rise time of 2.0707 seconds and settling time of
6.4153 s further indicate its ability to achieve stable control within a reasonable time frame. On the other hand, PI Ziegler
Nichols shows a higher steady state error of 0.0029, along with a significant overshoot of 29.3504%, which indicates more
pronounced oscillations before settling. However, it achieves a relatively low-rise time of 1.6999 s, showcasing a swift
response to the step input. In contrast, PI Auto-Tune exhibits a negative steady state error (-0.4907), suggesting
overcompensation leading to instability in maintaining the desired position. This is accompanied by an overshoot of 23.0827%
and a relatively shorter rise time of 1.7152 s but a longer settling time of 10.8058 s, indicating delayed stabilization. Lastly, PI
Trial and Error also shows a negative steady state error (-0.0066) but with an overshoot of 23.4308% and similar rise time and
settling time values as PI Ziegler Nichols, indicating comparable performance in terms of response time and stability. Overall,
this detailed analysis highlights how each tuning method affects the system's accuracy, stability, and responsiveness in
achieving precise control of the linear actuator in response to a step input.

Figure 10 depicts the robustness testing process, which included a signal builder to expose the system to a variety of inputs
and evaluate its adaptability under different conditions. They demonstrate that PI SDA and PI-ABC exhibit exceptional
performance, showcasing consistently low overshoot and a stable response devoid of oscillations across a wide spectrum of
input signals. In contrast, both PI Ziegler-Nichols and PI Auto-Tune show oscillations in their response to each input, indicating
less stable and adaptive behavior. PI Trial and Error also displays similar oscillatory behavior, further highlighting its
limitations compared to the metaheuristic approaches of PI-SDA and PI-ABC. This graphical representation underscores the
robustness of the metaheuristic approach, particularly PI-SDA and PI-ABC, in maintaining precision and stability within the
simulation system. This superiority is especially evident in applications that necessitate consistent and reliable control of the
linear actuator's position under dynamic and changing conditions.

3.4 PI Controller in Hardware-in-the-Loop (HIL)
For further validation of the designed controller, Hardware-in-the-Loop (HIL) techniques were employed. Table 6 provides an
overview of the PI controller parameters used during HIL testing, showcasing the parameters across various tuning methods.
The parameters during the simulation phase, as shown in Table 4, remain consistent with those utilized in the HIL phase. This
consistency is crucial as it ensures the robustness of the controller's performance in real-world experimentation scenarios,
providing insights into how effectively the controller operates in a simulated environment compared to its behavior in an actual
hardware setup.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

221

Figure 9. Position of linear actuator at step input 25 mm with various tuning methods.

Figure 10. Position of linear actuator at random position with different tuning methods.

Table 6. PI parameter for different tuning method at

25 mm step input for HIL testing.

Method PI parameters
P I

PI SDA 3.6428 2.0910
PI ABC 1.261047 0.617906
PI Ziegler Nichols 4.95 14.88714345
PI Trial and Error 2 3
PI Auto-Tune 6.8523 13.0526

Table 7. System performance analysis for different tuning methods
at 25 mm step input for HIL testing.

Methods SSE OS (%) RT (s) ST (s)
PI SDA 0.0623 0 1.6956 7.2166
PI ABC -0.0314 5.0007 1.3805 9.1002
PI Ziegler Nichols 1.0936 44.3759 1.6747 36.0940
PI Trial and Error -0.4064 27.8758 1.3083 6.8583
PI Auto-Tune 0.0623 24.8758 1.7361 9.8074

Figure 11 visually represents the position of the linear actuator in response to a 25 mm step input across various tuning

methods during hardware testing. This graphical depiction offers a direct comparison of how each tuning method influences
the actuator's position control in the physical hardware setup. Table 7 provides a detailed analysis of the system performance
under different tuning methods during HIL testing. Specifically focusing on PI-SDA, it exhibits a steady-state error of 0.0623,
indicating a relatively small deviation from the desired position once the system stabilizes. Moreover, it shows no overshoot,
signifying a smooth and controlled response without oscillations. The rise time of 1.6956 s suggests how quickly the system
achieves its final position after the step input, while the settling time of 7.2166 s reflects the time taken for the system to
stabilize within a specified tolerance band around the desired position.

Comparatively, PI-ABC shows a negative steady-state error of -0.0314, indicating a slight overcompensation leading to a
minor deviation from the desired position once stabilized. However, it does exhibit a small overshoot of 5.0007%, suggesting
some transient oscillations before stabilization. The rise time of 1.3805 s and settling time of 9.1002 s further characterize its
response time and stability. On the other hand, PI Ziegler-Nichols, PI Trial and Error, and PI Auto-Tune show higher steady-
state errors (1.0936, -0.4064, and 0.0623, respectively), significant overshoots (44.3759%, 27.8758%, and 24.8758%,
respectively). indicating less precise and stable control compared to PI-SDA and PI-ABC.

Robustness testing is essential for evaluating the controller's performance in both simulation and hardware testing
environments. This process is critical in assessing the controller's responsiveness during both the extension and retraction
phases of the actuator. Such transitional phases can potentially introduce instability into the system, underscoring the
importance of verifying the controller's ability to effectively manage these changes and maintain stability throughout the
operation. Thus, Figure 12 illustrates the testing of various input signals across different tuning methods. As expected, both
PI-SDA and PI-ABC consistently produce excellent results free of oscillations, demonstrating their stability and effectiveness.
This finding confirms that the implementation of the metaheuristic approach with SDA and ABC can indeed achieve robust
and stable performance, establishing them as dependable options for maintaining precise control over the linear actuator's
position, particularly in dynamic and unpredictable condition.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

222

Figure 11. Position of linear actuator at step input 25 mm with various tuning methods for HIL testing.

Figure 12. Position of linear actuator at random position with different tuning methods for HIL testing.

4. CONCLUSION
This paper introduced a PI controller designed to effectively control the position of a linear EMA, addressing a significant
research gap in the field of linear EMAs. This study incorporates system identification using the NARX model to enhance the
understanding of the actuator's dynamics and various tuning methods such as Ziegler-Nichols, Trial and Error, Auto-Tune,
ABC algorithm, and the SDA for controller optimization. The NARX model was found to be superior in accurately capturing
and predicting system behavior, achieving a best fits percentage of 90.18%, significantly higher than other models. This
superior performance of the NARX model underscores its suitability for ensuring optimal control and reliable operation in
real-world applications. In the comparative assessment of tuning methods, the SDA and ABC algorithm were identified as
highly effective metaheuristic approaches. Simulation results indicated that these metaheuristic methods provided low
overshoot and steady-state error. The effectiveness of the PI-SDA controller was particularly evident in HIL testing, where it
achieved a steady-state error of 0.0623, zero overshoot, a rise time of 1.6956 s, and a settling time of 7.2166 s. Similarly, the
PI-ABC controller also showed impressive results in HIL testing, achieving a steady-state error of -0.0314, an overshoot of
5.0007%, a rise time of 1.3805 s, and a settling time of 9.1002 s. Robustness testing revealed that both PI-SDA and PI-ABC
maintained stability and effectiveness across a wide range of input signals, showcasing their suitability for applications
requiring precise and stable control under dynamic and unpredictable conditions. These findings highlight the advantages of
metaheuristic methods over traditional heuristic approaches like Ziegler-Nichols, Trial and Error, and Auto-Tune, which
exhibited more significant oscillations and higher steady-state errors. Future work will employ various metaheuristic
approaches, including advanced strategies to address issues like premature convergence, and will implement these in
applications requiring precise positioning, such as power windows and auto brake systems.

ACKNOWLEDGMENT AND FUNDING
This work has been financially supported by the Fundamental Research Grant Scheme (FRGS/1/2021/ICT02/UMP/02/2) with
a university reference number (RDU210110) and FRGS/1/2021/TK0/UIAM/02/27 with university reference number
(FRGS21-245-0854). Both have been awarded by the Ministry of Higher Education Malaysia via Research and Innovation
Department, Universiti Malaysia Pahang Al-Sultan Abdullah and Research Management Centre, International Islamic
University Malaysia respectively.

DECLARATION OF CONFLICTING INTERESTS
The authors declare no potential conflicts of interest with respect to the research and publication of this article.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

223

REFERENCES
[1] Q. Sanders and D. J. Reinkensmeyer, Design and preliminary evaluation of a soft finger exoskeleton controlled by

isometric grip force, Machines, 12(4), 2024, 230.
[2] K. A. Daniel, P. Kowol and G. Lo Sciuto, Linear actuators in a haptic feedback joystick system for electric vehicles,

Computers, 13(2), 2024, 48.
[3] I. Boldea, Linear electromagnetic actuators and their control: A review, EPE Journal, 14(1), 2004, 43-50.
[4] B. Yang et al., Quantitative comparative study on the performance of a valve-controlled actuator and electro-hydrostatic

actuator, Actuators, 13(4), 2024, 118.
[5] J. Xu and G. M. Bone, Actuators for improving robotic arm safety while maintaining performance: A comparison study,

Actuators, 13(2), 2024, 69.
[6] K. Sotoodeh, Actuator selection and sizing for valves, SN Applied Sciences, 1(10), 2019, 1207.
[7] G. Qiao, G. Liu, Z. Shi, Y. Wang, S. Ma and T. C. Lim, A review of electromechanical actuators for more/all electric

aircraft systems, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science, 232(22), 2018, 4128-4151.

[8] M. Heydari Shahna, M. Bahari and J. Mattila, Robust decomposed system control for an electro-mechanical linear
actuator mechanism under input constraints, International Journal of Robust and Nonlinear Control, 34(7), 2024, 4440-
4470.

[9] A. Turan, PID controller design with a new method based on proportional gain for cruise control system, Journal of
Radiation Research Applied Sciences, 17(1), 2024, 100810.

[10] I. Todić, M. Miloš and M. Pavišić, Position and speed control of electromechanical actuator for aerospace applications,
Technical Gazette, 20(5), 2013, 853-860.

[11] V. Tič and D. Lovrec, Development and implementation of closed loop position control concepts on electromechanical
linear system using Beckhoff controller, Machines. Technologies. Materials., 16(4), 2022, 116-119.

[12] R. S. Patil, S. P. Jadhav and M. D. Patil, Review of intelligent and nature-inspired algorithms-based methods for tuning
PID controllers in industrial applications, Journal of Robotics and Control, 5(2), 2024, 336-358.

[13] Y. B. Cui, J. Zheng, Y. T. Ju and J. Xu, Precise angle control of electromechanical actuator with fuzzy PID and genetic
algorithm, Applied Mechanics and Materials, 300-301, 2013, 1479-1485.

[14] Y. Parvez, N. R. Chauhan and M. Srivastava, Vibration control and comparative analysis of passive and active suspension
systems using PID controller with particle swarm optimization, Journal of The Institution of Engineers (India): Series
C, 2024.

[15] E. Lybrech Talakua and E. Dhaniswara, Performance comparison between differential evolution and bat algorithm in
PID tuning for optimization of speed control on parallel hybrid electric vehicle, Jurnal Teknik Elektro, 6(1), 2024, 64-
74.

[16] Y. K. Poudel and P. Bhandari, Control of the BLDC motor using ant colony optimization algorithm for tuning PID
parameters, Archives of Advanced Engineering Science, 2(2), 2023, 108-113.

[17] Z. Shi, L. Zhao and Y. Shi, Starting control of free piston engine linear generator based on simulated annealing algorithm
to optimize fractional PID, Proceedings of the 8th International Conference on Control Engineering and Artificial
Intelligence, New York, USA, 2024, 114-119.

[18] N. J. Singh, V. Chopra and S. Pandey, Artificial bee colony with predator effect algorithm for proportional integral
derivative controller tuning, Journal of Vibration and Control, 0(0), 2024.

[19] P. Khare, M. Raju, S. C. Gupta and H. Shukla, Liberalized automatic generation control of interconnected thermal-hydro-
gas system using firefly algorithm optimized PID controller, International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields, 37(1), 2024, e3136.

[20] N. Genc and Z. S. Kalimbetova, Cuckoo optimization algorithm based fuzzy logic speed controller for BLDC motor,
Electric Power Components and Systems, 52(11), 2024, 2065-2077.

[21] A. Rajendran, M. Karthikeyan and G. Saravanakumar, Implementation of FOPID controller with modified harmony
search optimization for precise modelling and auto-tuning of nonlinear systems, Automatika, 65(3), 2024, 881-893.

[22] K. Jagatheesan, D. Boopathi, S. Samanta, B. Anand and N. Dey, Grey wolf optimization algorithm-based PID controller
for frequency stabilization of interconnected power generating system, Soft Computing, 28(6), 2024, 5057-5070.

[23] M. Ristanović, Ž. Ćojbašić and D. Lazić, Intelligent control of DC motor driven electromechanical fin actuator, Control
Engineering Practice, 20(6), 2012, 610-617.

[24] A. Mahdi, Optimization of PID controller parameters based on genetic algorithm for non-linear electromechanical
actuator, International Journal of Computer Applications, 94(3), 2014, 11-20.

[25] A. Javadi, H. Haghighi, K. Pornpipatsakul and R. Chaichaowarat, Data-driven position and stiffness control of
antagonistic variable stiffness actuator using nonlinear Hammerstein models, Journal of Sensor and Actuator Networks,
13(2), 2024, 29.

[26] A. M. Ahmed, A. Ali-Eldin, M. S. Elksasy and F. F. Areed, Brushless DC motor speed control using both PI controller
and fuzzy PI controller, International Journal of Computer Applications, 109(10), 2015, 29-35.

[27] S. Tufenkci, B. Baykant Alagoz, G. Kavuran, C. Yeroglu, N. Herencsar and S. Mahata, A theoretical demonstration for
reinforcement learning of PI control dynamics for optimal speed control of DC motors by using twin delay deep
deterministic policy gradient algorithm, Expert System with Applications, 213, 2023, 119192.

[28] H. A. Mintsa, G. E. Eny, N. Senouveau and R. M. A. Nzué, Optimal tuning PID controller gains from Ziegler-Nichols
approach for an electrohydraulic servo system, Journal of Engineering Research and Reports, 25(11), 2023, 158-166.

 A. A. ABDULLAH HASHIM ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 8, 2024, 213-224.

224

[29] K. Devendranath et al., Position tracking performance with fine tune Ziegler-Nichols PID controller for electro-hydraulic
actuator in aerospace vehicle model, Journal of Physics: Conference Series (International Conference on Man Machine
System), 2107(1), 2021, 12064.

[30] M. B. Omar, K. Bingi, B. Rajanarayan Prusty and R. Ibrahim, Recent advances and applications of spiral dynamics
optimization algorithm: A review, Fractal and Fractional, 6(1), 2022, 27.

[31] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee
colony (ABC) algorithm, Journal of Global Optimization, 39(3), 2007, 459-471.

	1. INTRODUCTION
	2. METHODOLOGY
	2.1 Data Acquisition
	2.2 System Identification for Optimization
	2.3 Discrete PI Controller
	2.4 Metaheuristic Approach for Tuning PI controller
	2.4.1 Spiral Dynamic Algorithm
	2.4.2 Artificial Bee Colony

	2.5 Simulation Model Design
	2.6 Hardware-in-the-Loop Techniques
	2.6.1 MATLAB Simulink Setup for Hardware-in-the-Loop (HIL)
	2.6.2 Comprehensive HIL Testing Setup and Parameter Analysis

	3. RESULT AND DISCUSSION
	3.1 System Identification and Model Selection
	3.2 Comparative Analysis of Convergence Behavior
	3.3 PI Controller Simulation System
	3.4 PI Controller in Hardware-in-the-Loop (HIL)

	4. CONCLUSION
	ACKNOWLEDGMENT AND FUNDING
	DECLARATION OF CONFLICTING INTERESTS
	REFERENCES

