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Pengurusan Kuat Ketaklelurusan)
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ABSTRACT

This study shows the existence of special matter waves, known as compactons, in binary dis-
crete nonlinear Schrödinger (DNLS) equations with equal distributions of interspecies Rashba
and Dresselhaus spin-orbit coupling (SOC) in the presence of fast periodic time modulations
of the interspecies scattering length. However, the existence is limited to only of one-site com-
pacton type, which means the absence of larger size compactons such as the two- and three-site.
Further, the dynamical stability of the compactons is predicted by using linear stability analysis
method and verified through the direct numerical integrations of the equations. We find that the
stability of the compactons has strong dependence on the strength of SOC term.
Keywords: discrete nonlinear Schrödinger equation, spin-orbit coupling, compactons, nonlin-
earity management

ABSTRAK

Kajian ini menunjukkan kewujudan gelombang jirim khas, yang dikenali sebagai kompakton,
dalam persamaan dedua Schrödinger diskret tak linear bersama caruman sama gandingan spin-
orbit Rashba dan Dresselhaus antaraspesis dengan kehadiran pemodulatan masa berkala pantas
pada panjang serakan atom antara spesis. Namun, kewujudannya terhad kepada kompakton
jenis bertapak satu, yang menunjukkan ketiadaan kompakton bersaiz besar seperti tapak dua
dan tiga. Selanjutnya, kestabilan dinamik kompakton diramal menggunakan analisis kestabilan
linear dan disahkan menerusi penyepaduan berangka langsung pada persamaan tersebut. Kami
mendapati bahawa kestabilan kompakton amat bergantung dengan kekuatan sebutan gandingan
spin-orbit.
Kata kunci: persamaan Schrödinger diskret tak linear, gandingan spin-orbit, kompakton, pen-
gurusan ketaklelurusan

1. Introduction

One of the most intriguing outcomes of periodically managing parameters of a nonlinear system
is the emergence of discrete breathers with unique localization properties (Malomed 2007). It
is firmly established that the existence of discrete breathers depends on the interplay between
discreteness, nonlinearity, and dispersion (Flach & Gorbach 2008). However, the presence of
nonlinear dispersion causes the inter-site tunneling of excitations to vanish, resulting in the
emergence of discrete breathers with no exponential tails, namely compactons (Rosenau &
Hyman 1993; Rosenau 1994; Rosenau & Schochet 2005). Previous studies (Abdullaev et al.
2010, 2014, 2017; D’Ambroise et al. 2015) have demonstrated that the strong nonlinearity
management (SNLM) technique, involving rapid periodic variations in nonlinearity, effectively
induces the suppression of inter-site tunneling. This triggers compacton solutions in one- and
two-component Bose-Einstein condensates (BECs) in optical lattices made of nonlinear opti-
cal waveguides. Compactons were predicted to exist not only in BECs under SNLM but also
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in physical systems like exciton-polariton condensates (Kartashov et al. 2012), granular crys-
tals with nonlinear interactions (English & Pego 2005; Stefanov & Kevrekidis 2012) and Lieb
photonic lattices (Vicencio et al. 2015).

One possible method for achieving this periodic management is through Floquet engineer-
ing (FE). Theoretical and experimental studies on BECs based on FE have been carried out
recently (see the review: Bukov et al. 2015). This technique is potent for manipulating quantum
materials and involves controlling quantum systems using time-periodic external fields. Within
the context of BECs, several approaches have been proposed to engineer effective magnetic
fields based on driven cold-atom or ion-trap systems (Goldman & Dalibard 2014). These sug-
gestions have led to a model that can be generalized as a lattice system penetrated by a uniform
magnetic field. This encompasses both linear optical lattices (OL) achieved by periodically
shaking the potential in time (either by adjusting amplitude or frequency) (Aidelsburger et al.
2011, 2013; Miyake et al. 2013; Aidelsburger et al. 2015) and nonlinear OL achieved by mod-
ulating the atom-atom interaction (Morsch & Oberthaler 2006). The linear scheme yields a
modified hopping rate (Eckardt et al. 2005; Lignier et al. 2007; Kierig et al. 2008), which is
useful, for instance, in driving transitions from a superfluid to a Mott insulator phase (Greiner
et al. 2002; Zenesini et al. 2009), simulating frustrated classical magnetism (Struck et al. 2011),
and creating synthetic gauge potentials (Struck et al. 2012). The nonlinear FE is implemented
by introducing a modulated magnetic field close to a Feshbach resonance. This results in the
hopping rate being dependent on the occupation differences at neighbouring sites (Gong et al.
2009; Rapp et al. 2012; Di Liberto et al. 2014).

Since the production of the first gaseous condensate in 1995 (Anderson et al. 1995), ultra-
cold atoms, such as BECs and fermion gases, have been employed as physical simulators to
study fundamental effects arising from condensed matter physics over the past decade (Bloch
et al. 2008; Dalibard et al. 2011). One of these effects is spin-orbit coupling (SOC), which
is described in quantum physics as the intrinsic interaction between particle dynamics and its
spin. In the context of solid-state physics, SOC is the interaction between electron spin and
its motion in a semiconductor, as elucidated by the works of Dresselhaus and Rashba (Elliott
1954; Dresselhaus et al. 1954; Dresselhaus 1955; Rashba 1959, 1960; Bychkov & Rashba 1984;
Bihlmayer et al. 2015). Although SOC is weak and challenging to control in generic condensed
matter materials due to its overshadowing by stronger electrostatic interactions, synthetic SOC
can be induced in ultracold atoms and managed by external laser fields. This has been experi-
mentally achieved for binary mixtures of BECs (Lin et al. 2011; Galitski & Spielman 2013).

Given that a variety of synthetic SOC can be engineered and controlled by external fields,
particularly for binary mixtures of BECs, this area of study is currently attaining considerable
attention. Models incorporating a spatial derivative of the SOC term, acting within each species
and between species – known as intra- and inter-SOC, respectively – have been explored by
(Beličev et al. 2015). The localization and spin dynamics (Zhang et al. 2021, 2022, 2023;
Su et al. 2021; Wang et al. 2020, 2023; Guo et al. 2021; Luo et al. 2022; Mboumba et al.
2023; Zhu et al. 2023), modulational instability and formation of quantum droplets (Li et al.
2017; Cui 2018; Tononi et al. 2019; Ravisankar et al. 2020; Gangwar et al. 2022, 2023) in
SOC-BEC have been reported. The effect of SOC and linear Zeeman splitting on the localized
matter waves, particularly the symmetry breaking of solitons, has been investigated (Salerno &
Abdullaev 2015; Wen et al. 2019), as well the correlation between SOC and the position changes
in the Brillouin zone for generating superfluidity (Yu et al. 2018). The tunability of SOC in the
presence of an external Zeeman field, varying periodically in time with strong modulation, also
has been demonstrated in (Salerno et al. 2016). In higher dimensional solitons, SOC plays an
important role of stabilizing in terms of suppressing the critical wave collapse (in 2D case) and
3D metastable solitons as a product of the interplay between the SOC and cubic self-attraction
terms (Malomed 2022). Additionally, it is worth noting that the nonlinearity management of
SOC-BEC results in certain manifestations of resonance between the time-periodic modulation
of cubic attraction strength and intrinsic modes of the solitons (Sakaguchi & Malomed 2019).

Recently, it has been demonstrated that compactons exist in binary mixtures of BECs loaded
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into a deep OL with intra-SOC under periodic time modulations of the intra-species scattering
length (Abdullaev et al. 2023). This modulation leads to density-dependent SOC parameters
that significantly affect the existence and stability of compactons. The presence of SOC terms
restricts the parameter ranges within which stable compactons can exist; however, it provides
a more distinct signature of their occurrence. Nonetheless, the potential existence and sta-
bility patterns of compactons in models with inter-species SOC remain open questions. This
paper aims to investigate the existence of compactons in binary BEC systems described by dis-
crete nonlinear Schrödinger (DNLS) equations, incorporating inter-SOC under the influence
of SNLM. It is worth noting that the formation of compactons in the interspecies SOC model
has been previously reported by Johansson et al. (2019). However, this paper introduces the
concept of compact structures within localized modes achieved through the implementation of
SNLM, a factor not explored by Johansson et al. (2019). Furthermore, the model utilized de-
scribes exciton-polaritons in a zigzag chain of weakly binary condensates with SOC, which
differs from the model considered in this study.

This paper is organized as follows. In Section 2, we introduce the mathematical models
representing binary BEC mixtures in a deep OL subjected to SNLM with SOC, and derived its
effective average equations. In Section 3, we discuss the existence of SOC-compacton and its
conditions. Numerical results for various cases of compactons are presented in Section 4 and
their stability are evaluated by linear stability analysis and direct numerical integrations of the
equations. Lastly, we summarize the main results in Section 5.

2. Model and Averaged Equations

A binary BEC mixture with equal contributions of interspecies Rashba and Dresselhaus SOC
trapped in deep OL can be described by the following coupled DNLS equations (Beličev et al.
2015):

iun,t =− Γ (un+1 + un−1) + iσ(vn+1 − vn−1) + Ωun + (γ1|un|2 + γ(0)|vn|2)un,
ivn,t =− Γ (vn+1 + vn−1) + iσ(un+1 − un−1)− Ωvn + (γ(0)|un|2 + γ2|vn|2)vn,

(1)

where un, vn are the pseudo-spinor complex wavefunctions at site n, the subscript t refers to
the first derivative with respect to time, Γ denotes the inter-site hopping constant, σ and Ω
are, respectively, the SOC and Zeeman splitting frequencies, and γ, γj , for j = 1, 2, indicate
the nonlinear inter- and intraspecies interactions, respectively, in which we assume here to be
attractive. Note that Eq. (1) possesses the Hamiltonian form iχn,t = δH/δχ∗

n where the asterisk
indicates the complex conjugate, with χn = un, vn and Hamiltonian H in the form of:

H =
∑
n

[
− Γ (un+1u

∗
n + u∗n+1un)− Γ (vn+1v

∗
n + v∗n+1vn)

+ iσ(un+1v
∗
n − u∗n+1vn) + iσ(vn+1u

∗
n − v∗n+1un)

+ Ω(|un|2 − |vn|2) +
1

2

(
γ1|un|4 + γ2|vn|2

)
+ γ|un|2|vn|2

]
. (2)

In the following, we consider mixtures of BEC species with interspecies NLM, i.e., fixed
intraspecies nonlinearities (γj = const) and assume the interspecies nonlinear parameter γ(t)
modulated in the form of:

γ(t) ≡ γ(0) + γ(1)(t) = γ(0) +
γ(1)

ϵ
cos

(
ωt

ϵ

)
,

with γ(0), γ(1) constants and ϵ a small paramater controling the strength of the management and
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to separate the fast and slow time scales (SNLM requires ϵ ≪ 1). To eliminate the fast time,
τ = t/ϵ, dependence, we perform the following transformation on Eq. (1):

un = Une
−iΛ(τ)|Vn|2 , vn = Vne

−iΛ(τ)|Un|2 , (3)

where Λ(τ) indicates the antiderivatives of γ(0)(t), i.e., Λ(τ) ≡
∫ τ
0 (γ

(1)/ϵ) cos(ωτ ′) dτ ′ =

α sin(ωτ), with α = γ(1)/ω. Substituting Eq. (3) into Eq. (1) yields:

iUn,t = iΓΛ(τ)Un[X
∗
11Vn −X11V

∗
n ]− σΛ(τ)Un[X

∗
21Vn +X21V

∗
n ]

− ΓX22 + iσX12 +ΩUn + [γ1|Un|2 + γ(0)|Vn|2]Un, (4a)

iVn,t = iΓΛ(τ)Vn[X
∗
22Un −X22V

∗
n ]− σΛ(τ)Vn[X

∗
12Un +X12V

∗
n ]

− ΓX11 + iσX21 − ΩVn + [γ(0)|Un|2 + γ2|Vn|2]Vn, (4b)

where X11 = Vn+1e
−iΛθ+

11 + Vn−1e
−iΛθ−

11 , X22 = Un+1e
−iΛθ+

22 + Un−1e
−iΛθ−

22 , X12 =

Vn+1e
−iΛθ+

12 − Vn−1e
−iΛθ−

12 , X21 = Un+1e
−iΛθ+

21 − Un−1e
−iΛθ−

21 , and:

θ±11 = |Un±1|2 − |Un|2, θ±22 = |Vn±1|2 − |Vn|2,
θ±12 = |Un±1|2 − |Vn|2, θ±21 = |Vn±1|2 − |Un|2.

The average over the rapid modulation can be evaluated with the help of the following rela-
tion:

⟨Λe±iΛθ±⟩ = ±iαJ1(αθ
±), ⟨e±iΛθ±⟩ = J0(αθ

±), (5)

where ⟨F ⟩ indicates the average with respect to the rapid modulation, ⟨F ⟩ ≡ (1/T )
∫ T
0 F dτ ,

and Jν is Bessel function of the first kind of order ν with ν = 0, 1. Substituting the averages
into Eq. (4) yields the following system of averaged equations:

iUn,t =− Γ
{
αUn

[
(V ∗

n+1Vn + Vn+1V
∗
n )J1(αθ

+
11) + (V ∗

n−1Vn + Vn−1V
∗
n )J1(αθ

−
11)

]
+ Un+1J0(αθ

+
22) + Un−1J0(αθ

−
22)

}
− iσ

{
αUn

[
(U∗

n+1Vn − Un+1V
∗
n )J1(αθ

+
21)

− (U∗
n−1Vn − Un−1V

∗
n )J1(αθ

−
21)

]
− Vn+1J0(αθ

+
12) + Vn−1J0(αθ

−
12)

}
+ΩUn +

[
γ1|Un|2 + γ(0)|Vn|2

]
Un, (6a)

iVn,t =− Γ
{
αUn

[
(U∗

n+1Un + Un+1U
∗
n)J1(αθ

+
22) + (U∗

n−1Un + Un−1U
∗
n)J1(αθ

−
22)

]
+ Vn+1J0(αθ

+
11) + Vn−1J0(αθ

−
11)

}
− iσ

{
αVn

[
(V ∗

n+1Un − Vn+1U
∗
n)J1(αθ

+
12)

− (V ∗
n−1Un − Vn−1U

∗
n)J1(αθ

−
12)

]
− Un+1J0(αθ

+
21) + Un−1J0(αθ

−
21)

}
− ΩVn +

[
γ(0)|Un|2 + γ2|Vn|2

]
Vn. (6b)

Note that the above system of averaged equations are valid only for t ≤ 1/ϵ with accuracy of
O(ϵ) (Sanders et al. 2007).

The averaged system Eq. (6) possesses a Hamiltonian form with the averaged Hamiltonian
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Hav in the form of:

Hav =
∑
n

{
− ΓJ0(αθ

+
22)(Un+1U

∗
n + U∗

n+1Un)− ΓJ0(αθ
+
11)(Vn+1V

∗
n + V ∗

n+1Vn)

+ iσJ0(αθ
+
21)(Un+1V

∗
n − U∗

n+1Vn) + iσJ0(αθ
+
12)(Vn+1U

∗
n − V ∗

n+1Un)

+ Ω
[
|Un|2 − |Vn|2

]
+

1

2

[
γ1|Un|4 + γ2|Vn|4

]
+ γ(0)|Un|2|Vn|2

}
. (7)

By comparing Hav in Eq. (7) with the corresponding original Hamiltonian in Eq. (2), we can see
that they coincide if we rescale the tunnelling constant Γ and the SOC parameter σ according
to:

Γ → Γ̃i ≡ ΓJ0(αθ
+
ij), (i = j),

σ → σ̃i ≡ σJ0(αθ
+
ij), (i ̸= j),

for i = 1, 2 and j = 1, 2. From this, we see that the modulation of interspecies scattering
interaction introduces a dependence on the density imbalance between adjacent sites of the
same component for Γ and between the two components for σ in the unmodulated system. It
becomes obvious that the condition of the existence of compacton, i.e. zero tunnelling rate at
compacton edges, does not only involves the intersite hopping constant Γ but also the SOC
parameter σ.

3. The Existence and Stability of SOC-Compactons

In this section, we derive steady-state SOC-compacton solutions in order to establish the sta-
tionary conditions for their existence. Stationary compacton solutions of the averaged system
can be searched in the form of:

Un = Ane
−iµt, Vn = Bne

−iµt, (8)

with An, Bn complex amplitudes and µ chemical potential for the two components. Substituting
Eq. (8) into the averaged system (6) leads to the following steady-state equations:

µAn = F1, µBn = F2, (9)

to be solved for the amplitudes An, Bn and chemical potential, where F1 and F2 stands for the
right hand side of Eqs. (6a) and (6b), respectively, but with the replacements Un → An and
Vn → Bn.

In order to obtain the conditions for the existence of stationary SOC-compactons, we adopt
the following ansatz:

An, Bn ̸= 0 if n0 ≤ n ≤ n0 + s,
An, Bn = 0 otherwise, (10)

with n0 and n0 + s left and right edges of the compactons, respectively, and s its width. The
compact nature of the solution allows us to reduce the above infinite system into 2(s + 3)
equations by substituting the ansatz (10) into Eq. (9). The existence of compactons depends on
the likelihood to solve these equations for nonzero amplitudes by achieving both the suppression
of tunnelling rate at the edges and deriving expressions for the chemical potential.

The dynamical stability of SOC-compactons in the system (6) can be predicted by employing
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the conventional linear stability analysis procedure by taking the perturbed ansatz of the form:

Un =
[
An + ε(ane

−iλt + bne
iλ∗t)

]
e−iµt,

Vn =
[
Bn + ε(cne

−iλt + dne
iλ∗t)

]
e−iµt, (11)

where λ = λr + iλi indicates the linearization eigenvalue and ε ≪ 1. Substituting the ansatz
(11) into Eq. (6), and taking only the terms with O(ε), leads to an eigenvalue problems for
λ, which can be solved numerically. Stable compacton solutions should be indicated by the
absence (or negligibly small value) of imaginary parts of λ, for gain G = max(|λi|) ≃ 0.
However, in this case, the eigenvalue problem possesses high sensitivity which lead to small
gain of unstable solutions, hence enhancement to the computation of gain will be required, and
it will be elaborated in the next section.

The stability prediction is verified through direct numerical integrations of Eqs. (6) and (1)
by utilising Runge-Kutta-Fehlberg (RK45) method of fourth-fifth order. The initial conditions
of the solutions are taken from the stationary profiles of Eq. (9) with additional uniformly-
distributed random perturbation of 10−4.

4. Numerical Results and Discussions

4.1. One-site compactons

One-site compactons in the inter-SOC model can be sought by fixing s = 0 in Eq. (10) and
taking the ansatz at site n0 as An0

= z1 ≡ a + ib and Bn0
= z2 ≡ c + id, with a, b, c,

d reals. By substituting the ansatz into Eq. (9), we obtain four equations corresponding to
the compactons edges n0 ± 1, which are automatically satisfied if J0

(
α
(
a2 + b2

))
= 0 and

J0
(
α
(
c2 + d2

))
= 0, i.e. if a, b, c and d are taken as:

a2 + b2 =
ξm
α

, c2 + d2 =
ξl
α
, (m, l = 1, 2, . . . ) (12)

where ξm, ξl are zeros of the Bessel function J0. The remaining two equations yield the expres-
sion for chemical potential:

µ = γ(0)
ξm
α

+ γ2
ξl
α

− Ω, (13)

where the Zeeman splitting term, Ω, is defined as:

Ω =
1

2α

[(
γ2 − γ(0)

)
ξl −

(
γ1 − γ(0)

)
ξm

]
. (14)

Since the two zeros of J0 in Eq. (12) should not be necessarily equal, this implies that the
densities at excited site n0 of the two species could either be balanced or unbalanced.

Let us begin examining one-site compactons cases with parameters Γ ∈ [0, 1], σ = 1, γ1 =

γ2 = γ(0) ≡ −1, γ(1) = 1, ω = 1 and Ω = 0. As for the excited states at lattice number n = 0,
we choose A0 = B0 ≡ a + ib where a = 0.5

√
ξ1/α and b =

√
ξ1/α− a2 with ξ1 = 2.4048

(first root of J0), in such a way that the magnitude will conform with the solution ξ1/α. The
numerical result is shown in Figure 1, where from panel (d) the gain G is notably small on
order of O(10−7). To facilitate the analysis, it is convenient to consider G(Γ ) in the form of
base 10 logarithm, G10(Γ ) = log10(G(Γ )), in which giving us the value G10(Γ ) = −7.1277
at Γ = 1. We then increase the value of σ to 5 and the result is displayed in Figure 2, where
the gain G remains small on the order of O(10−7), not significantly different from the previous
case with σ = 1. However, in this case, G10(1) assumes the value of −6.3567. Based on the
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Figure 1: Top row panels: Steady-state solution profiles for one-site compactons with parameters Γ ∈
[0, 1], σ = 1, γ1 = γ2 = γ(0) ≡ −1, γ(1) = 1, ω = 1 and Ω = 0, with |A0|2 = |B0|2 ≡ 2.4048. Blue
(circle), red (diamond) and black (square) lines denote real and imaginary parts and the absolute value
of the amplitudes, respectively. Bottom row panels: the plane (λi, λr) of the linearization eigenvalues
λ = λr + iλi (left panel) and the gain G as a function of Γ (right panel).

small order of gain, it looks like in both cases, the one-site compactons should be stable. In
order to verify this analysis, we directly integrate the original and averaged equations for both
scenarios, presenting the results in Figure 3 and 4, respectively. The space-time evolution for
σ = 1 case shows stability in both original and averaged equations, as demonstrated in Figure
3. However, in the case of σ = 5, the compactons completely disperse in time, as shown in
Figure 4. This indicates that an increase in σ contributes to instability despite the gain being
close to zero. Nevertheless, a lower value of σ appears to result in approximately lower gain of
O(10−1), which is sufficient to justify stability.

We repeated the same procedure but changed B0 = c + id, where c = 0.5
√

ξ2/α and
d =

√
ξ2/α− c2 with ξ2 = 5.5201 (second root of J0), ensuring that the magnitude of com-

pacton at the second lattice corresponds to ξ2/α. The results, while not displayed here, were
found to be similar to the case of balanced density presented in Figures 1-4, except for the
magnitude |B0| = 2.3495, which is higher than |A0| = 1.5507. In the instance of σ = 1,
we observe that G10 (1) = −7.4698, and for σ = 5 it takes the value of G10 (1) = −6.6129,
once again justifying the stability of compactons for lower values of SOC strength. It can also
be deduced that the unbalanced densities of atoms between the binary lattices do not affect the
stability, at least for the case of one-site compacton. It is suggested that a critical point may
exist, distinguishing the range of stability, as it becomes evident here that the compactons are
stable when G10 (1) < −7.

4.2. Two-site compactons

The scenario of two-site compactons in the inter-SOC model yields a peculiar result. Let us
begin by fixing s = 1 in Eq. (10) and taking the ansatz An0

= A∗
n0+1 ≡ z1 and B∗

n0
=

Bn0+1 ≡ z2 with z1, z2 complex amplitudes. Then, we obtain eight equations corresponding
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Figure 2: Similar as in Figure 1, except for one-site compactons with SOC parameter σ = 5. Other
parameters are fixed as in Figure 1.
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Figure 3: Space-time evolution of one-site compactons in correspondence to parameters as in Figure 1
by performing the direct numerical integration on Eqs. (2) (top row panels) and (6) (bottom row panels)
with ϵ = 1/200.
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Figure 4: Space-time evolution of Eqs. (2) and (6) for one-site compactons with σ = 5 and ϵ = 1/200.
Other parameters are fixed as in Figure 2.
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Figure 5: Similar as in Figure 1 but for double one-site compactons with |A±1|2 = 2.4048 and |B±1|2 =
5.5201. All parameters as fixed as in Figure 1.
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Figure 6: Space-time evolution of Eq. (2) for double one-site compactons, with σ = 1 (top row panels),
σ = 5 (bottom row panels) and ϵ = 1/200. Other parameters are fixed as in Figure 1.

to sites n0 − 1, n0, n0 + 1 and n0 + 2 after substituting the ansatz into Eq. (9). The conditions
for the compacton existence can be obtain if the equations in correspondence of the compacton
edges n0 − 1 and n0 + 2 satisfy J0

(
|z1|2

)
= 0 and J0

(
|z2|2

)
= 0, thus:

|z1|2 =
ξm
α

, |z2|2 =
ξl
α
, (15)

with ξm, ξl zeros of J0. The remaining four equations corresponding to sites n0 and n0 +1 can
be simplified and reduced into two equations:

Γz∗1 − iασz1 (z1z
∗
2 − z∗1z2) J1

[
α
(
|z2|2 − |z1|2

)]
+ iσz2J0

[
α
(
|z1|2 − |z2|2

)]
= 0,

Γ z∗2 + iασz2 (z
∗
1z2 − z1z

∗
2) J1

[
α
(
|z1|2 − |z2|2

)]
− iσz1J0

[
α
(
|z2|2 − |z1|2

)]
= 0.

(16)

However, Eq. (16) only has trivial solutions, i.e. all zeros, which contradicts to the existence
conditions given in (15); this implies furthermore the absence of two-site compactons in the
inter-SOC system as oppose to the intra-SOC model reported by Abdullaev et al. (2023). Since
this analytically justifies the nonexistence of the two-site compactons, hence finding the numer-
ical solutions would be unnecessary.

4.3. Three-site compactons

As for three-site compactons in inter-SOC model, we fix s = 2 in (10) and substituting the
following ansatz An0

= z1, An0±1 = z2, Bn0
= w1 and Bn0±1 = w2 into Eq. (9), with

complex fields z1, z2, w1 and w2. Four equations in correspondence to the compacton edges
n0 ± 2 are automatically satisfied if J0

(
α|z2|2

)
= 0 and J0

(
α|w2|2

)
= 0, i.e. if z2 and w2 are
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taken as:

|z2|2 =
ξm
α

, |w2|2 =
ξl
α
, (17)

again, ξm, ξl are zeros of J0. Another four equations corresponding to sites n0 ± 1 have the
same form to the ones for one-site compactons at site n0 with additional terms which are equal
to zero in the one-site case:

−Γz1J0
[
α(|w1|2 − |w2|2)

]
+ iσw1J0

[
α(|z1|2 − |w2|2)

]
−αz2

{
Γ (w∗

1w2 + w1w
∗
2)J1

[
α(|z1|2 − |z2|2)

]
+ iσ(z∗1w2 − z1w

∗
2)J1

[
α(|w1|2 − |z2|2)

]}
= 0, (18)

−Γw1J0
[
α(|z1|2 − |z2|2)

]
+ iσz1J0

[
α(|w1|2 − |z2|2)

]
−αw2

{
Γ (z∗1z2 + z1z

∗
2)J1

[
α(|w1|2 − |w2|2)

]
+ iσ(w∗

1z2 − w1z
∗
2)J1

[
α(|z1|2 − |w2|2)

]}
= 0, (19)

−Γz1J0
[
α(|w1|2 − |w2|2)

]
− iσw1J0

[
α(|z1|2 − |w2|2)

]
−αz2

{
Γ (w∗

1w2 + w1w
∗
2)J1

[
α(|z1|2 − |z2|2)

]
− iσ(z∗1w2 − z1w

∗
2)J1

[
α(|w1|2 − |z2|2)

]}
= 0, (20)

−Γw1J0
[
α(|z1|2 − |z2|2)

]
− iσz1J0

[
α(|w1|2 − |z2|2)

]
−αw2

{
Γ (z∗1z2 + z1z

∗
2)J1

[
α(|w1|2 − |w2|2)

]
− iσ(w∗

1z2 − w1z
∗
2)J1

[
α(|z1|2 − |w2|2)

]}
= 0. (21)

However, solving Eqs. (18)-(21) yields trivial solutions for z1 and w1. This leads the collapse
of the middle peak of the three-site compactons to become two one-site compactons, instead.

The double one-site compactons cases are treated exactly as the one-site cases, as both the
amplitudes of excitations and the chemical potential follow the same formulation in Eqs. (12)
and (13), respectively. In the first scenario with σ = 1 and balanced densities A±1 = B±1, we
obtained G10(1) = −6.9854, while for σ = 5, it was G10(1) = −6.6598. The direct numerical
integration of both original and averaged equations demonstrated stability for case σ = 1 but
not in the case of σ = 5. To preserve brevity of this paper, these results will not be shown here
since they are already well covered in subsection 4.1.

As for the case of unbalanced densities, A±1 ̸= B±1, with σ = 1, the result for steady
state solution is illustrated in Figure 5 where G10(1) = −7.1993, while for σ = 5 we obtained
G10(1) = −6.7939, though the plot is not displayed. In Figure 6 we exhibit the direct numerical
integration results for the original equations, with the upper and lower panels representing σ = 1
and σ = 5 cases, respectively. Evidently, the double one-site compactons are stable in the
former case but unstable in the latter, and one could arrive at the assumption that critical point
for the gain is about G10(1) = −6.9, which is also consistent with the one-site compacton
scenarios.

5. Conclusion

In this paper we have demonstrated the existence of compactons in binary BEC mixtures with
interspecies spin-orbit interaction, trapped in a deep OL under SNLM governed by coupled
DNLS equations. The corresponding effective averaged system has been derived and based on
the tunneling suppression phenomenon that defined compactons, the steady state of the infinite
averaged system can be reduced into some set of finite algebraic equations where the analyt-
ical solution for the compactons can be determined. Apparently for this model, the type of

121



Lukhman Abdul Taib, Muhammad Salihi Abdul Hadi & Bakhram Umarov

compactons that could be found are the one-site profiles and the multiples of this type. Inter-
estingly, these type of compactons support the existence of unbalanced densities between the
species. However, the stability of compactons is not affected by the density imbalance of the two
species, but rather the strength of SOC term itself. Modifications on the linear stability analysis
reveals there exists a critical point for the gain in which the compactons becomes unstable when
it exceeds the critical point. This can be further verified by directly solve the original DNLS
equations with small perturbation where the unstable compactons disperse along transient.
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Johansson M., Beličev P.P., Gligorić G., Gulevich D.R. & Skryabin D.V. 2019. Nonlinear gap modes and compactons

in a lattice model for spin-orbit coupled exciton-polaritons in zigzag chains. Journal of Physics Communications
3(1): 015001.

Kartashov Y.V., Konotop V.V. & Torner L. 2012. Compactons and bistability in exciton-polariton condensates. Phys-
ical Review B 86(20): 205313.

Kierig E., Schnorrberger U., Schietinger A., Tomkovic J. & Oberthaler M. 2008. Single-particle tunneling in strongly
driven double-well potentials. Physical Review Letters 100(19): 190405.

Li Y., Luo Z., Liu Y., Chen Z., Huang C., Fu S., Tan H. & Malomed B.A. 2017. Two-dimensional solitons and
quantum droplets supported by competing self-and cross-interactions in spin-orbit-coupled condensates. New
Journal of Physics 19(11): 113043.

Lignier H., Sias C., Ciampini D., Singh Y., Zenesini A., Morsch O. & Arimondo E. 2007. Dynamical control of
matter-wave tunneling in periodic potentials. Physical Review Letters 99(22): 220403.
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