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Abstract
Traditional recurrent neural networks (RNNs) encounter difficulty in capturing long-term temporal dependencies. However,
lightweight recurrent models for speech enhancement are important to improve noisy speech, while being computationally efficient
and able to capture long-term temporal dependencies efficiently. This study proposes a lightweight hourglass-shaped model for
speech enhancement (SE) and automatic speech recognition (ASR). Simple recurrent units (SRU) with skip connections are
implemented where attention gates are added to the skip connections, highlighting the important features and spectral regions. The
model operates without relying on future information that is well-suited for real-time processing. Combined acoustic features and two
training objectives are estimated. Experimental evaluations using the short time speech intelligibility (STOI), perceptual evaluation of
speech quality (PESQ), and word error rates (WERs) indicate better intelligibility, perceptual quality, and word recognition rates. The
composite measures further confirm the performance of residual noise and speech distortion. With the TIMIT database, the proposed
model improves the STOI and PESQ by 16.21% and 0.69 (31.1%) whereas with the LibriSpeech database, the model improves
STOI by 16.41% and PESQ by 0.71 (32.9%) over the noisy speech. Further, our model outperforms other deep neural networks
(DNNs) in seen and unseen conditions. The ASR performance is measured using the Kaldi toolkit and achieves 15.13% WERs in
noisy backgrounds. © 2024, Universidad Internacional de la Rioja. All rights reserved.
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