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ABSTRACT 

 

The Human Epididymis Protein 4 (HE4) biomarker has been extensively investi-

gated for its potential in diagnosing ovarian cancer (OC). For the application of di-

agnostic techniques and drug delivery, it is crucial to understand the protein tertiary 

structure. However, the Protein Data Bank (PDB) does not currently contain the 

three-dimensional (3D) structure of HE4. Therefore, an in silico analysis was con-

ducted to model the HE4 protein using AlphaFold, I-TASSER, and Robetta servers, 

with the sequence retrieved from UniProt (ID: Q14508). These three servers em-

ployed deep learning algorithms, threading templates, and de novo methods, respec-

tively. Subsequently, Molecular Dynamics (MD) simulation using the GROMACS 

software package improved each 3D structure model, resulting in optimised and re-

fined structures: RF1, RF2, and RF3. PROCHECK and ERRAT programmes were 

employed to assess the structure quality. The Ramachandran plots from 

PROCHECK indicated that 100% of residues were within the allowed regions for all 

servers except for I-TASSER. For the refined structures, RF1 and RF3, all residues 

were concentrated within the allowed regions. According to the ERRAT programme, 

the RF1 model exhibited the highest overall quality factor of 97.701, followed by 

RF3 and AlphaFold models with scores of 94.643 and 93.750, respectively. After 

these validations, RF1 emerged as the most accurately predicted 3D structure of HE4 

and has one tunnel identified by CAVER 3.0 tool that facilitates the transportation 

of small particles to the active site, supported by FTsite and PrankWeb binding site 

predictions. This model holds potential for various computational studies, including 

the development of OC diagnostic kits. It will enhance our comprehension of the 

interactions between the protein and other biomolecules. 
 

Keywords: AlphaFold, De novo, Human Epididymis Protein 4 (HE4), Ramachan-

dran plot, Threading template 
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Introduction 

In 2022, ovarian cancer (OC) was the fourth 

most common cancer among women in Malaysia, 

with 1,838 incidences and 1,167 deaths [1]. In the 

same year, 324,603 new cases were detected 
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globally, with an estimation of 206,956 deaths, 

making OC one of the leading causes of mortality 

among gynaecological malignancies [2]. Even 

with advanced therapies and treatments, the over-

all 5-year survival rate among OC patients is still 

poor, reportedly less than 40% [3]. It was dis-

closed that the 5-year survival rates for patients di-

agnosed at early stages (I and II) and advanced 

stages (III and IV) are approximately 90% and 

20%, respectively [4]. This shows early detection 

of the disease improves the long-term survival of 

the patients [5].  

Human epididymis protein 4 (HE4), also rec-

ognised as WAP four disulphide core domain pro-

tein 2 (WFDC2), is a promising OC biomarker [6]. 

It is a secretory protein that belongs to the family 

of whey acidic protein domains and was discov-

ered to be overexpressed in ovarian carcinomas in 

1999 [7]. For decades, cancer antigen 125 

(CA125) has been widely utilised in the screening 

of ovarian cancer, but new findings suggested that 

the combination of both biomarkers improves the 

diagnostic efficiency [5, 8–10]. HE4 is a glycopro-

tein and one of the challenges in obtaining the 

crystal structure of glycoproteins is the difficulty 

in purifying the protein, resulting from its nature 

of complex structure [11]. Due to this, the crystal 

structure of the HE4 protein is not available in the 

Protein Data Bank (PDB) database and elsewhere. 

Therefore, to develop a screening technique or 

other application that uses the in silico approach, 

it is crucial to determine the protein’s three-dimen-

sional (3D) structure.  

Recently, research related to drug discovery, 

drug delivery and development of diagnostic tech-

niques has seen significant utilisation of computa-

tional or in silico methods, which are more cost- 

and time-effective [12]. Furthermore, determining 

the tertiary structure of proteins is essential for 

many aspects of biomedical and biotechnology ap-

plications, as the structure ensures the protein’s 

stability and functionality [13]. Most of the protein 

structures are precisely determined by using X-ray 

crystallography and nuclear magnetic resonance 

(NMR) spectroscopy, but the 3D protein structures 

can also be predicted by the utilisation of different 

tools and software, such as AlphaFold, Iterative 

Threading Assembly Refinement (I-TASSER), 

and Robetta web servers [14, 15]. The develop-

ment of the in silico approach to infer 3D protein 

structures from the primary protein sequences 

broadens the knowledge of  the protein’s  physical  

interactions, stability, and potential [16].  

The AlphaFold program is a revolutionary ma-

chine-learning technique that uses a deep learning 

algorithm enhanced by physical and biological 

knowledge about protein structures [17]. On the 

other hand, the precision of the I-TASSER server 

predictions is determined by the C-score, which is 

a scoring function based on the consensus signifi-

cance score and the relative clustering structure 

density of various threading templates that are al-

ready established in the PDB database [18]. An-

other protein structure prediction server, Robetta, 

is a fully automated program that implements the 

combination of template-based and de novo meth-

ods and it covers every residue of the sequence 

provided by the user [19]. In the 14th Community 

Wide Experiment on the Critical Assessment of 

Techniques for Protein Structure Prediction 

(CASP14), the structures predicted by AlphaFold 

were tremendously more accurate than other com-

peting teams. It was recorded that the median 

backbone accuracy of the AlphaFold structures 

was 0.96 Å RMSD (root-mean-square-deviation), 

while the closest competitor method resulted in 

2.8 Å RMSD [17]. Table 1 shows the differences 

between the AlphaFold, I-TASSER and Robetta 

servers. 

In 2021, the human proteome 3D models were 

successfully predicted by AlphaFold with high ac-

curacy, which displayed satisfactory backbone 

prediction and the side chains were precisely ori-

ented [23]. The protein structure validation should 

take place after the structure prediction, as it is a 

crucial step in evaluating the reliability and accu-

racy of the structures. The accuracy of the tertiary 

structures depends on a few factors, including the 

usage of different prediction tools. Consequently, 

the rapid development of protein structure valida-

tion tools can be seen in the recent decade, such as 

MolProbity, PROCHECK, ERRAT, and Ver-

ify3D [24–26]. PROCHECK and ERRAT are two 

widely used programs that evaluate the quality of 

protein 3D structures, and they are available on the 

SAVeS web server (https://saves.mbi.ucla.edu/). 

A two-dimensional (2D) plot called the Rama-

chandran plot, obtained from the PROCHECK 

programme, reveals the φ (phi) and ψ (psi) tor-

sional angles of the amino acids in a protein se-

quence, determining the folding of a protein struc-

ture. It establishes the allowed and disallowed re-

gions of conformational space [27].  

The ERRAT program assesses  the  quality of  
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the protein 3D structures by calculating overall 

quality factor scores, which analyses the interac-

tions of non-bonded atoms in the amino acids of 

the protein [28]. A score of more than 50 is con-

sidered a good quality structure, but a higher score 

indicates a higher quality structure [29]. It is im-

portant to identify a high-quality predicted model 

of the protein to provide a complete understanding 

of its physical, chemical and biological interac-

tions with various molecules. Hence, this study 

aims to apply the in silico technique to determine 

the best predicted 3D structure of HE4 protein for 

numerous applications in the future, including the 

development of the OC screening technique. 

 

Material and Methods 

Protein sequence search 

The primary sequence of HE4 is required be-

fore its tertiary structure modelling, which was re-

trieved from UniProt (https://www.uniprot.org/) 

using ‘HE4’ as a keyword. The full amino acid se-

quence for the human type of HE4 protein was se-

lected and retrieved. Based on the protein se-

quence, the ProtParam tool (https://web.expasy.-

org/protparam/) was used to determine many pa-

rameters, including the molecular weight, amino 

acid compositions and atomic components [30]. 

 

Protein tertiary structure modelling by protein 

structure prediction servers 

The primary sequence of HE4 protein contain- 

ing 124 amino acids was applied in three different 

protein structure prediction web servers: Al-

phaFold (https://alphafold.ebi.ac.uk/), I-TASSER 

(https://zhanggroup.org/I-TASSER/), and Robetta 

(https://robetta.bakerlab.org/). The FASTA format 

of the protein sequence was downloaded from 

UniProt and used as the sequence input for each 

program. The default settings and parameter were 

retained, and the process was initiated by the se-

quence submission. The confidence score (C-

score), predicted TM (pTM), and predicted local 

distance difference test (pLDDT) of the model 

were recorded. Good quality protein structure has 

a higher than 0.5 C-score, high pTM score (-5 to 

2), and high pLDDT score (0 to 100) [31–33]. 

Each predicted structure was visualised using 

PyMOL (version 2.4.1) molecular viewer [34].  

 

Molecular dynamic simulations of HE4 tertiary 

models 

Molecular dynamic (MD) is the most in-de-

mand computational method in analysing the equi-

librium structures and dynamic interactions of bi-

ological systems. Prior to the MD simulations, the 

best 3D model predicted by AlphaFold, I-

TASSER, and Robetta was downloaded in pdb 

files. The MD simulation of each model was con-

ducted using GROMACS 5.1 software package, 

separately, with triplicate for each system [35]. 

The proteins were simulated within a virtual cubic 

box with 1.0 nm distance between the protein and 

Table 1. The differences between the AlphaFold, I-TASSER and Robetta prediction servers 

 
Developer Method 

No. of amino 

acid allowed 

 

Reference 

A
lp

h
a

F
o

ld
 

 

 

DeepMind Tech-

nologies (Alpha-

bet Inc.) 

https://github.com/deepmind/alphafold 

 

Deep learning algorithm: Utilises neural 

network topologies based on geometric 

and physical limitations of the protein 

structures 

 

 

 

1000 

 

 

 

[17] 

I-
T

A
S

S
E

R
 

 

 

Zhang Lab (Uni-

versity of Michi-

gan) 

https://zhanggroup.org/I-TASSER/ 

 

1. Retrieve protein templates with alike 

folds from the PDB database 

2. Ab-initio modelling, rebuild the frag-

ments into full-length 3D models 

 

 

 

1500 

 

 

 

[18, 20] 

R
o

b
et

ta
 

 

Baker Lab (Uni-

versity of Wash-

ington) 

 

https://robetta.bakerlab.org/ 

 

Combination of comparative modelling 

(based on PDB100 template database and 

de novo method) 

 

 

1201 

 

 

[21, 22] 
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the box faces, at constant pressure and temperature 

of 1 atm and 310 K, respectively. The water mol-

ecules were added in the solvation step using sim-

ple point charge (SPC216), followed by the neu-

tralisation of the protein by using sodium ions, Na+ 

and chloride ions, Cl-. The simulations were con-

ducted using the OPLS forcefield for 100 ns. All 

MD simulations were analysed for their root-

mean-square deviation (RMSD) and radius of gy-

ration (Rg). The most stable HE4 conformation, 

which was the middle structure of the top cluster 

after the clustering step of each simulation, was 

extracted as pdb files: RF1, RF2 and RF3, from 

the MD simulations of AlphaFold, I-TASSER and 

Robetta, respectively. The 3D structures of RF1, 

RF2 and RF3 were viewed on PyMOL (version 

2.4.1) molecular viewer and their secondary struc-

ture elements were analysed by PDBsum 

(http://www.ebi.ac.uk/thornton-srv/data-

bases/pdbsum/) [27]. 

 

Structure assessment of HE4 protein structure 

Two protein structure validation programs, 

PROCHECK and ERRAT (https://saves.mbi.uc-

la.edu/) were used to evaluate the quality [28] of 

the best-predicted models by AlphaFold, I-

TASSER, Robetta, and the middle structures ex-

tracted from the top cluster after the MD simula-

tions of AlphaFold, I-TASSER and Robetta sys-

tems: RF1, RF2 and RF3. The pdb files were sub-

mitted to the validation programme server and 

evaluated. Ramachandran plots, ERRAT plots, 

and overall-quality-factor values presented infor-

mation on the backbone conformation and residue 

interactions. The best HE4 model was scanned 

with CAVER 3.0 tool (https://loschmidt.che-

mi.muni.cz/caverweb/) to identify and character-

ise the transport pathways or the tunnels of static 

protein structures, where the tunnels aid the trans-

portation of small molecules to the active site of 

the protein. The binding site residues of CAVER 

3.0 were compared to the residues predicted by 

other binding site prediction servers: FTsite 

(https://ftsite.bu.edu/) and PrankWeb (https://-

prankweb.cz/). 

 

Results and Discussion 

HE4 primary sequence 

The search on the UniProt website resulted in 

the protein sequence with UniProt ID Q14508, 

with a length of 124 amino acids and a mass of 

12993 Da. The molecular formula is 

C541H874N154O178S19, consisting of 1766 atoms 

with a primary sequence of:  

MPACRLGPLAAALLLSLLLFGFTLVSGTGA-

EKTGVCPELQADQNCTQECVSDSECADNL-

KCCSAGCATFCSLPNDKEGSCPQVNINFPQ-

LGLCRDQCQVDSQCPGQMKCCRNGCGKV-

SCVTPNF 

Based on the ProtParam analysis, the most com-

mon amino acid present in the sequence is cysteine 

(13.7%), followed by leucine (11.3%). 15.3% of 

the full sequence are amino acids with electrically 

charged side chains: arginine, lysine, aspartic acid, 

and glutamic acid.  

 

HE4 3D models by prediction servers 

The tertiary structure predictions were suc-

cessfully performed by AlphaFold, I-TASSER, 

and Robetta (Table 2), and each resulted in five 

predicted 3D models. AlphaFold utilised a tem-

plate-free prediction approach while I-TASSER 

generated the model from various threading align-

ments based on the PDB library. The I-TASSER 

model was developed from the 1zlgA, 1udkA, 

7mn5B, 1udk, and 7fdeP templates in the PDB. 

The full-length structure was then modelled based 

on the combination of the fragments from the 

available templates. The accuracy of the overall 

topology is determined by the predicted TM 

(pTM) score, where the models with a value 

higher than 0.5 are considered to have a highly 

similar fold with related proteins [31]. The pTM-

score of the best model of I-TASSER was 0.35 ± 

0.12, with a C-score of -3.31. The confidence 

score or C-score, with a range of -5 to 2, evaluates 

the structure quality based on the alignments of the 

threading templates [32]. A higher C-score value 

defines a higher confidence model. Predicted local 

distance difference test (pLDDT) scores range 

from 0 to 100, with 100 as the highest confidence 

of a predicted model as it resembles the true struc-

ture of a protein [33]. AlphaFold predicted five 

models, and the best model was model 3, with 

pLDDT and pTM scores of 82.1 and 0.635, re-

spectively. For Robetta, the protein folding predic-

tion of implemented the combination of template-

based and de novo, template-free approach. The 

confidence score for the best structure modelled 

by Robetta was 0.72, considered a good model. 

The best-predicted models were viewed using the 

PyMOL molecular visualisation viewer, where the 

alpha helix and beta sheets can be observed clearly 

(Table 2). 

https://-prankweb.cz/
https://-prankweb.cz/
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MD simulations of HE4 predicted models 

The refinement of the predicted tertiary struc-

tures was carried out by MD simulations to ana-

lyse the motions of the molecules and atoms over 

a specific time. This approach aims to adjust and 

adapt the moderately accurate protein models pre-

dicted by the prediction servers closer to their na-

tive state. The conformational differences between 

the protein backbones from their initial structural 

conformation until the end of the MD simulation 

are measured using the root mean square deviation 

(RMSD) [36]. Table 3 presents the average RMSD 

and standard deviation values of three MD simu-

lations of each predicted model, in which the MD 

simulation 1 of each system was selected and fur-

ther analysed. This is based on the lower standard 

deviation value compared to MD simulations 2 

and 3, indicating less fluctuations and higher sim-

ilarity of conformations, resulting in greater stabil-

ity [37]. A study on MD simulation of hydrogen-

ated amorphous carbon has shown greater stability 

and reduced fluctuation, with lower standard devi-

ation [38]. 

The RMSD value for the AlphaFold protein 

fluctuated significantly at the beginning of the 

simulation course and equilibrated at 12 Å after 8 

ns (Figure 1d). The RMSD for I-TASSER and 

Robetta reached equilibrium at approximately 15 

ns with a lower RMSD value (6 Å) than Al-

phaFold. Relevantly, low RMSD values, ideally 

~2 Å, during the simulation course indicate higher 

stability of conformation [39]. However, for cer-

tain molecules, higher and more significant fluctu-

ation of RMSD values is expected, describing that 

Table 2. Predicted models retrieved from AlphaFold, I-TASSER, and Robetta, and their scores according to the 

scoring system 

Prediction 

server 

Scoring 

system 

Predicted 

model 

Scores Best model 

AlphaFold 

 

 

 

a) pLDDT 

 

b) pTM-

score 

Model 1 

 

pLDDT: 80.7 

pTM-score: 0.614 

 

 

 

 
 

Model 3 

Model 2 

 

pLDDT: 80.7 

pTM-score: 0.611 

Model 3 

 

pLDDT: 82.1 

pTM-score: 0.635 

Model 4 

 

pLDDT: 80.3 

pTM-score: 0.567 

Model 5 

 

pLDDT: 73.0 

pTM-score: 0.450 

I-TASSER 

a) C-score 

 

b) pTM-

score (pro-

vided only 

for model 

1) 

Model 1 

 

C-score: -3.31 

pTM-score: 

0.35±0.12 

 
Model 1 

Model 2 C-score: -3.62 

Model 3 C-score: -3.87 

Model 4 C-score: -4.07 

Model 5 C-score: -3.62 

Robetta C-score Model 1 0.72 

 
Model 1 

 

Table 3. Average RMSD and standard deviation (in Å) of HE4 predicted model after 15 ns. 

MD simu-

lation 

AlphaFold I-TASSER Robetta 

Average 

RMSD 

Standard 

deviation 

Average 

RMSD 

Standard 

deviation 

Average 

RMSD 

Standard 

deviation 

1 12.427 0.2427 5.8880 0.2034 5.6747 0.3618 

2 14.346 0.5646 6.5305 0.2967 6.7649 1.1630 

3 14.103 0.4789 6.4497 0.2759 8.4413 0.7639 

 

 



NNA Rashid, MHM Nasir, N Hamzah et al. 2024 / HE4 Protein Structure Modelling and Validation 

   

    

 JTLS | Journal of Tropical Life Science 336 Volume 14 | Number 2 | May | 2024 

 

the degree of deviation of the trajectory is higher, 

where the conformations differ significantly from 

its initial conformation. In MD simulations, equi-

libration is an important phase which involves the 

protein reaching a stable and consistent state. Dur-

ing this phase, the system adjusts to the simulation 

conditions, settles into its minimum energy, and 

achieves a balanced distribution of velocities and 

positions for its components, such as atoms [40]. 

Due to these, large fluctuations are expected at the 

beginning of the MD simulations for most mole-

cules until the protein transitions to a more stable 

conformation. 

Even though the RMSD  fluctuations occurred  

at the beginning of the simulations for all three 

systems, the AlphaFold system shows a higher de-

gree of deviation of the trajectory where the 

RMSD value fluctuated extensively between 5 ns 

to 8 ns (Figure 1d). This is affected by notable 

structural changes between its initial conformation 

and its stable conformations after equilibrium has 

been reached. The equilibration phase was 

achieved after 8 ns until the end of the simulation, 

when the flattening of the RMSD curve deduced 

that stable conformations were achieved. Table 3 

shows that the average RMSD of AlphaFold is sig-

nificantly higher compared to I-TASSER and 

Robetta due to its cylindrical-shaped initial 

a 

 

b 

 

c 

 

d 

 

Figure 1. The RMSD of (a) AlphaFold, (b) I-TASSER, and (c) Robetta triplicates during 100 ns of MD simula-

tions using OPLS force field. Turquoise and purple lines represent the second and third MD simulations, 

respectively. (d) illustrates the RMSD of the selected replicate, which is MD simulation 1, for AlphaFold 

(black), I-TASSER (red), and Robetta (blue).  

 

Table 4. Clustering analysis after MD simulations of the AlphaFold, I-TASSER and Robetta predicted HE4 pro-

tein models.  

Clustering analysis AlphaFold I-TASSER Robetta 

Total number of structures 9001 9001 9001 

Number of clusters 353 150 542 

Number of structures in the top cluster 429 1062 150 

 

Middle structure of top cluster 

RF1 RF2 RF3 

At 83770 

(83.77 ns) 

At 84040 

(84.04 ns) 

At 48930 

(48.93 ns) 
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conformation (Table 2), requiring greater confor-

mational changes for the protein to fold into a 

compact protein structure. Each MD simulation 

was followed by a clustering step, which serves 

the purpose of identifying similar structures and 

reducing the complexity of the post-simulation 

analysis [38,39]. This clustering step determines 

the most dominant conformations within the sim-

ulation ensemble while highlighting the essential 

structural motifs. It clusters similar conformations 

together and simplifies analysis.  

Based on the clustering analysis (Table 4), 

which applied Gromos clustering method with 

RMSD cut-off of 0.15 nm, 429 structures were 

found to be highly similar in conformations 

throughout the MD simulation of AlphaFold pre-

dicted model. Approximately 11.80 % (1062) of 

the 9001 I-TASSER conformations display a high 

degree of similarity.  The refined HE4 model for 

the AlphaFold, I-TASSER and Robetta systems 

was derived from the middle structure of the top 

cluster and was denoted as RF1, RF2 and RF3, re-

spectively (Figure 2). It is worth noting that the re-

fined model represents the most dominant confor-

mation. 

For the structural conformations, the  RF2  and 

RF3 models show slight changes compared to the 

I-TASSER and Robetta predicted models, respec-

tively, while RF1 model has distinguished changes 

compared to its initial conformation which is the 

AlphaFold predicted model. These notable 

changes between AlphaFold and RF1 models  

(Figure 3) matched the RMSD fluctuations that 

occurred during the simulations, where the Al-

phaFold system encountered a high degree of de-

viation. The alterations in the structures of RF2 

and RF3 from their initial conformations are less 

noticeable, but the arrangement of the structures 

still exists, which corresponds to the minor fluctu-

ations of the RMSD curve. 

The significant structural changes between the 

AlphaFold and RF1 models are obviously noticed 

at the helix motif from glycine-7 (GLY7) to thre-

onine-23 (THR23) (Figure 4). As stable confor-

mations were achieved, this region folded in-

wards, making more atom-atom interactions with 

neighbouring residues, which leads to an overall 

stable 3D structure.  These interactions may occur  

through  hydrogen  bonds,  disulphide  bonds, Van 

der Waals forces, ionic and hydrophobic interac-

tions [43–45]. These various means of interaction 

play crucial part   in stabilising the   protein’s  sec-

ondary  and tertiary structures. The folding of pro-

tein structure is vital to ensure good  functionality  

 
Figure 2. The 3D models of HE4 protein, including the best model predicted by (a) AlphaFold, (b) I-TASSER, 

and (c) Robetta), and the middle structures of the top cluster after the MD simulation of each predicted 

model: (d) RF1, (e) RF2, and (f) RF3. The models were viewed and extracted from PyMOL molecular 

viewer software. 
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Figure 3. The progress of HE4 protein structure over MD simulation time for the AlphaFold system until the 

middle structure of the top cluster (RF1) was obtained. The RMSD values fluctuated significantly from 

0 ns to 8 ns, showing significant structural changes, until it reaches equilibrium with flattened RMSD 

curve. The protein undergoes a conformational change towards a state of greater stability, forming 

dominant conformations. 

 
Figure 4. The tertiary structures of (a) HE4 modelled by AlphaFold that was used as the input for the MD simu-

lation, (b) RF1, the middle structure of the top cluster after the MD simulation of the AlphaFold model 

using OPLS force field for 100 ns, and (c) the alignment of (a) and (b), showing the structural differ-

ences between the two HE4 models. The significant changes observed from (a) to (b) corresponded to 

the notable fluctuations in the RMSD graph (Figure 1) during the MD simulation. The 3D structures 

are shown in cartoon and surface viewing modes. 

 



NNA Rashid, MHM Nasir, N Hamzah et al. 2024 / HE4 Protein Structure Modelling and Validation 

 

 

 JTLS | Journal of Tropical Life Science 339 Volume 14 | Number 2 | May | 2024 

 

and stability, as properly folded protein structure 

is less prone to denaturation. 

The stability and compactness of a protein 

structure   can  be   determined  by  the  radius   of 

gyration (Rg), apart from the RMSD curve. Rg de-

scribes a high rigidity and compactness of the pro-

tein structure by achieving steady values during 

the simulation [46]. As depicted in Figure 5, the 

Rg graph of the AlphaFold system fluctuated sig-

nificantly before stabilising after 8 ns at approxi-

mately 19 Å. Similar to the RMSD, this is due to 

the notable structural differences between its ini-

tial and stable conformation, RF1, where the initial 

conformation was elongated and cylindrical-like 

before it was folded compactly. For the I-TASSER 

and Robetta systems, no prominent Rg fluctua-

tions occurred. They maintained Rg values of ap-

proximately 19Å and 14.5 Å, respectively. From 

the Rg graph, it can be deduced that all three sys-

tems maintained relatively steady values after 8 

ns, which means that they were compact and spent 

most of the simulation time as stable folded struc-

tures. 

The RF1, RF2 and RF3 models were further 

analysed using PBDsum, where the wiring dia-

grams of the secondary structure were obtained 

(Figure 6). This diagram is a helpful tool for un-

derstanding the interaction between the various 

components of the protein and it visualises the 

overall protein structure by showing the helices, 

strands, and different motifs such as the beta-turn 

and beta-hairpin [27]. The RF1, RF2 and RF3 

models presented common structural motifs of na-

tive proteins such as alpha-helices and beta-

strands. The RF1 protein model reveals three hel-

ices (H1, H2, and H3) and multiple strands from 

different beta sheets (A, B, and C), while the RF3 

model displays more helices between amino acids 

1 to 124 with a lesser number of strands. All three 

wiring diagrams contained disulphide bonds, 

which are represented by the yellow-linking bars. 

As for RF2, the protein structure lacked helices 

and strands, making it a less preferred HE4 model 

compared to RF1 and RF3.  

The alpha-helices are essential structural com-

ponents in proteins as their main role is to maintain 

the protein’s stability and shape [47]. They allow 

for efficient packing of the polypeptide chain, en-

abling the protein to achieve a more compact 

structure while maximising interactions between 

the amino acids. The beta-strand serves the same 

purpose of maintaining the protein’s structural sta-

bility by forming hydrogen bonds with adjacent 

strands, resulting in the formation of beta sheets. 

Based on the presence of multiple helices and 

strands, the protein structures of RF1 and RF3 

highly resembled the common secondary structure 

elements of native proteins. 

 
Figure 5. The radius of gyration of AlphaFold (black), I-TASSER (red), and Robetta (blue) 3D models during 

100 ns of MD simulations using OPLS force field. 
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 HE4 structure validations 

The most dominant HE4 conformation  for  the 

AlphaFold, I-TASSER and Robetta systems: RF1, 

RF2 and RF3, were verified using PROCHECK 

and ERRAT, on the SAVeS server. The PRO-

CHECK programme generated a Ramachandran 

 
Figure 6. The schematic wiring diagram of the HE4 representing the secondary structure elements: alpha-helices 

and beta-sheets, obtained from the PDBsum analysis; (a) RF1; (b) RF2; (c) RF3. The green springs 

represent the helices, while the green arrows are the strands. The helices are marked as H1, H2, H3, 

and H4, and the strands are labelled according to which beta sheet they belong to (A, B, C). These 

diagrams were retrieved from PDBsum. 

 

Table 5. The percentage of HE4 residues in different regions of the Ramachandran plot 

Region Region 

colour 

AlphaFold RF1 I-TASSER RF2 Robetta RF3 

Residues in most fa-

voured regions (A, 

B, L) 

Red 85.4% 87.4% 35.0% 65.0% 80.6% 82.5% 

Residues in addi-

tional allowed re-

gions (a, b, l, p) 

Yellow 13.6% 12.6% 40.8% 28.2% 17.5% 17.5% 

Residues in gener-

ously allowed re-

gions (~a, ~b, ~l, 

~p) 

Pale yel-

low 
1.0% - 11.7% 1.9% 1.9% - 

Residues in disal-

lowed regions 
White - - 12.6% 4.9 % - - 
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plot that represents the φ (phi) and ψ (psi) torsional 

angles of the polypeptide backbone of the  amino 

acids. Excluding glycine and proline, 100% of the 

residues of the AlphaFold and Robetta models, in-

cluding their refined models, RF1 and RF3 were 

in the allowed regions, while for I-TASSER model 

and its refined model (RF2), there were 13 and five 

residues (glutamic acid-38, valine-35, cysteine-

66, valine-99, and aspartic acid-100) found at the 

disallowed region, respectively (Figure 7 and Ta-

ble 5). The disallowed regions are defined as 

where significant steric hindrance between the tor-

sions occurs [27]. This region represents the com-

binations of φ and ψ angles that are less commonly 

 
Figure 7. The Ramachandran plots of the HE4 protein models: (a) AlphaFold, (b) I-TASSER, (c) Robetta, (d) 

RF1, (e) RF2, and (f) RF3. The residues were plotted in different regions: most favoured (red), addi-

tional allowed (yellow), generously allowed (pale yellow), and disallowed region (white). The plots 

were obtained from the SAVeS web server (https://saves.mbi.ucla.edu/). 

https://saves.mbi.ucla.edu/
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presented in well-folded native protein structures 

due to the strain they would generate within the 

protein’s backbone. Glycine does not contain any 

side chain; hence, it is permissible to adopt the tor-

sional angles in any of the quadrants of the Rama-

chandran plot. Ho and Brasseur clarified that the 

first quadrant (top-left) represents the beta-sheet 

region, the bottom-left quadrant is the right-

handed alpha-helix, while the top-right quadrant is 

the left-handed alpha-helix region [48, 49].  

The most dominant conformations (RF1, RF2 

and RF3) of the MD simulations of the three sys-

tems, AlphaFold, I-TASSER and Robetta, were 

noticed to be more stable and accurate based on 

the distribution of the φ and ψ dihedral angles of 

the amino acids. This is shown in Table 3 where 

the percentages of the amino acids located in the 

most favoured regions were improved. Amino 

acid residues within the most favoured regions 

have stable backbone geometries without steric 

strains, while the residues in the additional and 

generously allowed regions are less favourable but 

are still allowed where steric clashes are possible 

due to specific interactions or local structural con-

straints. From the Ramachandran plot analysis, the 

RF1 protein model has the highest quality, with 

87.4% of the non-glycine and non-proline residues 

located within the most favoured regions, and 

none of the residues were located at the generously 

allowed and disallowed regions. 

 Apart from the Ramachandran plot validation, 

ERRAT programme is utilised to verify the 

 
Figure 8. The ERRAT plots of the HE4 protein models; (a) AlphaFold, (b) I-TASSER, (c) Robetta, (d) RF1, (e) 

RF2, and (f) RF3. The red bars represent outlier residues where the region significantly deviate from 

typical, well-folded, native protein structures. The plots were obtained from the SAVeS web server. 
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protein structures by generating overall-quality-

factor scores, based on the interactions of the non-

bonded atoms between the residues [28, 50]. It in-

vestigates the atomic interaction distribution in-

side the protein and compares it to statistical data 

acquired from high-resolution crystallographic 

structures. ERRAT is denoted by a value between 

0 to 100, with 100 being the highest quality model. 

The evaluation by ERRAT showed that RF1 rep-

resents the highest quality of HE4 protein struc-

ture, with an overall quality factor score of 97.701, 

an improvement from the AlphaFold model with a 

score of 93.750. The I-TASSER model has the 

poorest quality according to ERRAT validation, 

with only a 47.414 overall quality factor score. An 

error value exceeding 99% represents a poorly 

modelled region [51], in which 29 residues of the 

I-TASSER HE4 model are plotted at this region 

(Figure 8b), resulting in the lowest score. Even af-

ter the MD simulation of the I-TASSER system, 

the overall quality factor scores of the most domi-

nant conformation, RF2, were still poor (64.789) 

with 11 outliers (Figure 8e).  These outliers, high-

lighted in red bars, indicate potential inaccuracies 

or regions of lower quality within the protein 

model that could impact its functionality. Based 

on the Ramachandran and ERRAT plots, both RF1 

and RF3 models are of high-quality HE4 tertiary 

structures, where RF1 achieved a slightly better 

result with no outlier  in both plots.  

 
Figure 9. The RF1 structure, representing the best HE4 tertiary model obtained from this study, in (a) cartoon 

and (b) surface viewing modes. (c) Rotation of structure (b), showing the tunnel that facilitates the 

transportation of small molecules to the active site, identified by CAVER 3.0 tool. The region with 

blue dots indicates the predicted active site of the protein. 
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No outlier was recorded for either the 

AlphaFold or RF1 models, which showed high 

accuracies in the structural conformations. The 

AlphaFold protein prediction server was deve-

loped according to a hybrid of physical and bioin-

formatics methodologies, where the developer 

designed its components to imitate the available 

PDB data. This was done with the minimum 

imposition of handcrafted characteristics, using a 

physical and geometric inductive bias [17]. As a 

result, the network adapts more effectively from 

the minimal data in the PDB, while being able to 

manage the complexity of the structural data, and 

AlphaFold was reported to be the best protein 

prediction server available today. Even so, a more 

stable and dominant HE4 conformation, RF1 

(Figure 9) was obtained from the MD simulation 

of the best predicted model by AlphaFold, with 

satisfactory validations by the Ramachandran and 

ERRAT plots,  which  was  better  than the valida- 

a 

 
b 

 
c 

 
Figure 10. The binding site and its residues, predicted by (a) CAVER 3.0, (b) PrankWeb, and (c) FTsite servers. 

They show high similarity as 11 identical residues were identified in estimating the interactions with 

other molecules. 
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tions of the AlphaFold predicted model.  

In a separate analysis using CAVER 3.0 tool, 

one tunnel was identified for the RF1 protein 

structure, with a bottleneck radius of 1.8 Å, length 

of 1.0 Å, and distance-to-surface of 1.0 Å. A total 

of 15 residues contributed to the formation of the 

bottleneck and predicted active site: LEU24, 

VAL25, SER26, ALA30, GLU31, LYS32, 

CYS49, VAL50, SER51, ASP52, SER53, LYS60, 

CYS61, CYS62, and SER63. CAVER 3.0 is a tool 

designed for the analysis of protein structures, fo-

cusing on the identification of tunnels and binding 

site within the protein structures [52]. This tunnel 

aids the movement of small molecules such as wa-

ter, ions and substrates, in and out of the proteins, 

guiding specific binding of ligand to its active site. 

This finding improves the understanding of the 

protein interactions with other biomolecules, ele-

vating the potential to be used in a variety of com-

putational investigations, including facilitating the 

development of ovarian cancer detection kits.  

Two binding site prediction servers, FTsite 

and PrankWeb, were compared to the prediction 

made by CAVER 3.0, revealing high degree of 

similarity, with 11 identical residues (LEU24, 

VAL25, SER26, GLU31, VAL50, SER51, 

ASP52, LYS60, CYS61, CYS62, and SER63) 

contributed in the formation of the binding 

regions. PrankWeb applies a machine learning ap-

proach and predicts the ligand binding site using a 

template-free method. It assigns random forests to 

assess the ligand ability of points on the protein’s 

accessible surface, which the points indicate the 

potential ligand contact atom locations [53]. Fig-

ure 10 and Table 6 display the RF1 binding site, 

highlighting the residues involved in the potential 

interactions with other ligands. The identification 

of binding site of proteins enhances the under-

standing of protein function, estimating interac-

tions with ligands and other proteins, and assisting 

the process of drug discovery and design. 

 

Conclusion 

The tertiary structure of human epididymis 

protein four was successfully predicted with satis-

factory validations from various computational 

tools. The MD simulations revealed that the stabil-

ity of the conformation was achieved after 8 ns un-

til the end of the simulation course for all systems. 

The wiring diagram that shows the secondary 

structure elements has proven that the most domi-

nant model by the AlphaFold system, RF1, imi-

tates the actual elements of most protein structures 

with the presence of multiple helices and strands. 

The RF1 model was deduced as the highest quality 

HE4 protein tertiary structure based on the 

Table 6. The binding site residues predicted by CAVER 3.0, PrankWeb, and FTsite servers. 

Binding site residue CAVER PrankWeb FTsite 

LEU24 ● ● ● 

VAL25 ● ● ● 

SER26 ● ● ● 

THR28   ● 

ALA30 ●   

GLU31 ● ● ● 

LYS32 ●  ● 

GLY34  ●  

VAL35  ●  

CYS36  ● ● 

CYS49 ●   

VAL50 ● ● ● 

SER51 ● ● ● 

ASP52 ● ● ● 

SER53 ●   

LYS60 ● ● ● 

CYS61 ● ● ● 

CYS62 ● ● ● 

SER63 ● ● ● 

Total residues 15 14 14 
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structure evaluation programmes PROCHECK 

and ERRAT. 100% of the amino acids were found 

in the favoured regions of the Ramachandran plot, 

with ERRAT’s overall score of 97.701. The 

CAVER 3.0, PrankWeb, and FTsite tools detected 

the presence of a tunnel that may facilitate the pas-

sage of tiny molecules towards the binding site.  

Certainly, the outcome of this in silico study can 

be widely utilised for future research such as the 

development of diagnostic techniques and drug 

delivery. The best modelled HE4 tertiary structure 

(RF1) obtained from this research can be further 

used in computational studies such as molecular 

docking and molecular dynamic (MD) simulations 

with various ligands. 
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