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Abstract. Mobile robot navigation has been a sector of great importance in the 
autonomous systems research arena for a while. For ensuring successful naviga-
tion in complex environments several rule-based traditional approaches have 
been employed previously which possess several drawbacks in terms of ensuring 
navigation and obstacle avoidance efficiency. Compared to them, reinforcement 
learning is a novel technique being assessed for this purpose lately. However, the 
constant reward values in reinforcement learning algorithms limits their perfor-
mance capabilities. This study enhances the Deep Deterministic Policy Gradient 
(DDPG) algorithm by integrating fuzzy logic, creating a neuro-symbolic ap-
proach that imparts advanced reasoning capabilities to the mobile agents. The 
outcomes observed in the environment resembling real-world scenarios, high-
lighted remarkable performance improvements of the neuro-symbolic approach, 
displaying a success rate of 0.71% compared to 0.39%, an average path length of 
35 meters compared to 25 meters, and an average execution time of 120 seconds 
compared to 97 seconds. The results suggest that the employed approach en-
hances the navigation performance in terms of obstacle avoidance success rate 
and path length, hence could be reliable for navigation purpose of mobile agents. 

Keywords: DDPG, Fuzzy Logic, Mobile Robot Navigation, Obstacle Avoid-
ance, Simulation. 

1 Introduction 

Mobile robotics has advanced significantly, with a growing focus on incorporating AI 
and machine learning techniques to improve navigation capabilities [1]–[6]. Deep rein-
forcement learning, a subset of reinforcement learning that employs deep neural net-
works, has been highly effective in various tasks, including mobile robot navigation. 
In this regard, the DDPG algorithm, a variant of deep reinforcement learning [7] is used 
in this study to enhance the navigation capabilities of a mobile robot. The DDPG algo-
rithm is implemented using MATLAB and Simulink software, which are widely used 
in the field of control systems and robotics. DDPG algorithm is a classic deep 
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reinforcement learning technique [8]–[10], which has a significant advantage in contin-
uous control issues. The DDPG algorithm is built around the actor critical method, the 
DQN algorithm, and the deterministic strategy gradient (DPG). DQN algorithm uses 
deep neural network's powerful function fitting ability to map environmental state into 
action strategy and state action pair to value function, avoiding the problem of Q table's 
large storage space. The integration of the Deep Q- Network (DQN) algorithm within 
the Deep Deterministic Policy Gradient (DDPG) algorithm is significant as it leverages 
the powerful function fitting ability of deep neural networks to map environmental 
states to action strategies and state-action pairs to value functions [3], [11], [12], effec-
tively addressing the issue of large storage space required by Q tables. This integration 
enhances the overall performance and scalability of the DDPG algorithm, enabling it to 
tackle complex decision-making problems in reinforcement learning with greater effi-
ciency and effectiveness. 

The current limitations of mobile robot navigation in dynamic and unstructured en-
vironments pose significant challenges in the field of robotics. So many traditional 
methods have been employed before for navigation, obstacle avoidances and path plan-
ning purposes [13]–[22]. Traditional navigation methods, such as pre- programmed 
paths or sensor-based localization, may prove inadequate in such scenarios [23]. There-
fore, more sophisticated navigation approaches are required to enable mobile robots to 
learn and adapt to dynamic environments [11]. Self-learning approaches have been em-
ployed in a few studies before to tackle this issue [23], [24], [33]–[36], [25]–[32]. Still 
the problems persist to several degrees because of the existence of non-reasoning capa-
bilities in self learning algorithms. 

This research aims to examine the efficacy of the DDPG algorithm, particularly in 
conjunction with a neuro-symbolic approach, in enhancing the navigation capabilities 
of a mobile robot within dynamic and unstructured environments and to assess the nav-
igational accuracy, adaptability, and robustness exhibited by the DDPG algorithm 
across a diverse array of simulated environments, thus quantitatively evaluating its per-
formance in a comprehensive manner. Specifically, the ability of the algorithm to guide 
a mobile robot through complex and dynamic environments while avoiding obstacles 
and reaching a desired target will be assessed [37]. The outcomes of this study will not 
only demonstrate the potential of the DDPG algorithm but also highlight areas for im-
provement, paving the way for future research in this exciting field. 

1.1 Deep Deterministic Policy Gradient Algorithm 

This study investigates the use of the DDPG algorithm for reinforcement learning in a 
scenario where a mobile robot equipped with range sensors navigates an environment 
to avoid obstacles. The DDPG algorithm is well-suited for continuous action spaces 
and utilizes an actor-critic architecture where the actor network represents the policy, 
and the critic network represents the value function. To simulate range sensor readings, 
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an occupancy map of a known environment was employed, and collision avoidance 
was achieved by determining optimal controls for the robot in terms of linear and an-
gular velocity. The DDPG agent utilized sensor readings as input and generated veloc-
ity controls as output. By iteratively exploring the environment and receiving rewards 
as feedback, the agent learned to make better decisions and effectively avoid obstacles. 

1.2 Neuro-symbolic approach through Fuzzy Logic in reward function 

This research work introduces a novel neuro-symbolic approach that enhances AI with 
reasoning capabilities for mobile robot navigation.  

  
By integrating evaluative Fuzzy logic functions, the proposed system harmonizes 

deep reinforcement learning (DRL) with symbolic reasoning, enabling the robot to rea-
son and optimize DRL computations during navigation. The key emphasis lies in the 
construction of the reward function, where fuzzy logic plays a pivotal role. This inte-
gration empowers the system with the ability to learn, adapt, and operate effectively in 
unknown environments, facilitating seamless real-world deployment and interaction. 
The incorporation of fuzzy logic in the reward function enables the system to achieve 
robust and interpretable decision-making capabilities, thus significantly enhancing the 
overall efficiency and reliability of the navigation process. This research highlights the 
crucial significance of incorporating fuzzy logic to enhance reasoning and optimize 
DRL computations in mobile robot navigation systems. 

2 Methods 

2.1 Overview of the Hybrid System Architecture of DDPG and Fuzzy Logic 

In the hybrid system architecture as shown in Figure 1, fuzzy logic is integrated into 
the DDPG algorithm by incorporating it into the reward function. The reward function 
serves as a critical component in reinforcement learning algorithms, providing feed-
back to the agent based on its actions in the environment. In this case, the fuzzy logic 
system is used to define the reward values based on the inputs obtained from the en-
vironment. These inputs can include various factors such as proximity to obstacles, 
speed, and other relevant information. The fuzzy logic system processes these inputs 
and generates a reward value that captures the desirability or undesirability of the 
agent's actions. 
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Fig. 1. Environment Interface which responsible to take the action, give the observation and 
reward signals. 

 

2.2 Constructing DDPG Agent 

The DDPG algorithm, like its counterpart, the Actor-Critic algorithm, consists of two 
primary networks known as the Actor and Critic networks. In the Actor-network, the 
output is a determined action, defined by a = μ (s, a|θμ). The estimation network, 
referred to as μθ (s), is responsible for producing real-time actions. The parameters for 
this network are indicated by θμ. Through updates to the parameter denoted by θμ, it 
generates action A based on the current state described by st. This action then interacts 
with the environment, resulting in the generation of the next state st+1 and its corre-
sponding reward rt+1. The Actor target network updates parameters within the Critic 
network and determines the optimal action denoted by at+1 based on the next state st+1 

obtained from the experience replay. 
The primary objective of the critic network in the DDPG algorithm is to approximate 

the value function Q(s, a|θQ). To achieve this, the Critic estimation network updates 
its parameters θQ and calculates two important values: the current Q value Q(st, at, θQ) 
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and the target Q value yi = r + γQ′(st+1, at+1, θQ′). The target Q value involves the 
Q′ component, which is computed by the Critic target network. In this context, the dis-
count factor γ plays a crucial role, as it determines the weightage given to future re-
wards. Its value ranges between 0 and 1. 
The critic network undergoes a training process where the goal is to minimize the loss 
function L, as depicted in Equation (1). 
 
          𝐿𝐿 = 1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖  |θ𝑄𝑄))2

𝑖𝑖                                                                                     (1) 
 
  

Where yi is given by Equation (2). 
 

 
𝑦𝑦𝑖𝑖 = 𝑟𝑟 (𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖) +  𝛾𝛾Q′ �𝑠𝑠𝑖𝑖+1,µ′  �𝑠𝑠𝑖𝑖+1�θµ′

��  θQ′
)                                                   (2) 

The Actor network is updated through a policy gradient show in Equation (3). 
 

𝛻𝛻θµ𝐽𝐽 ≈  1
𝑁𝑁

 ∑ 𝛻𝛻𝑎𝑎𝑄𝑄 (𝑠𝑠, 𝑎𝑎 |𝑖𝑖 θ𝑄𝑄) |𝑠𝑠=𝑠𝑠𝑖𝑖,𝑎𝑎=µ(𝑠𝑠𝑖𝑖) 
𝛻𝛻θµµ (𝑠𝑠 |θµ)|𝑠𝑠𝑖𝑖        (3) 

 
Whereas, the Target networks are updated through Equation (4) and Equation (5), 
with τ ≪ 1. 

 
θQ′

 ←  𝜏𝜏θ𝑄𝑄 + (1 −  𝜏𝜏)θQ′
                                                                                     (4) 

θµ′
 ←  𝜏𝜏θµ + (1 −  𝜏𝜏)θµ′

                                                                                      (5) 
 

2.3 Constructing Reward Function using Fuzzy Logic 

The reward function employed in this study was primarily constructed using Fuzzy 
Logic, which involved three crucial input variables: Obstacle Distance (with 5 Mem-
bership Functions), Linear Speed (with 5 Membership Functions), and Angular 
Speed (with 3 Membership Functions). Figure 2 shows the Membership Functions 
for Linear Speed, Angular Speed, Obstacle Avoidance and Total Reward. 

The Fuzzy Logic framework allowed for the formulation of a total of 75 rules 
(resulting from the combination of the membership functions), as shown in Table 1. 
This comprehensive reward system was designed to guide the agent's behavior ef-
fectively and ensure appropriate decision- making in the given environment. 
Control surfaces play a crucial role in fuzzy logic systems as they serve as the bridge 
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between linguistic input variables and linguistic output variables. These surfaces, as 
shown in Figure 3, are responsible for mapping the fuzzy sets of input variables to 
fuzzy sets of output variables, based on a set of predefined rules and membership 
functions. 

By utilizing control surfaces, fuzzy logic systems can effectively process and in-
terpret linguistic input information and generate appropriate linguistic output re-
sponses. This enables the system to handle imprecise, uncertain, or qualitative data 
and make intelligent decisions based on human-like reasoning. Thus, control sur-
faces in fuzzy logic form a fundamental component that facilitates the transfor-
mation of linguistic information into actionable control actions, making them essen-
tial for a wide range of applications in decision-making, control systems, and artifi-
cial intelligence domains. 

Table 1. Rules table for reward function using three main input variables. 
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Fig. 2. The membership Functions for (a) Linear Speed. (b) Angular Speed. (c) Obstacle 

Avoidance. (d) Total Reward. 

        

Fig. 3.     Control Surface between two input variables. Obstacle Distance & Angular Speed 
(Left), Obstacle Distance & Linear Speed 

2.4 Agents’ Training 

To effectively train agents, it is crucial to determine the appropriate training options. 
In this study, the agent undergoes training for a maximum of 6000 episodes, with each 



8  Nasary et al. 
 
 
 
 
 

episode limited to a certain number of time steps. The Episode Manager dialog box 
in breakdown of the agent's performance at each step. Adjustable hyperparameters 
such as the maximum number of episodes, maxSteps, and stopping criteria are de-
pendent on the specific task and available resources. The Reinforcement Learning 
Episode Manager dialog box facilitates the visual assessment of the agent's perfor-
mance, while the command line display provides a comprehensive analysis that aids 
in understanding the agent's behavior and interpreting the results. The environment 
of the whole training can be seen in Figure 4. The significance of training and testing 
an agent in different environments lies in evaluating the robustness and adaptability 
of the trained model. 

The initial simulation employed the DDPG algorithm, focusing on training and 
testing an agent in a simple environment named "simplemap." This environment was 
basic, with few obstacles. In contrast, the current simulation pushed the agent into a 
more intricate setting, such as “complexMap” and “officeMap” replicating a real of-
fice environment via lidar scans. The goal was to evaluate the agent's adaptability to 
novel environments. 

Understanding DDPG's traits in this experiment is crucial. This algorithm aims to 
optimize return by approximating the Q-function and policy using neural networks: 
critic and actor networks. The capacity of these networks significantly impacts the 
agent's adaptability. Notably, DDPG excels in scenarios with continuous action 
spaces. 

The latest simulation showcased the agent's proficiency in navigating a new envi-
ronment using the same trained model, emphasizing DDPG's adaptability, as evident 
in Figure 4. This hints that DDPG has learned a policy effective not only in the sim-
plemap but also in more complex settings. It's noteworthy that the DDPG algorithm, 
designed for continuous action spaces, hinges on the capabilities of its neural net-
works: the critic and actor networks, pivotal for its generalization ability. 
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Fig. 2. Snapshots of collision-free trajectories of mobile robots based on the trained agents us-

ing (a) simple map. (b) complex map. (c) office map. 

3 Experiments & Results 

3.1 DDPG Agent Training Results 

As shown in Figure 5, the observed rise in average reward per episode demonstrates the 
successful learning of the agent using the DDPG algorithm. This improvement in re-
ward, both on a per-episode basis and when considering the average across all episodes, 
indicates the agent's enhanced decision- making capabilities as it accumulates more 
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experience. This progress aligns with the fundamental objective of reinforcement learn-
ing, emphasizing the effectiveness of the DDPG algorithm in maximizing cumulative 
rewards over time by enabling the agent to refine its decision-making through experi-
ential learning. 

3.2 Mobile Robot Simulation Results 

In the obstacle avoidance simulation for a mobile robot, the rewards and penalties were 
carefully designed to guide the robot's navigation. Rewards were assigned for achieving 
objectives, such as avoiding the nearest obstacle or moving in a straight line, while 
penalties were imposed for undesirable actions like circular movements. The DDPG 
algorithm aims to maximize the expected return, which is the cumulative sum of re-
wards while minimizing penalties. The agent's behavior is encouraged to avoid obsta-
cles, maintain linear velocity, and avoid circular motions. 

It is important to consider that the reward and penalty scheme was tailored to the 
specific task and environment of the simulation and may require adjustments for differ-
ent scenarios. Nonetheless, the simulation demonstrate the effectiveness of the DDPG 
algorithm in learning an effective obstacle avoidance policy within the given environ-
ment for both maps. 
 

4 Discussions 

4.1 Overall Reward for DDPG Training 

The increase in average reward per episode as shown in Figure 5 can be attributed to 
two key factors in the DDPG algorithm. Firstly, the actor network learns an improved 
policy by adjusting its parameters to select actions that lead to higher rewards. This 
process, known as policy gradient, enables the agent to make better decisions over time. 
Secondly, the critic network learns a more accurate value function by adjusting its pa-
rameters to estimate the expected cumulative reward of state-action pairs. This process, 
known as Q-learning, enhances the agent's ability to assess the value of actions. The 
successful learning of both the actor and critic networks contributes to the observed rise 
in average reward per episode, showcasing the effectiveness of the DDPG algorithm in 
optimizing decision-making and overall performance. 
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Fig. 3. 6000 navigation tasks are generated in each testing environment (a) Average reward 
represents the average reward over multiple episodes. (b) Episode Reward reflects the reward 
obtained during a single episode (c) Episode Q0 represents the estimate of the discounted long-
term reward at the beginning of each episode, based on the initial observation of the environment. 

 

4.2 Mobile Robot Simulation Performance 

In the initial mobile robot simulation, the DDPG algorithm was employed to train and 
test an agent in a simplified environment called Simple Map and Complex Map. This 
environment had minimal obstacles and flat terrain. In contrast, the current simulation 
introduced the agent to a more realistic and complex environment called Office Map 
(Figure 6), generated from lidar scans of a real-world office setting. This extension 
aimed to assess the algorithm's ability to generalize to unfamiliar environments. The 
results, depicted in Figure 6 using the same trained model, demonstrate the DDPG al-
gorithm's capacity for generalization as the agent successfully navigated the new envi-
ronment. This suggests that the algorithm has learned a policy that is effective in both 
simplified and realistic environments. 

The use of fuzzy logic within the neuro-symbolic approach has notably surpassed 
the initial method (non-fuzzy) reliant on fixed values. Quantitative analysis showcases 
a substantial enhancement in obstacle avoidance efficiency. The incorporation of mul-
tiple input variables—such as obstacle distance, linear, and angular speeds—within the 
fuzzy logic system enables a more intricate decision-making process. This approach 
capitalizes on fuzzy logic's capacity to manage imprecise data, effectively capturing 
complex interrelationships between variables to generate refined and adaptable actions. 

When navigating narrow passages, the neuro-symbolic approach employing fuzzy 
logic outperforms the fixed values approach. The system's sensitivity to obstacle prox-
imity allows the mobile robot to detect and respond more effectively to tight spaces. 
Leveraging membership functions and fuzzy inference, this approach finely adjusts the 
robot's actions, adeptly maneuvering obstacles in confined areas while maintaining 
safety. Such precision results in smoother and more dependable navigation within con-
strained environments. 

Additionally, the neuro-symbolic approach utilizing fuzzy logic showcases height-
ened caution in handling obstacles. Employing membership functions and rule-based 
reasoning enables the system to assess potential risks associated with varying levels of 
obstacle proximity. With a broader range of input values and membership functions, 
the system offers a detailed evaluation of the environment, ensuring the robot maintains 
a safe distance, reducing collision risks, and enhancing overall safety during navigation. 
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Fig. 4. Snapshots of collision-free trajectories of mobile robots based on the trained agents in 
office map at time (a) 15 seconds. (b) 30 seconds. (c) 45 seconds. (d) 60 seconds. 

 

4.3 Implementation of Fuzzy Logic in Reward Function 

 
The integration of fuzzy logic into the reward and penalty system of the Deep Deter-
ministic Policy Gradient (DDPG) algorithm as shown in Figure 1 bestows an excessive 
of advantageous traits to mobile robot navigation. This ingenious process endows the 
system with remarkable adaptability, allowing it to adeptly handle imprecise or uncer-
tain environments. By seamlessly incorporating fuzzy logic into the reward and penalty 
system, the system becomes resilient, capable of acclimating to diverse environmental 
conditions, and deftly responding to situations that lack precise numerical values. Con-
sequently, this heightened adaptability amplifies the learning and training process by 
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enabling the robot to glean insights from a wider array of scenarios, making     astute 
decisions based on fuzzy inputs. 

Another notable advantage of integrating fuzzy logic compared to using constant 
values approach as shown in Figure 7, lies in its ability to bestow robustness upon the 
system, mitigating the deleterious effects of noise, uncertainties, and variations com-
monly encountered in real- world settings. The inclusion of fuzzy inputs in the reward 
and penalty system imparts a formidable shield against external disturbances, bolstering 
the system's fortitude in less controlled and unpredictable environments. Such fortitude 
enhances the system's ability to learn and navigate with utmost efficacy, regardless of 
the surrounding uncertainties. 

Based on Figure 7, it shows that by employing Fuzzy Logic in the reward function, 
yields superior navigation performance, even if it comes at the cost of increased execu-
tion time. The incremental time required for processing the Fuzzy Logic-based reward 
function as our second approach is justified by the substantial improvements achieved 
in terms of success rates, average path lengths, and the robot's overall ability to navigate 
through dynamic and unstructured environments. 

This approach outperforms the first approach that relies on constant values in terms 
of quantitative performance metrics and qualitative aspects of adaptability and robust-
ness. The flexibility of the neuro-symbolic approach allows for iterative refinement and 
optimization of the reward function, resulting in improved navigation capabilities and 
learning outcomes. The findings emphasize the trade-off between execution time and 
performance and highlight the value of integrating neuro- symbolic approaches, such 
as Fuzzy Logic, to enhance the navigation capabilities of mobile robots. 
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Fig. 5. 6000 navigation tasks are generated in each testing environments. (a) Success rate 

demonstrates the successful probability to avoid obstacle. (b) Average path demonstrates the 
mean path lengths for all successful navigation. (c) Average execution time demonstrates the 

average value of execution time for all successful navigation 

 

5 Conclusion 

The successful implementation of the DDPG algorithm in MATLAB and Simulink en-
abled the simulation of mobile robot navigation in dynamic and unstructured environ-
ments. The results demonstrate that the algorithm significantly enhanced the robot's 
navigation capabilities by maximizing the reward obtained in the simulation. Moreover, 
the integration of fuzzy logic into the reward function further improved the system's 
performance and adaptability. The application of fuzzy logic successfully introduced 
enhanced adaptability, robustness to noise and variability, human-like decision making, 
smooth transitions, and interpretability to the learning process. This research highlights 
the potential of DRL methods, specifically DDPG, for mobile robot navigation, and 
underscores the importance of incorporating fuzzy logic to optimize and validate the 
performance of DRL-based navigation algorithms in simulation-based studies. 
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