[1] M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solidstate lithium batteries, Mater. Sci. Eng. R. Rep. 136 (2019) 27-46. [2] Y.-S. Ye, J. Rick, B.-J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A 1 (8) (2013) 2719-2743. [3] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects, Chem 5 (9) (2019) 2326-2352. [4] S. Ahmad, RETRACTED ARTICLE: Polymer electrolytes: characteristics and peculiarities, Ionics 15 (3) (2009) 309-321. [5] E. Bekaert, L. Buannic, U. Lassi, A. Llordés, J. Salminen, Electrolytes for Li-and Na-ion batteries: concepts, candidates, and the role of nanotechnology, Emerg. Nanotechnol. Recharge. Energy Storage Syst.: Elsevier (2017) 1-43. [6] S. Johari, N.A. Tajuddin, H. Hanibah, S.K. Deraman, A review: ionic conductivity of solid polymer electrolyte based polyethylene oxide, Int. J. Electrochem. Sci. 16 (2) (2021). [7] M.R. Palacín, Understanding ageing in Li-ion batteries: a chemical issue, Chem. Soc. Rev. 47 (13) (2018) 4924-4933. [8] L. Zhang, Z. Xu, Z. He, Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes, ACS Sustain. Chem. Eng. 8 (31) (2020) 11596-11605. [9] H. Bae, Y. Kim, Technologies of lithium recycling from waste lithium ion batteries: a review, Mater. Adv. 2 (10) (2021) 3234-3250. [10] S. Logan, The origin and status of the Arrhenius equation, J. Chem. Educ. 59 (4) (1982) 279. [11] K.M. Diederichsen, H.G. Buss, B.D. McCloskey, The compensation effect in the Vogel-Tammann-Fulcher (VTF) equation for polymer-based electrolytes, Macromolecules 50 (10) (2017) 3831-3840. [12] E.M. Thomas, P.H. Nguyen, S.D. Jones, M.L. Chabinyc, R.A. Segalman, Electronic, ionic, and mixed conduction in polymeric systems, Annu. Rev. Mat. Res. 51 (2021) 1-20. [13] Y. Shao, H. Gudla, D. Brandell, C. Zhang, Transference number in polymer electrolytes: Mind the reference-frame gap, J. Am. Chem. Soc. 144 (17) (2022) 7583-7587. [14] D.T. Hallinan Jr, N.P. Balsara, Polymer electrolytes, Annu. Rev. Mat. Res. 43 (2013) 503-525. [15] J. Wang, C. Zhang, Y. Zhang, Z. Xue, Advances in host selection and interface regulation of polymer electrolytes, J. Polym. Sci. 60 (5) (2022) 743-765. [16] D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: polymer electrolytes, Solid State Ion. 94 (1-4) (1997) 35-47. [17] K.M. Isa, Z. Osman, A.K. Arof, L. Othman, N. Zainol, S. Samin, et al., Lithium ion conduction and ion-polymer interaction in PVdF-HFP based gel polymer electrolytes, Solid State Ion. 268 (2014) 288-293. [18] Y. Dong, D. Yan, S. Yang, N. Wei, Y. Zou, H. Zeng, Ion migration in metal halide perovskite QLEDs and its inhibition, Chin. Phys. B (2022). [19] X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries, Energy Storage Mater. 34 (2021) 282-300. [20] A.F. Sammells, P.G. Ang, I.L. Erin, Characterization of Illuminated Semiconductor/Solid-Electrolyte Junctions. Photoelectrochemical Investigation of a Poly (ethylene Oxide), Cell. Interim Technical Report. (1983). [21] R. Mani, T. Mani, J. Stevens, Ionic conductivity and compatibility studies of blends of poly (methyl methacrylate) and poly (propylene glycol) complexed with LICF3SO3, J. Polym. Sci. A Polym. Chem. 30 (9) (1992) 2025-2031. [22] V. Vijayanathan, S. Venkatachalam, V. Krishnamurthy, Electroactive polymeric thin film based on polypyrrole incorporating metallophthalocyanine polymer, [23] T. Skotheim, M. Florit, A. Melo, W. O'Grady, Ultrahigh-vacuum in situ electrochemistry with solid polymer electrolyte and X-ray photoelectron spectroscopy studies of polypyrrole, Phys. Rev. B 30 (8) (1984) 4846. [24] T. Ohsawa, S. Yoneyama, T. Kabata, H. Nishihara, K. Aramaki, K. Yoshino, Doping reaction at the interface between polyaniline and solid state electrolytes, Synth. Met. 43 (1-2) (1991) 3021-3024. [25] J. Gustafsson, B. Liedberg, O. Ingan¨ as, In situ spectroscopic investigations of electrochromism and ion transport in a poly (3, 4-ethylenedioxythiophene) electrode in a solid state electrochemical cell, Solid State Ion. 69 (2) (1994) 145-152. [26] D. Fenton, Complex of alkali metal ions with poly (ethylene oxide), Polymer 14 (1973) 589. [27] D. Payne, P. Wright, Morphology and ionic conductivity of some lithium ion complexes with poly (ethylene oxide), Polymer 23 (5) (1982) 690-693. [28] P.V. Wright, Polymer electrolytes—the early days, Electrochim. Acta 43 (10-11) (1998) 1137-1143. [29] E.K. Andersson, C. Sångeland, E. Berggren, F.O. Johansson, D. Kühn, A. Lindblad, et al., Early-stage decomposition of solid polymer electrolytes in Li-metal batteries, J. Mater. Chem. A 9 (39) (2021) 22462-22471. [30] R. Bakar, S. Darvishi, T. Li, M. Han, U. Aydemir, S. Nizamoglu, et al., Effect of polymer topology on microstructure, segmental dynamics, and ionic conductivity in PEO/PMMA-based solid polymer electrolytes, ACS Appl. Polym. Mater. 4 (1) (2021) 179-190. [31] P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, et al., Studies on PVdF-based gel polymer electrolytes, J. Power Sources 88 (2) (2000) 269-273. [32] N. Mohamed, A. Arof, Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes, J. Power Sources 132 (1-2) (2004) 229-234. [33] S.W. Choi, J.R. Kim, Y.R. Ahn, S.M. Jo, E.J. Cairns, Characterization of electrospun PVdF fiber-based polymer electrolytes, Chem. Mater. 19 (1) (2007) 104-115. [34] M. Diab, N. El-Ghamaz, F.S. Mohamed, E. El-Bayoumy, Conducting polymers VIII: Optical and electrical conductivity of poly (bis-m-phenylenediaminosulphoxide), Polym. Test. 63 (2017) 440-447. [35] D.L. Gochnauer, T. Gilani, Conduction mechanism in electrically conducting polymers, Am. J. Undergrad. Res. 14 (4) (2018). [36] Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, et al., Application of polyaniline for Li-ion batteries, lithium-sulfur batteries, and supercapacitors, ChemSusChem 12 (8) (2019) 1591-1611. [37] K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Du, et al., Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices, J. Mater. Sci. Mater. Electron. 26 (2015) 4438-4462. [38] M. Clevenger, H. Kim, H.W. Song, K. No, S. Lee, Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition, Sci. Adv. 7 (42) (2021) eabj8958. [39] J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang, Y. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery, ACS Appl. Mater. Interfaces 6 (20) (2014) 17965-17973. [40] J.-H. Huang, D. Kekuda, C.-W. Chu, K.-C. Ho, Electrochemical characterization of the solvent-enhanced conductivity of poly (3, 4-ethylenedioxythiophene) and its application in polymer solar cells, J. Mater. Chem. 19 (22) (2009) 3704-3712. [41] K.S. Ryu, B.W. Moon, J. Joo, S.H. Chang, Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution, Polymer 42 (23) (2001) 9355-9360. [42] K.S. Ryu, X. Wu, Y.G. Lee, S.H. Chang, Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane, J. Appl. Polym. Sci. 89 (5) (2003) 1300-1304. [43] J. Dominic, T. David, A. Vanaja, G. Muralidharan, N. Maheswari, K.S. Kumar, Supercapacitor performance study of lithium chloride doped polyaniline, Appl. Surf. Sci. 460 (2018) 40-47. [44] C. Jeong, J. Jung, B. Kim, S. Lee, D. Lee, S. Jang, et al., Electrical, magnetic, and structural properties of lithium salt doped polyaniline, Synth. Met. 117 (1-3) (2001) 99-103. [45] J. Jung, B. Kim, B. Moon, J. Joo, S. Chang, K. Ryu, Charge transport of lithium salt-doped polyaniline, Phys. Rev. B 64 (3) (2001) 035101. [46] Y.-C. Liu, Method of evaluating the ionic conductance of polypyrrole films and improvement of ionic conductance of polyethylene oxide-incorporated polypyrrole composite, Mater. Chem. Phys. 77 (3) (2003) 791-795. [47] R. Stankovic, O. Pavlovic, M. Vojnovic, S. Jovanovic, The effects of preparation conditions on the properties of electrochemically synthesized thick films of polypyrrole, Eur. Polym. J. 30 (3) (1994) 385-393. [48] P. Liu, M.J. Counihan, Y. Zhu, J.G. Connell, D. Sharon, S.N. Patel, et al., Increasing ionic conductivity of poly (ethylene oxide) by reaction with metallic Li, Adv. Energy Sustain. Res. 3 (1) (2022) 2100142. [49] C. Anushree, F.A. Rahim, S. Vanithakumari, C. Thinaharan, J. Philip, Electrospun superparamagnetic fibrous composite nanofiber films for enhanced oil spill recovery: Effect of capping and magnetic nanoparticle loading on oil sorption efficiency, Compos. A Appl. Sci. Manuf. 171 (2023) 107591. [50] M.N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J.-P. Simonato, Progress in understanding structure and transport properties of PEDOT-based materials: A critical review, Prog. Mater Sci. 108 (2020) 100616. [51] Ng C., Camacho D.H., editors. Polymer electrolyte system based on carrageenan poly (3, 4-ethylenedioxythiophene)(PEDOT) composite for dye sensitized solar cell. IOP Conference Series: Materials Science and Engineering; 2015: IOP Publishing. [52] N.A. Mustaffa, Q. Ahsan, M.A. Azam, L.C. Abdullah, Dodecylbenzene sulfonic acid concentration effect on electrical and thermal properties of polyaniline, Malays. J. Anal. Sci. 21 (2017) 950-957. [53] S. Bhadra, D. Khastgir, Glass-rubber transition temperature of polyaniline: experimental and molecular dynamic simulation, Synth. Met. 159 (12) (2009) 1141-1146. [54] Y. Wang, R. Song, L. Li, R. Fu, Z. Liu, B. Li, High crystalline quality conductive polypyrrole film prepared by interface chemical oxidation polymerization method, Appl. Sci. 12 (1) (2021) 58. [55] A. Maddu, A.S. Sulaeman, S.T. Wahyudi, A. Rifai, Enhancing ionic conductivity of carboxymethyl cellulose-lithium perchlorate with crosslinked citric acid as solid polymer electrolytes for lithium polymer batteries, Int. J. Renewable Energy Devel. 11 (4) (2022). [56] B. Jinisha, A. Femy, M. Ashima, S. Jayalekshmi, Polyethylene oxide (PEO)/ polyvinyl alcohol (PVA) complexed with lithium perchlorate (LiClO4) as a prospective material for making solid polymer electrolyte films, Mater. Today:. Proc. 5 (10) (2018) 21189-21194. [57] Y. Chen-Yang, J. Hwang, F. Chang, Polyphosphazene electrolytes. 1. Preparation and conductivities of new polymer electrolytes based on poly [bis (amino) phosphazene] and lithium perchlorate, Macromolecules 30 (13) (1997) 3825-3831. [58] T. Sudiarti, D. Wahyuningrum, B. Bundjali, I.M. Arcana, Editors. Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate. IOP Conf. Series: Mater. Sci. Eng.; (2017): IOP Publishing. [59] Y. Zhang, J. Li, H. Huo, S. Jiang, Effects of lithium perchlorate on poly (ethylene [88] F. Sagane, T. Abe, Y. Iriyama, Z. Ogumi, Li+ and Na+ transfer through interfaces oxide) spherulite morphology and spherulite growth kinetics, J. Appl. Polym. Sci. 123 (4) (2012) 1935-1943. [60] M. Ue, Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone, J. Electrochem. Soc. 141 (12) (1994) 3336. [61] M. Ue, K. Ida, S. Mori, Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, J. Electrochem. Soc. 141 (11) (1994) 2989. [62] M. Ue, M. Takeda, M. Takehara, S. Mori, Electrochemical properties of quaternary ammonium salts for electrochemical capacitors, J. Electrochem. Soc. 144 (8) (1997) 2684. [63] M. Ue, A. Murakami, S. Nakamura, A convenient method to estimate ion size for electrolyte materials design, J. Electrochem. Soc. 149 (10) (2002) A1385. [64] Z. Osman, M.M. Ghazali, L. Othman, K.M. Isa, AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes, Results Phys. 2 (2012) 1-4. [65] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate, Chem. Phys. Lett. 692 (2018) 19-27. [66] Y.A. Salman, O.G. Abdullah, R.R. Hanna, S.B. Aziz, Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate, Int. J. Electrochem. Sci. 13 (4) (2018) 3185-3199. [67] P. Dhatarwal, R. Sengwa, Influence of solid polymer electrolyte preparation methods on the performance of (PEO-PMMA)-LiBF4 films for lithium-ion battery applications, Polym. Bull. 75 (12) (2018) 5645-5666. [68] F. Croce, A. D'Aprano, C. Nanjundiah, V. Koch, C. Walker, M. Salomon, Conductance of solutions of lithium tris (trifluoromethanesulfonyl) methide in water, acetonitrile, propylene carbonate, N, N-dimethylformamide, and nitromethane at 25 C, J. Electrochem. Soc. 143 (1) (1996) 154. [69] S. Ramesh, A. Arof, Structural, thermal and electrochemical cell characteristics of sodium ion battery, Development 2023 (2023) 01-05. poly (vinyl chloride)-based polymer electrolytes, J. Power Sources 99 (1-2) (2001) 41-47. [70] J. Malathi, M. Kumaravadivel, G. Brahmanandhan, M. Hema, R. Baskaran, S. Selvasekarapandian, Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte, J. Non Cryst. Solids 356 (43) (2010) 2277-2281. [71] N. Xue, R.-J. Yu, C.-Z. Yuan, X. Xie, Y.-F. Jiang, H.-Y. Zhou, et al., In situ redox as a ceramic filler in solid composite polyethylene oxide-based electrolytes, deposition of palladium nanoparticles on oxygen-deficient tungsten oxide as efficient hydrogenation catalysts, RSC Adv. 7 (4) (2017) 2351-2357. [72] P. Tamilselvi, M. Hema, Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte, Phys. B Condens. Matter 437 (2014) 53-57. [73] I. Rodi, F. Saaid, T. Winie, Editors. PEMA-LiCF3SO3 polymer electrolytes: Assessment of conductivity and transport properties. AIP Conference Proceedings; 2017: AIP Publishing LLC. [74] A. Karmakar, A. Ghosh, Structure and ionic conductivity of ionic liquid embedded PEO-LiCF3SO3 polymer electrolyte, AIP Adv. 4 (8) (2014) 087112. [75] S. Xue, D. Teeters, D.W. Crunkleton, S. Wang, Ab initio calculations for crystalline nanocomposites via interfacial polymerization, Polym. Compos. 30 (11) (2009) PEO6: LiPF6 polymer electrolytes, Comput. Mater. Sci 160 (2019) 173-179. [76] A. Arya, S. Sharma, A. Sharma, D. Kumar, M. Sadiq, Structural and dielectric behavior of blend polymer electrolyte based on PEO-PAN+ LiPF6, Asian J. Eng. Appl. Technol. 5 (1) (2016) 4-7. [77] M. Sadiq, A. Sharma, A. Arya, Optimization of Free standing Polymer Electrolytes films for Lithium ion batteries application, Integr. Res. Adv. 3 (1) (2016) 16-20. [78] S. Abarna, G. Hirankumar, Vibrational, electrical, dielectric and optical properties electrolyte, Electrochim. Acta 53 (22) (2008) 6575-6579. of PVA-LiPF solid polymer electrolytes, Mater. Sci.-Pol. 37 (3) (2019) 331-337. [79] Y. Choo, D.M. Halat, I. Villaluenga, K. Timachova, N.P. Balsara, Diffusion and migration in polymer electrolytes, Prog. Polym. Sci. 103 (2020) 101220. [80] M. Unge, H. Gudla, C. Zhang, D. Brandell, Electronic conductivity of polymer electrolytes: electronic charge transport properties of LiTFSI-doped PEO, Phys. Chem. Chem. Phys. 22 (15) (2020) 7680-7684. [81] N. Molinari, J.P. Mailoa, B. Kozinsky, Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI, Chem. Mater. 30 (18) (2018) 6298-6306. [82] N. Boaretto, C. Joost, M. Seyfried, K. Vezzù, V. Di Noto, Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes, J. Power Sources 325 (2016) 427-437. [83] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, et al., All solid-state polymer electrolytes for high-performance lithium ion batteries, Energy Storage Mater. 5 (2016) 139-164. [84] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, et al., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium metal batteries, Nat. Mater. 12 (5) (2013) 452-457. [85] Y. Li, H. Zhan, L. Wu, Z. Li, Y. Zhou, Flame-retarding ability and electrochemical performance of PEO-based polymer electrolyte with middle MW cyclic phosphate, Solid State Ion. 177 (13-14) (2006) 1179-1183. [86] A. Rochliadi, B. Bundjali, I.M. Arcana, H. Dharmi, Editors. Polymer electrolyte membranes prepared by blending of poly (vinyl alcohol)-poly (ethylene oxide) for lithium battery application, in: Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE); 2015: IEEE. [87] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage, Adv. Energy Mater. 8 (7) (2018) 1702184. between inorganic solid electrolytes and polymer or liquid electrolytes, J. Power Sources 146 (1-2) (2005) 749-752. [89] M.F. Hassan, S.K. Zainuddin, K.H. Kamarudin, C.K. Sheng, M.A.A. Abdullah, Ion conducting polymer electrolyte films based on poly (sodium 4-styrenesulfonate) complexed with ammonium nitrate: studies based on morphology, structural and electrical spectroscopy, Malays. J. Anal. Sci. 22 (2) (2018) 238-248. [90] P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, et al., Review on polymer-based composite electrolytes for lithium batteries, Front. Chem. 7 (2019) 522. [91] C. Tambelli, A. Bloise, A. Rosario, E. Pereira, C.J. Magon, J.P. Donoso, Characterisation of PEO-Al2O3 composite polymer electrolytes, Electrochim. Acta 47 (11) (2002) 1677-1682. [92] A.C. Nancy, S.A. Suthanthiraraj, Effect of Al 2 O 3 nanofiller on the electrical, thermal and structural properties of PEO: PPG based nanocomposite polymer electrolyte, Ionics 23 (2017) 1439-1449. [93] B. Liang, S. Tang, Q. Jiang, C. Chen, X. Chen, S. Li, et al., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano- Al2O3, Electrochim. Acta 169 (2015) 334-341. [94] A.M. Stephan, K. Nahm, Review on composite polymer electrolytes for lithium batteries, Polymer 47 (16) (2006) 5952-5964. [95] C.-W. Nan, L. Fan, Y. Lin, Q. Cai, Enhanced Ionic Conductivity of Polymer Electrolytes Containing Nanocomposite S i O 2 Particles, Phys. Rev. Lett. 91 (26) (2003) 266104. [96] Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati, A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly (ethylene oxide) -LiCF3SO3 complex, J. Power Sources 146 (1-2) (2005) 402-406. [97] Y. Liu, J. Lee, L. Hong, Functionalized SiO2 in poly (ethylene oxide)-based polymer electrolytes, J. Power Sources 109 (2) (2002) 507-514. [98] A.A. Bristi, Development of poly (vinylidene fluoride) and poly (vinyl pyrrolidone) based solid polymer electrolyte for the next generation of solid-state [99] N. Srivastava, T. Tiwari, New trends in polymer electrolytes: a review, E-Polymers 9(1):146 (2009). [100] S. Padmaja, S. Bose, R.N. Elizabeth, Electrochemical Investigations on Poly (ethylene oxide)-Based Nanocomposites laden with BaTiO3-Grafted-Graphene oxide. 2018. [101] H. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, H.J. Sohn, Ferroelectric materials J. Electrochem. Soc. 147 (7) (2000) 2462. [102] J.S. Kim, J.K. Lim, J.S. Park, Enhancement of mechanical stability and ionic conductivity of chitosan-based solid polymer electrolytes using silver nanowires as fillers, Bull. Kor. Chem. Soc. 40 (9) (2019) 898-905. [103] S.B. Aziz, M. Brza, P.A. Mohamed, M. Kadir, M. Hamsan, R.T. Abdulwahid, et al., Increase of metallic silver nanoparticles in Chitosan: AgNt based polymer electrolytes incorporated with alumina filler, Results Phys. 13 (2019) 102326. [104] M.D. Bedre, S. Basavaraja, B.D. Salwe, V. Shivakumar, L. Arunkumar, A. Venkataraman, Preparation and characterization of Pani and Pani-Ag 1668-1677. [105] C. Subbu, S. Rajendran, K. Kesavan, R. Premila, The physical and electrochemical properties of poly (vinylidene chloride-co-acrylonitrile)-based polymer electrolytes prepared with different plasticizers, Ionics 22 (2016) 229-240. [106] N.-S. Choi, S.-W. Ryu, J.-K. Park, Effect of tris (methoxy diethylene glycol) borate on ionic conductivity and electrochemical stability of ethylene carbonate-based [107] M. Kadir, Z. Aspanut, S.R. Majid, A.K. Arof, FTIR studies of plasticized poly (vinyl alcohol)-chitosan blend doped with NH4NO3 polymer electrolyte membrane, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (3) (2011) 1068-1074. [108] S.-J. Kwon, D.-G. Kim, J. Shim, J.H. Lee, J.-H. Baik, J.-C. Lee, Preparation of based on poly (ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures, Polymer 55 (12) (2014) 2799-2808. [109] R. Muchakayala, S. Song, S. Gao, X. Wang, Y. Fan, Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte, Polym. Test. 58 (2017) 116-125. [110] M.R. Johan, O.H. Shy, S. Ibrahim, S.M.M. Yassin, T.Y. Hui, Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte, Solid State Ion. 196 (1) (2011) 41-47. [111] S. Klongkan, J. Pumchusak, Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEOLiCF3SO3 solid polymer electrolyte, Electrochim. Acta 161 (2015) 171-176. [112] Z. Yue, I. McEwen, J. Cowie, Novel gel polymer electrolytes based on a cellulose ester with PEO side chains, Solid State Ion. 156 (1-2) (2003) 155-162. [113] H. Jia, H. Onishi, N. von Aspern, U. Rodehorst, K. Rudolf, B. Billmann, et al., A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries, J. Power Sources 397 (2018) 343-351. [114] J.P. Sharma, N. Guleria, Optimization of polymer electrolytes with the effect of concentration of additives in PEO-NH4HF2 polymer electrolytes, J. Thermoplast. Compos. Mater. 35 (8) (2022) 1154-1168. [115] S.A. Suthanthiraraj, M.K. Vadivel, Electrical and structural studies on (PEO) 50- [143] Z.J. Baum, R.E. Bird, X. Yu, J. Ma, Lithium-Ion Battery Recycling—Overview of AgCF 3 SO 3: SnO 2 nanocomposite gel polymer electrolyte materials, Trans. Indian Inst. Met. 64 (2011) 149-153. [116] R. Huq, R. Koksbang, P. Tonder, G.C. Farrington, Effect of plasticizers on the properties of new ambient temperature polymer electrolyte, Electrochim. Acta 37 (9) (1992) 1681-1684. [117] M. Glasse, R. Idris, R. Latham, R. Linford, W. Schlindwein, Polymer electrolytes based on modified natural rubber, Solid State Ion. 147 (3-4) (2002) 289-294. [118] S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, A.A. Ensafi, The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries, Solid State Ion. 347 (2020) 115252. [119] Y. Kato, K. Hasumi, S. Yokoyama, T. Yabe, H. Ikuta, Y. Uchimoto, et al., Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability, Solid State Ion. 150 (3-4) (2002) 355-361. [120] P. Dhatarwal, R. Sengwa, Effects of PEG plasticizer concentrations and film preparation methods on the structural, dielectric and electrical properties of PEO-PMMA blend based plasticized solid polymer electrolyte films. (2017). [121] S. Shenbagavalli, M. Muthuvinayagam, S. Jayanthi, M. Revathy, Investigations on Al 2 O 3 dispersed PEO/PVP based Na+ ion conducting blend polymer electrolytes, J. Mater. Sci. Mater. Electron. 32 (2021) 9998-10007. [122] K. Sundaramahalingam, D. Vanitha, N. Nallamuthu, A. Manikandan, M. Muthuvinayagam, Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend electrolyte, Phys. B Condens. Matter 553 (2019) 120-126. [123] Y. Mallaiah, V.R. Jeedi, R. Swarnalatha, A. Raju, S.N. Reddy, A.S. Chary, Impact of polymer blending on ionic conduction mechanism and dielectric properties of sodium based PEO-PVdF solid polymer electrolyte systems, J. Phys. Chem. Solid 155 (2021) 110096. [124] A. Rinaldi, R. Matos, A. Rubira, O. Ferreira, E. Girotto, Electrical, spectroscopic, (2020) 070536. and thermal properties of blends formed by PEDOT, PVC, and PEO, J. Appl. Polym. Sci. 96 (5) (2005) 1710-1715. [125] R. Khadka, P. Zhang, N.T. Nguyen, T. Tamm, J. Travas-Sejdic, T.F. Otero, et al., Role of polyethylene oxide content in polypyrrole linear actuators, Mater. Today Commun. 23 (2020) 100908. [126] N. Muniyandi, N. Kalaiselvi, P. Periyasamy, R. Thirunakaran, S. Gopukumar, T. Premkumar, et al., Optimisation of PVdF-based polymer electrolytes, J. Power Sources 96 (1) (2001) 14-19. [127] O. Mahendran, S. Rajendran, Ionic conductivity studies in PMMA/PVdF polymer blend electrolyte with lithium salts, Ionics 9 (2003) 282-288. [128] L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS, Adv. Mater. 31 (10) (2019) 1806133. [129] G. Sonmez, P. Schottland, J.R. Reynolds, PEDOT/PAMPS: An electrically conductive polymer composite with electrochromic and cation exchange properties, Synth. Met. 155 (1) (2005) 130-137. [130] G.E. Fenoy, O. Azzaroni, W. Knoll, W.A. Marmisoll´ e, Functionalization strategies Glycerol/PEDOT: PSS coated woven fabric as a flexible heating element on of PEDOT and PEDOT: PSS films for organic bioelectronics applications, Chemosensors. 9 (8) (2021) 212. [131] F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, R. Chen, Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries, ChemSusChem 6 (8) (2013) 1438-1444. [132] M.K. Tufail, P. Zhai, W. Khokar, M. Jia, N. Zhao, X. Guo, Evaluation of solid electrolytes: Development of conventional and interdisciplinary approaches, Interdisc. Mater. 2 (4) (2023) 529-568. [133] M. Khurram Tufail, A. Ahmed, M. Rafiq, M. Asif Nawaz, S. Shoaib Ahmad Shah, M. Sohail, et al., Chemistry aspects and designing strategies of flexible materials Separators for Lithium-Ion Batteries, Adv. Sci. 5 (3) (2018) 1700663. for high-performance flexible lithium-ion batteries, Chem. Rec. 24 (1) (2024) e202300155. [134] A. Dixit, Cathode materials for lithium ion batteries (LIBs): a review on materials electrodeposited from aqueous solutions, Z. Phys. Chem. 230 (9) (2016) related aspects towards high energy density LIBs. arXiv preprint arXiv: 200810896. (2020). [135] K.-Q. He, J.-W. Zha, P. Du, S.-H.-S. Cheng, C. Liu, Z.-M. Dang, et al., Tailored high D. Pokhodenko, Electrochemical performance of mechanochemically prepared cycling performance in a solid polymer electrolyte with perovskite-type Li 0.33 La polyaniline doped with lithium salt, Synth. Met. 162 (24) (2012) 2206-2211. 0.557 TiO 3 nanofibers for all-solid-state lithium ion batteries, Dalton Trans. 48 [162] Y. Li, R. Qian, Electrochemical overoxidation of conducting polypyrrole nitrate [136] Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun, A. Mauger, et al., Cross-linking network based on Poly (ethylene oxide): Solid polymer electrolyte for room temperature lithium battery, J. Power Sources 420 (2019) 63-72. [137] M. Lain, G. Apachitei, D.-E. Dogaru, W.D. Widanage, J. Marco, M. Copley, Measurement of anisotropic volumetric resistivity in lithium ion electrodes, RSC Adv. 13 (47) (2023) 33437-33445. [138] Q. Xue, J. Li, G. Xu, H. Zhou, X. Wang, F. Kang, In situ polyaniline modified cathode material Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 with high rate capacity for lithium ion batteries, J. Mater. Chem. A 2 (43) (2014) 18613-18623. [139] A. Fedorkov´ a, H.-D. Wiemh¨ ofer, R. Oriˇ náková, A. Oriˇna´k, M.C. Stan, M. Winter, et al., Improved lithium exchange at LiFePO 4 cathode particles by coating with composite polypyrrole-polyethylene glycol layers, J. Solid State Electrochem. 13 (2009) 1867-1872. [140] P.T. Anastas, J.C. Warner, Principles of Green Chemistry. Green Chemistry: Theory and Practice. (1998) 29. [141] F.I. Bahrudin, N. Daud, I. Harun, M.F. Aizamddin, S.N.A. Shaffee, M.M. Mahat, Editors. A Malaysian Perspective on Lithium-Ion Batteries Recycling. International Green Energy Conference: Springer. (2023). [142] H. Zou, E. Gratz, D. Apelian, Y. Wang, A novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem. 15 (5) (2013) 1183-1191. Techniques and Trends, ACS Publications, 2022. [144] M.Z.M. Halizan, I. Harun, M.F.I. Bahruddin, N. Daud, M.A. Kasri, A. Hassim, et al., editors. A Technical Review on the Implementation of Lithium-Ion Batteries Waste Recycling Methods. International Green Energy Conference: Springer; (2023). [145] M.A. Kasri, M.Z.M. Halizan, I. Harun, F.I. Bahrudin, N. Daud, M.F. Aizamddin, et al., Addressing preliminary challenges in upscaling the recovery of lithium from spent lithium ion batteries by the electrochemical method: a review, RSC Adv. 14 (22) (2024) 15515-15541. [146] H. Bae, S.M. Hwang, I. Seo, Y. Kim, Electrochemical lithium recycling system toward renewable and sustainable energy technologies, J. Electrochem. Soc. 163 (7) (2016) E199. [147] T. Or, S.W. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy. 2 (1) (2020) 6-43. [148] G. Zhuang, P.N. Ross, K. Fp, F. McLarnon, The reaction of clean li surfaces with small molecules in ultrahigh vacuum: II. Water, J. Electrochem. Soc. 145 (1) (1998) 159. [149] M.F. Aizamddin, S.N.A. Shaffee, M.Z.M. Halizan, S.A. Shafiee, A.S.M. Sabere, Z.M. Sofian, et al., editors. Utilizing membrane technologies in advancing the recycling of spent lithium-ion batteries using green electrochemical method-A review. Mater Res Proc; 2023. [150] M. Jacob, S. Prabaharan, S. Radhakrishna, Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes, Solid State Ion 104 (3-4) (1997) 267-276. [151] A. Maurel, M. Armand, S. Grugeon, B. Fleutot, C. Davoisne, H. Tortajada, et al., Poly (ethylene oxide)- LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing, J. Electrochem. Soc. 167 (7) [152] J. Kumari, G. Senadeera, A. Weerasinghe, C. Thotawatthage, M. Dissanayake, Effect of polyaniline (PANI) on efficiency enhancement of dye-sensitized solar cells fabricated with poly (ethylene oxide)-based gel polymer electrolytes, J. Solid State Electrochem. 25 (2021) 695-705. [153] K. Manikandan, A. Yelilarasi, P. Senthamaraikannan, S. Saravanakumar, A. Khan, A.M. Asiri, The conducting polymer electrolyte based on polypyrrole-polyvinyl alcohol and its application in low-cost quasi-solid-state dye-sensitized solar cells, J. Solid State Electrochem. 22 (2018) 3785-3797. [154] T. Tevi, S.W. Saint Birch, S.W. Thomas, A. Takshi, Effect of Triton X-100 on the double layer capacitance and conductivity of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) films, Synth. Met. 191 (2014) 59-65. [155] S. Ichikawa, N. Toshima, Improvement of thermoelectric properties of composite films of PEDOT-PSS with xylitol by means of stretching and solvent treatment, Polym. J. 47 (7) (2015) 522-526. [156] M.R. Moraes, A.C. Alves, F. Toptan, M.S. Martins, E.M. Vieira, A.J. Paleo, et al., textiles, J. Mater. Chem. C 5 (15) (2017) 3807-3822. [157] N. Kim, S. Lienemann, I. Petsagkourakis, D. Alemu Mengistie, S. Kee, T. Ederth, et al., Elastic conducting polymer composites in thermoelectric modules, Nat. Commun. 11 (1) (2020) 1424. [158] K. Manikandan, A. Yelilarasi, S. Saravanakumar, R.H. Althomali, A. Khan, K. M. Abualnaja, et al., The effect of plasticizers on the polypyrrole-poly (vinyl alcohol)-based conducting polymer electrolyte and its application in semi transparent dye-sensitized solar cells, Membranes 11 (10) (2021) 791. [159] Z. Wang, R. Pan, C. Ruan, K. Edstr¨ om, M. Strømme, L. Nyholm, Redox-Active [160] G.G. Láng, M. Ujvári, S. Vesztergom, V. Kondratiev, J. Gubicza, K.J. Szekeres, The electrochemical degradation of poly (3, 4-ethylenedioxythiophene) films 1281-1302. [161] O.Y. Posudievsky, O.A. Kozarenko, V.S. Dyadyun, V.G. Koshechko, V. [163] X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo, L.-J. Wan, Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room temperature solid Li metal batteries, J. Am. Chem. Soc. 138 (49) (2016) 15825-15828. [164] Fu. Xie Hx, L.Z. Qg, S. Chen, Wu. Jm, L. Wei, et al., Ultraviolet-cured semi interpenetrating network polymer electrolytes for high-performance quasi-solid state lithium metal batteries, Chem. Eur. J. 27 (28) (2021) 7773-7780. [165] P.K. Vallittu, Interpenetrating polymer networks (IPNs) in dental polymers and composites, J. Adhes. Sci. Technol. 23 (7-8) (2009) 961-972. [166] L.H. Sperling, R. Hu, Interpenetrating polymer networks. Polymer blends handbook, Springer, 2014, pp. 677-724. [167] X. Hou, K.S. Siow, Novel interpenetrating polymer network electrolytes, Polymer 42 (9) (2001) 4181-4188. [168] X. Shen, L. Peng, R. Li, H. Li, X. Wang, B. Huang, et al., Semi-interpenetrating network-structured single-ion conduction polymer electrolyte for lithium-ion batteries, ChemElectroChem 6 (17) (2019) 4483-4490. [169] G. Homann, L. Stolz, K. Neuhaus, M. Winter, J. Kasnatscheew, Effective optimization of high voltage solid-state lithium batteries by using poly (ethylene oxide)-based polymer electrolyte with semi-interpenetrating network, Adv. Funct. Mater. 30 (46) (2020) 2006289. [170] M.S. Silverstein, Interpenetrating polymer networks: So happy together? Polymer 207 (2020) 122929. [171] F. Hu, Y. Xue, J. Xu, B. Lu, PEDOT-based conducting polymer actuators, Front. Rob. AI 6 (2019) 114. [172] K.D. Fong, T. Wang, H.-K. Kim, R.V. Kumar, S.K. Smoukov, Semi-interpenetrating polymer networks for enhanced supercapacitor electrodes, ACS Energy Lett. 2 (9) (2017) 2014-2020. [173] F. Vidal, J.F. Popp, C. Plesse, C. Chevrot, D. Teyssié, Feasibility of conducting semi-interpenetrating networks based on a poly (ethylene oxide) network and poly (3, 4-ethylenedioxythiophene) in actuator design, J. Appl. Polym. Sci. 90 (13) (2003) 3569-3577. [174] S. Honmute, S.V. Ganachari, R. Bhat, H. Kumar, D.S. Huh, A. Vankataraman, Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films, Int. J. Sci. Res. 1 (2) (2012) 102-106. [175] T. Pascal, R. Mercier, B. Sillion, New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides: 2. mechanical and thermal properties of the blends, Polymer 31 (1) (1990) 78-83. [176] J.D. Graham, E. Brungard, Consumer adoption of plug-in electric vehicles in selected countries, Future Transp. 1 (2) (2021) 303-325. [177] Z. Wang, G. Feng, D. Zhen, F. Gu, A. Ball, A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles, Energy Rep. 7 (2021) 5141-5161. [178] X.-L. Wu, S. Xin, H.-H. Seo, J. Kim, Y.-G. Guo, J.-S. Lee, Enhanced Li+ conductivity in PEO-LiBOB polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ion. 186 (1) (2011) 1-6. [179] A. Subramania, N. Kalyana Sundaram, G. Vijaya Kumar, T. Vasudevan, New polymer electrolyte based on (PVA-PAN) blend for Li-ion battery applications, Ionics 12 (2006) 175-178. [180] A. Magistris, E. Quartarone, P. Mustarelli, Y. Saito, H. Kataoka, PVDF-based porous polymer electrolytes for lithium batteries, Solid State Ion. 152 (2002) 347-354. [181] B. Cong, Y. Song, N. Ren, G. Xie, C. Tao, Y. Huang, et al., Polyethylene glycol based waterborne polyurethane as solid polymer electrolyte for all-solid-state lithium ion batteries, Mater. Des. 142 (2018) 221-228. [182] S. Kakuda, T. Momma, T. Osaka, G.B. Appetecchi, B. Scrosati, Ambient temperature, rechargeable, all-solid lithium/polypyrrole polymer battery, J. Electrochem. Soc. 142 (1) (1995) L1. [183] Q. Li, M. Deng, S. Zhang, D. Zhao, Q. Jiang, C. Guo, et al., Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films, J. Mater. Chem. C 7 (15) (2019) 4374-4381. [184] F. Jeschull, D. Brandell, K. Edstr¨ om, M.J. Lacey, A stable graphite negative electrode for the lithium-sulfur battery, Chem. Commun. 51 (96) (2015) 17100-17103. [185] X. Li, H. Xu, W. Yan, Preparation and characterization of PbO 2 electrodes modified with polyvinyl alcohol (PVA), RSC Adv. 6 (85) (2016) 82024-82032. [186] S. Ahmad, J.H. Yum, H.J. Butt, M.K. Nazeeruddin, M. Gr¨ atzel, Efficient platinum free counter electrodes for dye-sensitized solar cell applications, ChemPhysChem 11 (13) (2010) 2814-2819. [187] H. Aydın, S.B. Kalkan, C. Varlikli, C. Çelebi, P3HT-graphene bilayer electrode for Schottky junction photodetectors, Nanotechnology 29 (14) (2018) 145502. [188] I. Ples¸a, P.V. Not¸ingher, S. Schl¨ ogl, C. Sumereder, M. Muhr, Properties of polymer composites used in high-voltage applications, Polymers 8 (5) (2016) 173. [189] S.Z. Ahmed Dabbak, H.A. Illias, B.C. Ang, N.A. Abdul Latiff, M.Z.H. Makmud, Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation, Energies 11 (6) (2018) 1448. [190] N.M. Abdel-Gawad, A.Z. El Dein, D.E.A. Mansour, H.M. Ahmed, M.M. Darwish, M. Lehtonen, PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performance, High Voltage 5 (4) (2020) 463-471. [191] S.M. Haque, J.A.A. Rey, A.A. Masúd, Y. Umar, R. Albarracin, Electrical properties of different polymeric materials and their applications: The influence of electric field. Properties and Applications of Polymer Dielectrics, INTECH (2017) 41-63. [192] Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, et al., Conformal PEDOT coating enables ultra-high-voltage and high-temperature operation for single crystal Ni-rich cathodes, ACS Nano 16 (9) (2022) 14527-14538. [193] F. Jiang, L. Wang, C. Li, X. Wang, Y. Hu, H. Liu, et al., Effects of solvents on thermoelectric performance of PANi/PEDOT/PSS composite films, J. Polym. Res. 24 (2017) 1-7. [194] Z. Li, X. Xie, M. Zhou, L. Zhu, C. Fu, S. Chen, High water-stable, hard and strong adhesive antistatic films from waterborne PEDOT: PSS composites, Synth. Met. 293 (2023) 117290. [195] T. Gao, B. Wang, L. Wang, G. Liu, F. Wang, H. Luo, et al., LiAlCl4⋅ 3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries, Electrochim. Acta 286 (2018) 77-85. [196] H.Q. Pham, H.-Y. Lee, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries, J. Power Sources 404 (2018) 13-19. [197] L. Pinchuk, A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of'biostable'polyurethanes, J. Biomater. Sci. Polym. Ed. 6 (3) (1995) 225-267. [198] D. Lithner, Å. Larsson, G. Dave, Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition, Sci. Total Environ. 409 (18) (2011) 3309-3324. [199] S. Sivaramanan, E-waste management, disposal and its impacts on the environment, Univers. J. Environ. Res. Technol. 3 (5) (2013). [200] S. Bahrani, S.A. Hashemi, S.M. Mousavi, M. Arjmand, F. Ghalamfarsa, M. Ghaedi, Conductive polymers in green analytical chemistry, Conduct. Polym. Anal. Chem.: