
Intelligent Systems with Applications 22 (2024) 200349

Available online 5 March 2024
2667-3053/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Modified symbiotic organisms search optimization for automatic
construction of convolutional neural network architectures

Fatsuma Jauro a,b,**, Abdulsalam Ya’u Gital b, Usman Ali Abdullahi c,
Aminu Onimisi Abdulsalami a,f, Mohammed Abdullahi a, Adamu Abubakar Ibrahim d,
Haruna Chiroma e,*

a Department of Computer Science, Ahmadu Bello University, Zaria, Nigeria
b Department of Mathematical Science, Abubakar Tafawa Balewa University Bauchi, Nigeria
c Department of Computer Science, Federal College of Education, Technical, Gombe, Tanzania
d Department of Computer Science, International Islamic University, Malaysia
e College of Computer Science and Engineering, University of Hafr Al Batin, Saudi Arabia
f School of Computer Science and Artificial Intelligence, Wuhan University of Technology, PR China

A R T I C L E I N F O

Keywords:
Convolutional neural network
Neural architecture search
Symbiotic organism search
And deep learning

A B S T R A C T

Convolutional Neural Networks (ConvNets) have demonstrated impressive capabilities in image classification;
however, the manual creation of these models is a labor-intensive and time-consuming endeavor due to their
inherent complexity. This research introduces an innovative approach to Convolutional Neural Network (Con
vNet) architecture generation through the utilization of the Symbiotic Organism Search ConvNet (SOS_ConvNet)
algorithm. Leveraging the Symbiotic Organism Search optimization technique, SOS_ConvNet evolves ConvNet
architectures tailored for diverse image classification tasks. The algorithm’s distinctive feature lies in its ability to
perform non-numeric computations, rendering it adaptable to intricate deep learning problems. To assess the
effectiveness of SOS_ConvNet, experiments were conducted on diverse datasets, including MNIST, Fashion-
MNIST, CIFAR-10, and the Breast Cancer dataset. Comparative analysis against existing models showcased the
superior performance of SOS_ConvNet in terms of accuracy, error rate, and parameter efficiency. Notably, on the
MNIST dataset, SOS_ConvNet achieved an impressive 0.31 % error rate, while on Fashion-MNIST, it demon
strated a competitive 6.7 % error rate, coupled with unparalleled parameter efficiency of 0.24 million param
eters. The model excelled on CIFAR-10 and BreakHis datasets, yielding accuracies of 82.78 % and 89.12 %,
respectively. Remarkably, the algorithm achieves remarkable accuracy while maintaining moderate model size.

1. Introduction

Deep learning algorithms, in contrast to traditional machine learning
algorithms, can independently learn the features of a given dataset
without the need for human experts to conduct feature extraction (Wani
et al., 2020). A prominent approach in deep learning is the Convolu
tional Neural Network (ConvNet), which has exhibited remarkable
performance in diverse domains such as object detection, image classi
fication, and robotics. ConvNet models like LeNet (Lecun & Bengio,
1995), AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2016), VGG
(Simonyan & Zissermann, 2015), and MobileNet (Howard et al., 2012)
have displayed exceptional proficiency in image classification.

However, these models were manually crafted by domain experts with
specific knowledge, and their optimality may not be universal for every
problem and dataset. Furthermore, transferring models from one
domain to another necessitates expert modifications, posing a challenge
in developing ConvNets for new domains where locating relevant ex
perts can be challenging. The manual design of ConvNets can be a
laborious task due to the intricate nature of the networks and the critical
hyperparameters that require careful adjustment, including network
depth, number of filters, filter size, and number of neurons. These
hyperparameters significantly impact the performance of ConvNets. The
challenges associated with manual design make automating ConvNet
design a necessity.

* Corresponding author.
** Corresponding author.

E-mail addresses: fatijauro@gmail.com (F. Jauro), freedonchi@yahoo.com (H. Chiroma).

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2024.200349
Received 24 October 2023; Received in revised form 15 February 2024; Accepted 27 February 2024

mailto:fatijauro@gmail.com
mailto:freedonchi@yahoo.com
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2024.200349
https://doi.org/10.1016/j.iswa.2024.200349
https://doi.org/10.1016/j.iswa.2024.200349
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2024.200349&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Intelligent Systems with Applications 22 (2024) 200349

2

Neural Architecture Search (NAS) has emerged as a research frontier
facilitating the automatic generation of deep learning models through
optimization algorithms (Kyriakides & Margaritis, 2020). NAS algo
rithms harness metaheuristic optimization methods that emulate the
behaviour and evolution of species to address NAS challenges. These
methods not only explore neural architectures but also optimize the
weights of these architectures, a process known as NeuroEvolution (NE).
The automation of ConvNet design via NAS enhances efficiency and
reduces dependence on domain experts, allowing for the exploration of
tailored architectures for specific domains. Recent developments in NAS
have explored the application of Evolutionary Computing (EC) and
Swarm Intelligence (SI) methods to autonomously generate ConvNet
models without extensive reliance on experts or domain knowledge
(Darwish et al., 2020). For example, the PSO_CNN algorithm (Fernandes
Junior & Yen, 2019) was introduced to automatically search for Con
vNets using the particle swarm optimization algorithm. While demon
strating commendable performance, the PSO algorithm requires tuning
multiple parameters, posing a formidable challenge. Inadequate
parameter selection can detrimentally impact the algorithm’s efficacy.
An investigation by Jauro et al. (2021) revealed that metaheuristic al
gorithms with fewer parameter settings can outperform popular algo
rithms relying on more parameters. One such algorithm is the Symbiotic
Organism Search Optimization (SOS) algorithm, which has exhibited
competitive or superior performance compared to other algorithms
(Jauro et al., 2021). The SOS_CNN approach proposed by Miao et al.
(2021) utilized the SOS algorithm to generate ConvNet architectures.
Although the algorithm yielded promising results, it depended on
random number generation, potentially limiting diversity in the solution
space and leading to suboptimal solutions.

In this study, we adopt the SOS algorithm to explore ConvNet
models. Diverging from SOS_CNN, our proposed approach adheres to the
foundational steps of the traditional SOS algorithm, integrating a simple
arithmetic rule for computations. This simplicity not only renders the
algorithm straightforward but also fosters ample diversity in the solu
tion space, potentially enhancing the quality of the generated ConvNet
architectures. The primary objective is to introduce an algorithm for the
automatic generation of ConvNet architectures using the symbiotic or
ganism search optimization algorithm. In contrast to traditional Con
vNets with fixed architectures, our approach permits individual
architectures to dynamically adjust in length, thereby elevating flexi
bility and adaptability. The key contributions of this research include:

1. Introduction of a novel mutual vector operator, facilitating the al
gorithm to compute the average between two organisms with
distinct architectural structures.

2. Design of a modified difference operator tailored for comparing two
structurally different individuals, ensuring optimal updates during
both the mutualism and commensalism phases.

3. Proposal of a novel sum operator that applies a simple arithmetic
rule to compute the sum of two individual architectures that may
vary in terms of the number of layers and hyperparameters.

4. Introduction of an enhanced initialization method that systemati
cally generates a population of individual architectures with fewer
pooling layers. This innovative approach establishes a foundation for
efficient convergence and improved algorithm initialization.

5. The development of a novel strategy for generating parasite vectors,
wherein one among multiple mutation strategies is randomly
selected to obtain the parasite individual. This approach fosters di
versity and introduces potential architectural enhancements.

6. Notably, the proposed method seamlessly applies the basic SOS
without modifications to its phases and steps, ensuring adaptability
to other metaheuristic algorithms. This underscores the versatility
and ease of integration into various optimization frameworks.

In summary, this study introduces a comprehensive and innovative
approach to ConvNet architecture generation, employing the SOS

algorithm along with several novel operators and strategies to achieve
superior performance and enhanced optimization capabilities. The
subsequent sections are organized as follows: Section 2 provides a re
view of related works in the field, with a focus on NAS and ConvNets.
Section 3 outlines the proposed SOS_ConvNet algorithm, offering a
detailed explanation of the method. Section 4 details the experimental
setup, including the datasets used and training procedures, to evaluate
the performance of SOS_ConvNet. Section 5 presents the results and
analysis of the experiments, highlighting the effectiveness of
SOS_ConvNet in comparison to existing methods. Finally, Section 6
concludes the study, discussing findings, contributions, and future im
provements for SOS_ConvNet.

2. Background and related works

2.1. Convolutional neural networks

The Convolutional Neural Network (ConvNet), originally designed
by Lecun and Bengio (1995), is a deep learning technique primarily
crafted for processing visual data, including images and videos. How
ever, its versatility has been widely acknowledged, enabling effective
handling of diverse data types, such as text and audio. ConvNets exhibit
exceptional performance in various image-related tasks, including
classification, detection, recognition, segmentation, restoration, and
enhancement (Khan et al., 2019). These networks leverage a funda
mental mathematical operation known as convolution, denoted as (f *
g), where f and g represent functions. The result of convolution for a
specific domain ’n’ is defined as (Wani et al., 2020):

(f ∗ g)(n) =
∑

m
f (m)g(n − m) (1)

Convolution can be extended to multi-dimensional functions as well.
For example, when dealing with a two-dimensional image represented
as Z, a 2D filter of m× n denoted as K, and a 2D feature map represented
as X, the convolution operation can be mathematically expressed as
follows:

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(m, n)K(i − m, j − n) (2)

This operation is commutative and can thus be expressed as:

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(i − m, j − n)K(m, n) (3)

The commutative property holds because the kernel is flipped rela
tive to the input. If the kernel is not flipped, the operation becomes a
cross-correlation operation, as shown below:

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(i+m, j+ n)K(m, n) (4)

ConvNets consist of various layers, each tasked with distinct func
tions: convolution layer, activation function layer, pooling layer, fully
connected layer, and dropout layer. Convolutional layers serve as the
foundational building blocks of ConvNets, applying the convolution
operation to capture local features within an image and transform them
into feature maps (Yamashita et al., 2018). Activation functions such as
the commonly used Rectified Linear Unit (ReLU), introduce
non-linearity to enhance the network’s training speed. In addition to
convolutional layers, ConvNets incorporate crucial layers like pooling
layers for dimensionality reduction, fully connected layers for classifi
cation, and dropout layers to mitigate overfitting. This collaborative
interplay among these layers empowers ConvNets to effectively learn
and represent intricate patterns and structures within data, establishing
them as valuable tools in modern machine learning and computer vision
applications. ConvNets find applications across diverse sectors,
including healthcare, where they prove instrumental in the classification
of electrocardiogram (ECG) images. This is attributed to their capability

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

3

to convert 1D ECG signals into 2D image representations, facilitating
effective classification (Musa et al., 2023).

2.2. Symbiotic organism search algorithm

The Symbiotic Organism Search Algorithm (SOS) is a metaheuristic
technique introduced by (M. Cheng & Prayogo, 2014) to emulate the
interdependent relationships among various species within an ecolog
ical system. In ecosystems, numerous organisms depend on each other
for survival, forming symbiotic relationships. These relationships fall
into three main categories: Mutualism, Commensalism, and Parasitism.
Mutualism involves two interacting organisms that both derive benefits
from the relationship. Commensalism describes a scenario where two
organisms interact, with one deriving benefit while the other remains
unaffected. In contrast, parasitism characterizes relationships where one
organism benefits at the expense of harm inflicted upon the other. In line
with the principles common to various algorithms, SOS operates by
employing a population of potential solutions to systematically explore
and identify the optimal one. Initially, this population, commonly
known as the ecosystem, is randomly generated within the search space
of potential solutions, with each solution represented as organism. Each
organism in the ecosystem is assigned a fitness value, serving as an in
dicator of its viability within the system. The solution space undergoes
iterative modifications through a series of processes involving mutu
alism, commensalism, and parasitism, persisting until the predefined
termination criteria are met. This dynamic approach allows SOS to
efficiently navigate the solution landscape in its quest for optimal
solutions.

2.2.1. Mutualism
In a given population comprising organisms, each organism Xi en

gages in interaction with another randomly selected organism Xj (where
(i ∕= j)) from the ecosystem. The purpose of this interaction is to
improve their chances of coexisting harmoniously within the ecosystem.
New solutions resulting from mutualism for Xi and Xjare updated using
the following equations introduced by (M. Cheng & Prayogo, 2014):

Xinew = Xi + rand(0, 1) ∗ (Xbest − MutualVector ∗BF1) (5)

Xjnew = Xj + rand(0, 1) ∗ (Xbest − Mutual Vector ∗BF2) (6)

MutualVector =
Xi + Xj

2
(7)

The term “ rand(0, 1)” represents a vector containing random
numbers falling within the specified range of 0 to 1. BF1 and BF2denote
benefit factors that are randomly chosen to be either 1 or 2. MutualVector is
a vector representing the extent of mutuality between organisms Xi and
Xj. Xbestrepresents the organism with the highest fitness value. The term
(Xbest − MutualVector ∗BF1) signifies the joint effort made by organisms to
enhance their chances of survival. It’s important to note that updates to
solutions occur only if the new fitness values surpass the previous ones.
When this condition is met, organisms Xinew and Xjnewreplace Xiand Xj,
respectively, resulting in an update to the ecosystem. Conversely, if Xinew

and Xjnewdo not meet this condition, Xiand Xj continue to exist while the
new solutions are discarded.

2.2.2. Commensalism
In commensalism, a type of relationship where one organism benefits

while the other is neither helped nor harmed, the interaction involves
selecting a random organism, Xj, to interact with a given organism, Xi, in
the ecosystem. In this scenario, Xi gains an advantage from the inter
action, while Xj remains unaffected. The update for Xiin the ecosystem is
carried out using the following equation:

Xinew = Xi + rand(− 1, 1) ∗
(
Xbest − Xj

)
(8)

Here, (Xbest − Xj) denote the benefit derived by Xi from Xj. Xinew

replaces Xiin the ecosystem only when Xinew demonstrates superior
fitness value compared to Xi, otherwise, Xiremains in the ecosystem, and
Xinew is discarded.

2.2.3. Parasitism
Parasitism is a form of relationship where one organism benefits at

the expense of harming another. In this context, the benefiting organism
is referred to as the parasite. Within an ecosystem, an organism Xi is
chosen and replicated to form a parasite vector. Simultaneously, another
organism Xjis randomly selected from the ecosystem to serve as the host
for this parasite vector. If the fitness value of the parasite vector sur
passes that of Xj, it takes over Xj’s position by replacing it. However, if
Xjexhibits a superior fitness value, it remains the fittest and the parasite
vector does not survive.

2.3. Related works

Advancements in Neural Architecture Search (NAS) aim to develop
neural architectures that achieve optimal performance with limited
computing resources, minimizing human intervention (X. Cheng et al.,
2020). Pioneering contributions by (Baker et al., 2016) and (Zoph & Le,
2016) stand out as seminal works in the NAS domain. These approaches
are recognized for their innovative use of reinforcement learning (RL)
techniques, demonstrating their effectiveness in achieving
state-of-the-art accuracy in image classification tasks. Their success
highlights the potential and practicality of automated neural architec
ture design.

RL-based NAS algorithms play a crucial role in automating the neural
architecture design process. The introduction of the Neural Architecture
Search with Reinforcement Learning (NAS_RL) algorithm by (Zoph & Le,
2016) represents a milestone in this approach. NAS_RL represents neural
architecture as a variable-length string generated by a recurrent neural
network (RNN) acting as a controller. This string serves as a blueprint for
constructing the corresponding neural architecture. Subsequently,
reinforcement learning is employed as the search strategy to optimize
and adjust the neural architecture search process based on this blue
print. NAS_RL, demonstrating superiority over some manually generated
architectures, showcases the potential of RL-based NAS. A pivotal study,
"Large-scale Evolution" (Real et al., 2017), further substantiates the
viability of NAS concepts. This research, employing evolutionary
learning, achieves results comparable to RL-based approaches, empha
sizing the adaptability and robustness of NAS methodologies. NAS has
gained prominence in the deep learning community, leading to the
proposal of various NAS algorithms, including DARTS (Liu et al., 2018),
ENAS (Pham et al., 2018), and P-DARTS (Chen et al., 2019). These al
gorithms exhibit significant improvements across diverse tasks such as
image classification, object detection, and natural language processing.

In addition to RL methods, alternative approaches employ meta
heuristic techniques for ConvNet search or optimization of hyper
parameters. For instance, (Fernandes Junior & Yen, 2019) introduced a
Particle Swarm Optimization (PSO)-based algorithm for searching the
best ConvNet architecture in image classification. The algorithm en
compasses various procedures, including ConvNet representation,
swarm initialization, particles’ fitness evaluation, measurement of dif
ferences between particles, velocity estimation, and particle update to
explore an optimal ConvNet architecture. Evaluation results demon
strated the algorithm’s capability to discover an optimal architecture for
any given dataset without requiring prior domain knowledge. However,
due to limited computational power, the algorithm faced challenges in
discovering more complex networks. Another study by (Rasdi et al.,
2016) delved into the performance assessment of three different meta
heuristic algorithms for ConvNet optimization. The algorithms consid
ered in this research are Harmony Search (HS), Simulated Annealing
(SA), and Differential Evolution (DE). These optimization algorithms
operate in the last layer of the ConvNet, where the values of weights and

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

4

biases form the solution vector for searching the optimal fitness func
tion. The obtained results are then utilized to retrain the preceding
layers. This comprehensive investigation contributes valuable insights
into the effectiveness of various metaheuristic algorithms in optimizing
ConvNet architectures. The study conducted by (Kabir Anaraki et al.,
2019) explores the integration of ConvNets and Genetic Algorithm (GA)
for the classification and grading of brain tumors based on magnetic
resonance imaging (MRI) data. By employing ConvNets, the study fa
cilitates the automatic extraction of intricate features from MRI images,
enabling the classification of brain tumor grades. Genetic Algorithm is
then employed to optimize the ConvNet architecture and hyper
parameters, resulting in an overall enhancement of performance in
terms of accuracy and efficiency. Another utilization of Genetic Algo
rithm for the automated ConvNet architecture generation was intro
duced by (Sun et al., 2020). This algorithm eliminates the need for users
to possess ConvNet expertise to obtain effective architectures. An
asynchronous component is incorporated to harness available compu
tational resources, enhancing the efficiency of fitness evaluation.
Additionally, the algorithm integrates skip connections to address the
challenge of vanishing gradients in complex data. Further optimization
in evaluation time is achieved through the inclusion of a cache
component, reducing the time required for evaluating the entire
population.

A multi-objective approach to neural architecture search was intro
duced by (Jiang et al., 2020), presenting an improved
decomposition-based multi-objective PSO algorithm. This novel algo
rithm aims to optimize two conflicting objectives of neural networks,
namely high accuracy and minimized learned parameters. Notably, the
algorithm focuses on the search for ConvNet architectures, contributing
to the field by addressing multiple objectives simultaneously and tar
geting the specific requirements of ConvNets. In a study by (Martín
et al., 2020), a hybridized statistical coral-reef optimization algorithm
was proposed to reduce the complexity of ConvNets without compro
mising their performance. The metaheuristic algorithm focuses on the
reconstruction of the last layers, particularly the fully connected layers,
in the ConvNet. A hybridization method incorporating backpropagation
is included as the final stage to fine-tune the parameters of the network.

This research presents an innovative approach to enhancing ConvNet
architectures by addressing complexity issues in a targeted manner.
Furthermore, the study by (Miao et al., 2021) proposed SOS-CNN for
ConvNet architecture search. This research introduces three new
non-numeric computational strategies—binary segmentation, slack
gain, and dissimilar mutation. These strategies are seamlessly integrated
with the Symbiotic Organism Search (SOS) algorithm, enriching its
optimization capabilities for ConvNet architecture search. The algo
rithm demonstrated good performance in terms of accuracy, showcasing
the effectiveness of the proposed non-numeric computational strategies
in optimizing ConvNet architectures.

Wen et al. (2022) introduced the Evolutionary Neural Architecture
Search algorithm with RepVGG nodes (EvoNAS-Rep), presenting a new
encoding strategy that maps fixed-length encoding individuals to deep
learning structures with variable depth. The algorithm leverages
RepVGG nodes, and a Genetic Algorithm (GA) is employed to search for
optimal individuals and their corresponding deep learning models. The
iterative training process is designed to simultaneously evolve the GA
and train the deep learning model. The research focuses on enhancing
the efficiency and effectiveness of Neural Architecture Search (NAS) for
image classification, utilizing GA and innovative encoding strategies to
improve the search and optimization process. Additionally, (Kong et al.,
2023) proposed a novel NAS framework specifically tailored for
EEG-based sleep stage classification. The framework conducts archi
tectural searches using a bilevel optimization approximation, refining
the model through search space approximation and search space regu
larization while sharing parameters across cells. The study aims to
enhance the accuracy and efficiency of sleep stage classification using
EEG data. The NAS framework optimizes the neural architecture for this
particular application, addressing the unique challenges and re
quirements of EEG-based sleep stage classification.

An algorithm called the Multi-Objective Evolutionary Algorithm
with Probability Stack (MOEA-PS) for Neural Architecture Search (NAS)
was proposed by (Xue et al., 2023). The study focuses on optimizing
precision and time consumption as the primary objectives. The method
utilizes an adjacency list to represent the internal structure of deep
neural networks and incorporates a unique mechanism in the

Fig. 1. General architecture of the proposed SOS_ConvNet.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

5

Algorithm 1
The proposed SOS_ConvNet

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

6

multi-objective genetic algorithm to guide crossover and mutation
processes during offspring generation. Additionally, structure blocks are
stacked using a proxy model to generate deep neural networks. The
approach aims to strike a balance between precision and computational
efficiency, highlighting the potential of MOEA-PS in enhancing NAS for
evolving optimal neural network architectures. An automated CNN
design approach using Monarch Butterfly Optimization (MBO) was
proposed by (Wang et al., 2023). The method focuses on creating a
comprehensive Neural Function Unit (NFU)-based architecture repre
sentation, combining elements from GoogLeNet, ResNet, and DenseNet.
This integration facilitates a joint exploration of both
macro-architecture and depth in convolutional neural networks (CNNs).
Additionally, a direct architecture encoding is implemented to leverage
the fast convergence of MBO. This involves using evolutionary operators
with minimal computational complexity to iteratively refine the archi
tecture population through encoding optimization. Through extensive
experiments the proposed method demonstrates consistently competi
tive performance with significantly reduced time and computational
requirements. (Mishra & Kane, 2023)introduced a framework that em
ploys a modified Genetic Algorithm (GA) to autonomously evolve a
proficient Convolutional Neural Network (CNN) architecture for image
classification. The GA is improved through the formulation of an effec
tive encoding scheme, a method for initializing the input population,
and a diverse approach for generating offspring. Furthermore, an opti
mized fitness function is suggested to accelerate convergence and miti
gate the risk of becoming trapped in local optima. Experimental results
affirm the efficacy of the approach, showcasing its performance on par
with the top-performing manual and state-of-the-art automatic archi
tectures in terms of accuracy, convergence rate, and computational
resource utilization.

An optimization approach for residual networks by utilizing an
improved Particle Swarm Optimization (PSO) algorithm was proposed
by (Wang et al., 2024). The fundamental unit for architecture explora
tion is a low-complexity residual architecture block, enabling a more
diverse investigation into network architectures while minimizing pa
rameters. Additionally, a depth initialization strategy is employed to
restrict the search space within a reasonable range, preventing unnec
essary particle exploration. Furthermore, a unique method for calcu
lating particle differences and updating velocity mechanisms is
presented to enhance the exploration of updated trajectories. This
approach significantly contributes to better utilization of the search
space and increased particle diversity. Experimental results showcase
that the algorithm can design lightweight networks with superior clas
sification performance. In a recent work by (Sharif et al., 2024), a novel
approach employing metaheuristic algorithms for brain tumor

classification is introduced. The initial step involves enhancing contrast
through a combination of hybrid division histogram equalization and an
ant colony optimization approach. Subsequently, a newly designed
nine-layered CNN model is trained on this preprocessed data. Feature
extraction from the second fully connected layer is executed and opti
mized using both differential evolution and moth flame optimization.
The outputs from these optimization methods are fused using a matrix
length approach and fed into a multi-class support vector machine
(MC-SVM). Comparative analysis with existing techniques highlights the
superior performance of the proposed approach. Beyond its significant
contributions to image classification and various optimization tech
niques for Convolutional Neural Networks (ConvNets), NAS has
extended its impact into diverse domains. Particularly noteworthy are
its applications in speech emotion recognition, as evidenced by the work
of Wu et al. (2022), and driver emotion recognition, as showcased by
Zaman et al. (2022). These additional domains underscore the versatility
and adaptability of NAS, affirming its role in advancing not only com
puter vision and deep learning but also in enhancing our understanding
of emotional cues in speech and drivers.

3. Proposed SOS_ConvNet

The fundamental architecture of SOS_ConvNet relies on a set of
essential input hyperparameters, with the training data standing as a
cornerstone within the framework. Beyond the training data, the algo
rithm’s behaviour is intricately influenced by several key hyper
parameters. These pivotal hyperparameters encompass the maximum
number of layers during initialization, the count of organisms, the total
number of iterations, the batch size, the number of epochs, the number
of neurons, the number of outputs, the kernel count, and the kernel
dimension. Each of these hyperparameters plays a critical role in
shaping and defining the characteristics and performance of the
SOS_ConvNet algorithm.

The SOS_ConvNet process for architecture creation and optimization
revolves around three fundamental stages: initialization, optimization,
and evaluation, as illustrated in Fig. 1. The optimization stage, a pivotal
element of the process, encompasses three crucial phases; Mutualism,
Commensalism, and Parasitism, similar to the basic SOS algorithm. To
effectively apply these phases in the context of non-numeric neural ar
chitecture search, five distinct strategies have been developed:

1. Organism Encoding Strategy for Non-Numeric ConvNet Represen
tation: This strategy defines how ConvNet architectures are non-
numerically represented, offering a means to manipulate and
evolve them within the algorithm.

Fig. 2. Sample of a single organism representation.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

7

2. Average Operator: Applied during the Mutualism phase, this oper
ator generates mutual vectors by computing the average between
two organisms, facilitating cooperative optimization.

3. Modified Difference Operator: Utilized in both Mutualism and
Commensalism phases, this operator computes the difference be
tween two organisms in a manner tailored to non-numeric repre
sentations, aiding in architecture refinement.

4. Novel Sum Operator for Non-Numeric Summation: In the Mutualism
and Commensalism phases, this strategy defines how non-numeric
summation between two organisms is carried out, promoting coop
erative evolution.

5. Mutation Strategy for Parasite Vector Creation: Employed in the
Parasitism phase, this strategy guides the creation of parasite or
ganisms, contributing to diversity in the population.

During the optimization process, the architecture exhibiting the
lowest loss value typically denotes the most optimal organism, with the
loss value serving as the fitness metric. The overarching process is out
lined in Algorithm 1. A crucial aspect of the proposed algorithm is that
the best architecture, along with all its features, advances to the next
phase without undergoing re-optimization. This strategic choice is
pivotal in retaining and building upon the most promising architectures.
The ensuing sections will delve into these methodologies in greater
detail, offering a comprehensive understanding of their implementation
and significance within the algorithm.

Input: Eco size (ecosize), maximum number of layers (lmax),
maximum number of filters (nfmax), maximum filter size (fmax),
maximum number of neurons in FC layer (nmax), number of outputs
(nop), training data (X), epochs (epochs), maximum iteration (maxIt).

Output: Best SOS_ConvNet model architecture
1 Eco = {oi,…,on}←InitializeEco(ecosize, lmax,nfmax, fmax ,nmax, nop)

(continued on next page)

Algorithm 2
Initialization of the ecosystem (InitializeEcosystem())

Algorithm 3
ConvNetDiff()

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

8

(continued)

2 for (i= 1 to n) do
3 oi.loss = ComputeLoss(oi ,X, epoch)
4 End
5 While (it< maxIt)
6 for(i= 1 to n) do
7 select obest , oi, oj where oi ∕= oj

8 //mutualism
9 MutualVector = MV(oi, oj)

10 oinew = ConvNetSum(oi,ConvNet diff(obest , MutualVector))
11 ojnew = ConvNetSum(oj,ConvNet diff(obest , MutualVector))
12 if (ComputeLoss(oinew)) < oi.loss
13 Replace oi with oinew
14 end if
15 if (ComputeLoss(ojnew)) < oj.loss
16 Replace oj with ojnew
17 end if
18 //commensalism
19 select oj where oi ∕= oj

20 oinew = sum (oi,diff(obest ,oj))

21 if (ComputeLoss(oinew)) < oi.loss
22 Replace oi with oinew
23 end if
24 //Parasitism
25 Select oi

26 oparasite = oi.copy
27 If oparasite.length < 3
28 If rand() > rand()
29 oparasite.push(addConv)
30 else
31 oparasite.push(addPool)
32 end if
33 else
34 prob = rand()
35 If prob > 0.5
36 If rand() > rand()
37 oparasite.push(addConv)
38 else
39 oparasite.push(addPool)
40 end if
41 else
42 ridx = rand(2,oparasite.length)
43 oridx = null
44 end if
45 end if
46 If (ComputeLoss(oparasite)) < oi.loss
47 Replace oi with oparasite

48 end if
49 end

3.1. Organism encoding strategy

A critical aspect of developing any population-based approach
geared towards the evolution of ConvNets lies in the encoding or rep
resentation scheme. This work introduces a straightforward yet effective
organism encoding strategy. Each organism in the population of SOS
serves as a potential solution. In this encoding strategy, an organism
represents a complete ConvNet architecture. It’s crucial to emphasize
that this proposed model does not optimize the weights of the network
but focuses solely on defining the architectural components, such as
layer types (convolution, pooling, and fully connected), and other
pertinent hyperparameters. These hyperparameters include the number
of kernels and kernel sizes for convolutional layers, pool window spec
ifications for pooling layers, and the number of neurons for fully con
nected layers, all of which are essential for evolving architectures.

In a typical ConvNet architecture, three main hidden layers are
involved: convolutional, pooling (which can be either max or average
pooling), and fully connected layers. Within the proposed encoding
strategy, an individual organism that represents a ConvNet includes all
three layers. These layers are organized in the form of a list of dictio
naries, where each dictionary entry corresponds to one layer. Each
dictionary contains specific information related to the layer type and its
respective hyperparameters. For example, a position in the list (a

dictionary) stores details such as the type of layer, the number of ker
nels, kernel dimension, and stride for a convolution. In the case of a
pooling layer, it includes information about the layer type, kernel di
mensions, and stride value. A position representing a fully connected
layer provides details about the layer type and the number of neurons.
Fig. 2 illustrates this encoding strategy, where C, P, and FC respectively
signify convolution, pooling, and fully connected layers. This encoding
approach offers a concise yet comprehensive representation of ConvNet
architectures, allowing the evolutionary algorithm to effectively explore
and optimize these architectures.

3.2. Initialization of the ecosystem

The initial step in the proposed model involves the initialization of
the Ecosystem. The function initializeEcosystem() is invoked to randomly
generate N organisms, each representing distinct ConvNet models
within the initial population. Adhering to ConvNet architectural con
ventions, it is a prerequisite for a ConvNet to consist of at least three
layers, with convolution as the first layer and a fully connected layer as
the final layer. Accordingly, a range between three to lmax is defined,
within which the number of layers for each architecture is randomly
generated. To ensure the validity of all generated architectures, two
conditions are enforced. The first condition mandates that the first and
last layers of every architecture must be convolution and fully connected
layers, respectively. The second condition ensures that no other layer
follows a fully connected layer except another fully connected layer.
This adheres to the established convention in the literature on ConvNet
design. Introducing a fully connected layer in-between other layers
significantly increases the number of trainable parameters in a model,
making it more complex. Pooling layers are strategically placed to
reduce the number of output features by a factor of two, resulting in a
more suitable input for the fully connected layer, where fewer neurons
are required.

The algorithm’s initialization process is executed through various
functions as depicted in Algorithm 2. The InsertConv() function adds a
convolution to the architecture, incorporating a random number of fil
ters within the range 1 to nfmax. The filter size is also randomly selected
within the range of 3 X 3 to fmax X fmax, where fmax represents the
maximum filter size, and the sliding value is set to 1. In this research, the
activation function for all layers is consistently the rectified linear unit
(ReLU), except for the softmax (output) layer. The InsertPool() function
adds a max pooling layer randomly to the individual architecture,
featuring a window size of 3 X 3 and a stride value of 1. To mitigate the
risk of excessive inclusion of pooling layers, the probability of adding
pooling layers is kept very low. This precaution is crucial to prevent
over-pooling, which could lead to the loss of vital image details. The
InsertFC() function adds a fully connected layer to the individual ar
chitecture, with the number of neurons ranging from 2 to a maximum of
nmax. It’s noteworthy that the initialization method is adapted from
PSOCNN (Fernandes Junior & Yen, 2019) and has been modified to meet
the specific requirements of the current research. Algorithm 2 orches
trates these functions to generate the initial population of ConvNet
architectures.

Input: Eco size (n), maximum number of layers (lmax), maximum
number of filters (nfmax), maximum filter size (fmax), maximum number
of neurons in F layer (nmax), number of outputs (nop).

Output: A population of (ecosize) organisms eco = {o1, …,on }

1 For i = i to n do
2 oi.lenght = rand(3, lmax);

for j = 1 to oi.lenght do 3
4 If j == 1 then
5 list layers[j]←InsertConv(fmax,nfmax);
6 else if j == oi.lenght then
7 list layers[j]←InsertF(nop);
8 else if list layers[j − 1].type == ˝fully − connected˝ then
9 list layers[j]←InsertF(nmax);

(continued on next page)

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

9

(continued)

10 else
11 layer type← rand(1, 3);
12 if layer type == 1 then
13 list layers[j]←InsertConv(fmax ,nfmax);
14 else if layer type == 2 then
15 list layers[j]←InsertPool();
16 else
17 list layers[j]←InsertFC(nmax);
18 end
19 end
20 end
21 orgi. list layers ←list layers;
22 end
23 return eco = {o1 , …,on}

3.3. Organism update operators

This section elaborates on the operators employed for updating in
dividual architectures in alignment with the three phases of the SOS
algorithm. The key operators utilized during the mutualism and
commensalism phases are the sum and the difference operators, while
the average operator plays a crucial role in generating mutual vectors at
the Mutualism phase.

3.3.1. Difference operator
To measure the difference between two individual architectures, the

approach outlined in Fernandes Junior and Yen (2019) was adopted and
subsequently modified. First, each randomly selected individual is par
titioned into two sections: one section comprises the convolution and
pooling layers, and the other section encompasses the fully connected
layers. This separation ensures that no fully connected layer is inter
posed between other layers, thereby preventing the formation of invalid
architectures. This separation facilitates the computation of the differ
ence between the convolution/pooling layers and the fully connected
layers independently. The fully connected layer representing the output
is isolated. The computation of the difference between two individuals,
as outlined in algorithm 3, takes into consideration the layer types under
the following conditions:

1. If both individuals have convolution layers at the current position,
the difference is computed as 0, disregarding hyperparameters. This
indicates to the update operator that the layer at this position should
remain unchanged, preserving the hyperparameters of the corre
sponding layer in the first individual

2. If the layer types differ, the layer from the first individual is retained
along with its hyperparameters

3. If the first individual has more layers than the second individual, an
extra layer is appended to the final difference. The additional layer is
randomly chosen from convolution, pooling, or fully connected
layers. Conversely, if the first individual has fewer layers than the
second individual, − 1 is appended to the final result, signaling to the
update operator to discard the layer at this position. The algorithm
outlining the difference procedure is presented in Algorithm 3.

Input: two architectures o1, o2
Output: an architecture

1 If (o1 .length > o2.length)
2 O = o1.length
3 else if (o1.length < o2.length)
4 O = o2.length
5 else
6 O = o1.length
7 end if
8 ConvNetDiff←[]

9 For i = 1 to O do
10 If (o1[i] is not Empty and o2[i] is not Empty)
11 If(o1[i].type = = o2[i].type)

(continued on next column)

(continued)

12 o1[i].type=″keep″

13 ConvNetDiff←o1[i]

14 else
15 ConvNetDiff←o1[i]

16 else if (o1[i] is not Empty and o2[i] is Empty)
17 ConvNetDiff←o1[i]

18 else if (o1[i] is Empty and o2[i] is not Empty)
19 o2[i].type = ″remove″

20 end if
21 Return ConvNetDiff

3.3.2. Average operator for mutual vector
The mutual vector operation in SOS_ConvNet, as outlined in Algo

rithm 4, is designed to calculate the mean of two chosen individuals.
This involves implementing an average operator to compute the mean of
hyperparameter values specifically within the convolution layers of the
selected architectures. The exclusive application of the average operator
to convolution layers is based on their paramount importance in a
ConvNet. The average operation between two selected individuals in
volves calculating the mean of their kernel counts (number of kernels). It
is crucial to emphasize that the previously discussed split operation is
also applied at this stage. The average operation between layers can be
formulated as follows:

MV
(
Ci,Cj

)
=

KernelCnt(Ci) + KernelCnt
(
Cj
)

2
(9)

Here, KernelCnt(Ci) represents the number of kernels in the given
convolution layer of the first selected architecture, and KernelCnt(Cj)

represents the number of kernels in the corresponding convolution layer
of the second selected architecture. When the respective layers are not
the same, the convolution layer with its features is chosen, given its high
significance in feature extraction. In situations where one of the archi
tectures has an empty layer while the other does not, the non-empty
layer is added, and its features are retained.

Input: two architectures o1, o2
Output: Architecture representing the average between two

architectures
1 If (o1.length > o2.length)
2 O = o1.length
3 else If (o1.length < o2.length)
4 O = o2.length
5 else
6 O = o1.length
7 Endif
8 layersList←[]

9 For i = 1 to O do
10 If (o1[i].type is not Empty and o2[i].type is not Empty)
11 If(o1[i] .type == ˝C˝ and o2[i].type = = ˝C˝)
12 o1.kernelCount = (o1[i].kernelCount + o2[i].kernelCount)/2
13 layersList←o1
14 Kerneldim.average
15 Strides.average
16 else if (o1[i] .type == ˝C˝ and o2[i].type = = ˝P˝)
17 layersList←o1[i]

18 else if(o1[i].type == ˝P˝ and o2[i].type = = ˝C˝)
19 layersList←o2[i]

20 else (tupleaverage.poolwindow o1, poolwindow o2
21 end if
22 else if (o1[i] .type is not Empty and o2[i] .type is Empty)
23 layersList←o1[i]

24 else if (o1[i] .type is Empty and o2[i] .type is not Empty)
25 layersList←o2[i]

26 endif

3.3.3. Novel sum operator
The addition operation is a fundamental operation extensively uti

lized in the SOS algorithm, applied during both the Mutualism and
Commensalism phases. To implement the summation of individual ar

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

10

chitectures, a simple arithmetic method is proposed. When two in
dividuals are selected for summation, their layers are combined
following the elementary arithmetic rule of x+ x = 2x. This implies, for
any two randomly selected architectures, the addition operator adds the
respective layers of the two architectures. The length of the resulting
architecture equals the total length of the two architectures. For
instance, if two architectures with lengths of 5 and 4 are selected, the
resultant architecture generated by the sum operator will have a length

of 9, representing the total combined layers. In essence, this operation is
analogous to the union operation in set theory. To maintain the validity
and adherence to architectural conventions, the split operation is
implemented at this stage. This process ensures that the resulting ar
chitecture remains structurally sound. A visual representation of the
sum operation is illustrated in Fig. 3, and the operational process is
detailed in Algorithm 5.

Algorithm 4
The average operator algorithm

Fig. 3. Addition of two individuals.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

11

Input: two architectures o1, o2
Output: convNet

1 If (o1 .length > o2.length)
2 O = o1.length
3 else if (o1.length < o2.length)
4 O = o2.length
5 else
6 O = o1.length
7 end if
8 ConvNetSum←[]

9 For i = 1 to O do
10 If (o1[i].type is not Empty and o2[i].type is not Empty)
11 If(o1[i].type == ˝C˝ and o2[i] .type = = ˝C˝)
12 ConvNetSum.extend(o1[i] , o2[i]

13 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝keep˝)
14 ConvNetSum.append(o1[i])

15 else if (o1[i].type == ˝keep˝ and o2[i].type = = ˝C˝)
16 ConvNetSum.append(o2[i])

17 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝remove˝)
18 Pass
19 else if (o1[i].type == ˝remove˝ and o2[i] .type = = ˝C˝)
20 Pass
21 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝C˝)
22 ConvNetSum.extend(o1[i] , o2[i]

23 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝P˝)
24 ConvNetSum.extend(o1[i] , o2[i])

25 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝P˝)
26 ConvNetSum.extend(o1[i] , o2[i])

27 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝keep˝)
28 ConvNetSum.append(o1[i])

29 else if (o1[i].type == ˝keep˝ and o2[i].type = = ˝P˝)
30 ConvNetSum.append(o2[i])

31 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝remove˝)
32 Pass
33 else if (o1[i].type == ˝remove˝ and o2[i] .type = = ˝P”)
34 Pass
35 end if
36 else if(o1[i] .type is not Empty and o2[i] .type is Empty)
37 ConvNetSum.append(o1[i])

38 else if(o1[i] .type is Empty and o2[i] .type is not Empty)
39 if(o2[i].type = = ˝keep˝)
40 pass
41 else if(o2[i] .type = = ˝remove˝)
42 pass
43 else
44 ConvNetSum.append(o2[i])

45 end if
46 end if
47 Return ConvNetSum

3.3.4. Mutation operator for parasite vector generation
In the main SOS algorithm, a randomly selected organism within the

ecosystem is subject to modification to generate the parasite vector.
Subsequently, a second individual, also randomly chosen, is compared
with the parasite vector. The outcome dictates the survival of the best
individual, while the other ceases to exist in the ecosystem. To imple
ment the creation of parasite ConvNet as the parasite vector, an indi
vidual architecture is randomly selected for modification. This
modification encompasses actions such as adding or removing a layer, or
altering the type of a layer. During the generation of the parasite, the
architecture is split into two distinct sections: the Conv/Pool section,
comprising convolution and pooling layers, and the FC section, housing
the fully connected layers. The mutation of the selected architecture
solely occurs within the Conv/Pool section. The process involves a
randomized selection of one of the following actions: adding a layer,
removing a layer, or changing the layer type. If the chosen action is to
add a layer, either a pooling or convolution layer is automatically
inserted at the end of the Conv/Pool section. Conversely, in the case of
choosing to remove a layer, a layer is randomly selected from the ar
chitecture and discarded. Otherwise, if the selected option is to change a
layer type, a layer is randomly selected and its type is modified (e.g.,
from Conv to Pool, or Pool to Conv). It is important to note that a higher

probability is assigned to the removal or changing options, particularly
for pooling layers. This emphasis on reducing the number of pooling
layers aligns with the objective of minimizing the architecture’s pooling
layers, as mentioned earlier.

3.4. Fitness evaluation

In the process fitness evaluation, conventional metaheuristic algo
rithms often consider individual with the minimum objective function
value as the best individual. In this study, the objective function is
represented by the loss function, specifically the cross-entropy loss

Algorithm 5
ConvNetSum()

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

12

function. Therefore, the fitness evaluation involves the comparison of
the loss function for each individual based on the cross-entropy loss
function. Consequently, the algorithm strives to identify an individual
architecture with the lowest loss value. This is accomplished through a
function called evolve(). At this stage, each individual architecture is
compiled into a complete ConvNet and subjected to training using a
specified data set for a predetermined number of epochs and iterations
to obtain the corresponding the loss value. The training process employs
the Adam optimizer and Xavier weight initializer. The choice of Adam
optimizer and Xavier weight initializer is grounded in their proven
ability to expediate training, and enhance the convergence properties of
deep neural networks. These techniques have gained widespread
adoption in the deep learning community due to their empirical success
across various applications. However, a major challenge is that each and

every individual architecture in the ecosystem has to be trained with the
same dataset which is a computationally intensive task.

4. Experiment set up

The proposed algorithms for SOS_ConvNet were implemented using
Python, utilizing the Google Colab platform for execution and experi
mentation. This study adhered to a meticulous approach, involving
thorough testing and evaluation of SOS_ConvNet across diverse datasets.
The subsequent subsections offer comprehensive insights into the
datasets utilized and the specific parameter settings employed in the
experimental procedures.

Fig. 4. Sample images from MNIST dataset.

Fig. 5. Sample images from Fashion-MNIST dataset.

Fig. 6. Sample images from CIFAR-10 dataset.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

13

4.1. Datasets

The study rigorously tested the proposed SOS_ConvNet algorithm
across four distinct benchmark datasets: MNIST, Fashion-MNIST,
BreakHis, and CIFAR-10. These datasets were carefully chosen to
cover a range of image classification tasks. Through systematic experi
ments and evaluations on these datasets, the research validates and es
tablishes the reliability of the proposed NAS algorithm. The obtained
results underscore the algorithm’s capacity to generate convolutional
neural network architectures that exhibit outstanding performance
across diverse image classification domains. MNIST Dataset: MNIST is a
well-known dataset containing grayscale images of handwritten digits
(0–9), each sized at 28 × 28 pixels. It stands as a cornerstone for image
classification tasks, featuring 60,000 training samples and 10,000
testing samples. Exemplary samples from the MNIST dataset are illus
trated in Fig. 4.

Fashion-MNIST Dataset: Fashion-MNIST, tailored for image clas
sification tasks, stands as another prominent dataset in the study. It
encompasses grayscale images featuring various fashion items,
including clothing and accessories. Similar to MNIST, this dataset in
corporates 60,000 training samples and 10,000 testing samples. Visual
representations of sample images from the Fashion-MNIST dataset are
depicted in Fig. 5.

CIFAR-10 Dataset: CIFAR-10, renowned for its complexity, features
coloured images categorized into ten classes, including airplanes, au
tomobiles, and various animals. Comprising 60,000 training images and
10,000 testing images, this dataset poses a significant challenge for
image classification algorithms. Fig. 6 provides visual samples from the
CIFAR-10 dataset

BreakHis Dataset: The BreakHis dataset is a specialized medical

dataset tailored for breast cancer diagnosis. It encompasses microscopic
breast histopathology images, meticulously classified into benign and
malignant classes. This dataset serves as a pivotal benchmark for
assessing the efficacy of SOS_ConvNet in the domain of medical image
classification. Fig. 7 showcases representative samples from the Break
His dataset.

4.2. Parameter settings

The success of SOS_ConvNet relies on carefully configured hyper
parameters that govern various aspects of the SOS algorithm, ConvNet
initialization, and training. Table 1 encapsulates the hyperparameter
settings utilized in the experiments, providing insights into critical as
pects of the optimization process. In the first column, parameters
steering the behavior of the SOS algorithm are delineated. The basic SOS
require few parameters setting that is the ecosystem size (eco size).
Similarly, in the proposed SOS_ComvNet, the “eco size” determines the
number of ConvNet architectures under consideration. Simultaneously,
the “number of iterations” is required by all optimization algorithms to
mark the termination point of the optimization.

The second group or column outlines the hyperparameters necessary
for the initial generation of the organism population. These hyper
parameters set boundaries for the random architectures within the
initial population, establishing the foundation for subsequent evolu
tionary processes. The final group of parameters presented in the third
column governs the training of the architectures. The “individual opti
mization epochs” hyperparameter dictates the number of epochs for
which the architectures are trained during the optimization process.
Additionally, the “training epochs for best ConvNet” hyperparameter
specifies the number of epochs dedicated to training the globally
recognized best architecture. Furthermore, batch normalization and
dropout rates have been included as essential components to mitigate
overfitting.

5. Results and discussion

In this section, the results obtained from the proposed SOS_ConvNet
are presented and analyzed. The SOS_ConvNet model was evaluated
using various datasets, and thus, the best model generated by
SOS_ConvNet for each dataset is showcased. Additionally, a thorough
comparison is conducted, comparing the performance of the
SOS_ConvNet models against established models from the literature. The
selection of compared models was driven by their prevalence in the NAS
literature, representing some of the most common NAS models. Addi
tionally, we included popular handcrafted models for a comprehensive
comparison. This evaluation approach ensures a well-rounded analysis
by considering both state-of-the-art NAS models and widely recognized
handcrafted models, providing a comprehensive perspective on the
performance of our proposed SOS_ConvNet. For each dataset, the eval
uation results highlight the strengths and capabilities of the best
SOS_ConvNet model. The evaluation results are discussed in detail,
emphasizing the advantages and improvements achieved by the

Fig. 7. Sample images from BreakHis dataset.

Table 1
Hyperparameter Settings.

SOS settings ConvNet initialization
settings

ConvNet training settings

Eco size 20 Minimum number
of layers

3 Individual
optimization epochs

3

Number of
iterations

10 Maximum number
of layers

20 Training epochs for
best ConvNet

300

Minimum kernel
size for Conv layers

3 ×
3

Dropout rate 0.4

Maximum kernel
size f or Conv layers

7 ×
7

Batch normalization
layers

yes

Minimum number
of filters

3

Maximum number
of filters

256

Minimum number
of neurons in FC
layer

1

Maximum number
of neurons in FC
layer

300

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

14

SOS_ConvNet models in terms of classification accuracy, model
complexity, or other relevant factors.

5.1. Results on MNIST dataset

To evolve models using the MNIST dataset, the algorithm was trained
for 3 epochs and 10 iterations. Subsequently, the global best architecture
at the end of iterations was further trained for 300 epochs. The details of
the best model obtained is shown in Table 2.

Fig. 8 illustrates the training and testing process of the SOS_ConvNet
model over 300 epochs. The curves displayed in the figure demonstrate
the model’s performance throughout the training and testing phases.
The absence of significant deviations or irregularities in these curves
indicates that the proposed model does not suffer from overfitting or
underfitting issues. This observation confirms that the generated Con
vNet is capable of generalizing well to unseen data, ensuring reliable and
consistent image classification.

The proposed SOS_ConvNet algorithm achieved remarkable results
with the global best architecture, achieving an impressive accuracy of
0.9969, equivalent to 99.69 %. The corresponding error rate was
calculated to be 0.0031, which translates to an error rate of 0.31 %.
These results demonstrate the high precision and effectiveness of the
SOS_ConvNet model in accurately classifying images.

Table 3 provides a comprehensive comparison of the proposed model
with other algorithms based on the reported error rates as percentages.
The comparison aims to assess the performance of the proposed algo
rithm relative to the compared approaches. Notably, the compared al
gorithms consist of both manually generated models such as LeNet5, and
automatically generated models using population-based algorithms,
including IPPSO, PSO_CNN, and SOSCNN. The comparison is based on
results reported in the literature. Based on the error rates reported in
Table 3, the following analysis can be made: LeNet5 (LeCun et al., 1998)
is a manually generated model with an error rate of 0.95 %. The pro
posed SOS_ConvNet algorithm outperforms LeNet5, achieving a lower
error rate of 0.31 %. This indicates that the automatically generated

SOS_ConvNet model is more effective in image classification compared
to the manually designed LeNet5. The error rate reported for IPPSO
(Wang et al., 2018) is 1.13 %. In comparison, the proposed SOS_ConvNet
algorithm demonstrates superior performance with an error rate of 0.31
%. This shows that the SOS_ConvNet outperforms IPPSO in terms of
classification accuracy. The PSO_CNN (Fernandes Junior & Yen, 2019)
algorithm achieved an error rate of 0.32 %. The proposed SOS_ConvNet
algorithm performs competitively, exhibiting a slightly lower error rate
of 0.31 %. This suggests that both algorithms are effective in image
classification, with the SOS_ConvNet demonstrating comparable per
formance to PSO_CNN. The SOSCNN (Miao et al., 2021) algorithm re
ported an error rate of 0.38 %. Once again, the proposed SOS_ConvNet
algorithm outperforms SOSCNN achieving a lower error rate of 0.31 %.
This indicates that the SOS_ConvNet approach is more successful in
generating ConvNets with higher accuracy for image classification tasks.
This comparison underscores the effectiveness of the SOS_ConvNet al
gorithm in generating ConvNets with superior accuracy for image clas
sification tasks. The results showcase its competitive performance
against both manually designed models and other automated algorithms
based on population-based techniques. The high accuracy achieved by
the global best architecture, coupled with the absence of overfitting or
underfitting issues, reinforces the reliability and robustness of the pro
posed SOS_ConvNet model for image classification tasks.

Table 2
Description of the model generated on MNIST dataset.

Layer Hyperparameters

Conv Kernel size = 6 × 6, No. of kernels = 216
Conv Kernel size = 5 × 5, No. of kernels = 25
Pooling Pool window = 3 × 3
Pooling Pool window = 3 × 3
Conv Kernel size = 7 × 7, No. of kernels = 101
Conv Kernel size = 7 × 7, No. of kernels = 11
Conv Kernel size = 7 × 7, No. of kernels = 11
Pooling Pool window = 3 × 3
FC Number of neurons = 10

Fig. 8. Training curves of SOS_ConvNet on MNIST dataset.

Table 3
Comparison results of the proposed algorithm on MNIST dataset.

Model Error (%)

LeNet5 (LeCun et al., 1998) 0.95
IPPSO (Wang et al., 2018) 1.13
PSO_CNN (Fernandes Junior & Yen, 2019) 0.32
SOSCNN (Miao et al., 2021) 0.38
Proposed SOS_ConvNet 0.31

Table 4
Layers and hyperparameters of the Global Best Model on Fashion-MNIST
Dataset.

Layer Hyperparameters

Conv Kernel size = 4 × 4, No. of kernels = 161
Conv Kernel size = 4 × 4, No. of kernels = 86
Pooling Pool window = 3 × 3
Conv Kernel size = 5 × 5, No. of kernels = 4
FC No. of neurons = 512
FC(output) Number of neurons = 10

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

15

5.2. Results on fashion_ mnist dataset

The best-performing model generated by SOS_ConvNet showcased
exceptional results, prompting a detailed comparison with published
outcomes from other models based on neural architecture generation
and manually designed models. The specifics of the top-performing
model obtained through SOS_ConvNet are meticulously presented in
Table 4. This comparison provides valuable insights into the efficacy of
SOS_ConvNet in achieving remarkable performance relative to existing
models in the domain of neural architecture search.

The training and testing curves, as depicted in Fig. 9, present the

performance of the proposed SOS_ConvNet model on the Fashion_
MNIST dataset. These curves serve as valuable indicators of the model’s
learning dynamics and its capacity to generalize to previously unseen
data. Analyzing the training curves reveals a consistent improvement in
accuracy over the course of the training process. The training accuracy
progressively rises to a commendable value of 0.9722, equivalent to
97.22 %. This signifies the model’s adeptness in learning from the
training data, effectively capturing intrinsic patterns and features
crucial for accurate classification.

The test curve reveals the model’s proficiency on previously unseen
test data. The highest test accuracy achieved by the model is 0.9330,
equivalent to an impressive accuracy rate of 93.30 %. This demonstrates
that the model can successfully generalize its learnings to new and un
seen examples, achieving a high level of accuracy in effectively classi
fying images from the Fashion_MNIST dataset. The error rate for the test
accuracy is computed as 0.067, equivalent to a commendably low rate of
6.7 %. This signifies that the model exhibits a relatively low level of
misclassification, further highlighting its efficacy in accurately predict
ing the class labels of the Fashion-MNIST images. Importantly, the
minimal discrepancy between the training and testing accuracy suggests
that the model does not suffer from overfitting. Overfitting occurs when
a model performs exceptionally well on the training data but fails to
generalize to new data. The results were benchmarked against PSO_CNN
(Fernandes Junior & Yen, 2019), SOSCNN (Miao et al., 2021), Evo_CNN
(Sun et al., 2019), AlexNet, VGG16, MobileNet, and GoogleNet.

Table 5 provides a comprehensive comparison between the proposed
SOS_ConvNet model and other existing models on the Fashion_MNIST
dataset. The comparison considers both the reported error rates and the
number of parameters (the weights) in millions. An analysis of the re
sults reveals the following insigths: AlexNet achieves an error rate of
10.1 % on the Fashion_MNIST dataset, with a relatively high parameter
count of 62.3 million. AlexNet is outperformed by the proposed
SOS_ConvNet, which demonstrates a lower error rate of 6.7 % and a
significantly reduced parameter count of 0.24 million. Vgg_16 achieved
an error rate of 6.5 % with a parameter count of 26.0 million. The
proposed SOS_ConvNet model exhibits slightly higher error rate (6.7 %)
but stands out for its efficiency, boasting a much smaller parameter
count of 0.24 million. This indicates that the proposed model offers
competitive performance while being more parameter-efficient. Mobi
leNet achieves a better error rate of 5.0 %, the proposed SOS_ConvNet,
with its higher error rate of 6.7 %, stands out for its remarkable
parameter efficiency, featuring only 0.24 million parameters compared
to MobileNet’s 4.0 million. This emphasizes the compact and light
weight nature of the SOS_ConvNet architecture. GoogleNet achieved an
error rate of 6.3 % with a parameter count of 23.0 million. The proposed
SOS_ConvNet model exhibits a slightly higher error rate of 6.7 % but
significantly reduced parameter counts of 0.24 million. This underscores
the potential of the proposed model to achieve comparable performance

Fig. 9. Training and Testing Process of the Global Best Model on Fashion_MNIST dataset.

Table 5
Comparison results of the proposed algorithm on Fashion_ MNIST dataset.

Model Error (%) Parameters in millions

AlexNet* 10.1 62.3
Vgg_16* 6.5 26.0
MobileNet* 5.0 4.0
GoogleNet* 6.3 23.0
Evo_CNN (Sun et al., 2019) 5.47 6.68
PSO_CNN (Fernandes Junior & Yen, 2019) 5.53 2.32
SOSCNN (Miao et al., 2021) 5.68 2.30
Proposed SOS_ConvNet 6.7 0.24

* https://github.com/z alandoresearch/fashion-mnist.

Table 6
Layers and Hyperparameters of the Global Best Model on CIFAR-10 dataset.

Layer Hyperparameters

Conv Kernel size = 3 × 3, No. of kernels = 52
Conv Kernel size = 3 × 3, No. of kernels = 95
Conv Kernel size = 4 × 4, No. of kernels = 95
Pooling Pool window = 2 × 2
Conv Kernel size = 3 × 3, No. of kernels = 128
Conv Kernel size = 3 × 3, No. of kernels = 128
Conv Kernel size = 3 × 3, No. of kernels = 128
FC Number of neurons = 512
FC(output) Number of neurons = 10

Table 7
Models evaluation results on CIFAR-10 Dataset.

Model Train Accuracy (%) Test Accuracy (%) Time (minutes)

VGG16 97.48 67.62 4.99
VGG19 97.68 67.93 4.45
AlexNet 98.54 65.87 11.66
MobileNet 84.10 82.18 25.55
ResNet20 84.97 82.08 20.62
SOS_ConvNet 84.52 82.78 22.50

F. Jauro et al.

https://github.co

Intelligent Systems with Applications 22 (2024) 200349

16

to GoogleNet while featuring a simpler and more resource-efficient
architecture.

Evo_CNN achieves a lower error rate of 5.47 %, the proposed
SOS_ConvNet, with its 6.7 % error rate, stands out for its exceptional
parameter efficiency, having only 0.24 million parameters compared to
Evo_CNN’s 6.68 million. This suggests that SOS_ConvNet can offer
comparable performance with significantly fewer parameters, empha
sizing its efficiency and suitability for resource-constrained scenarios.
PSO_CNN achieves an error rate of 5.53 % with a parameter count of
2.32 million. The proposed SOS_ConvNet model with a marginally

higher error rate of 6.7 %, showcases superior parameter efficiency,
boasting only 0.24 million parameters. This emphasizes the compact
architecture and resource efficiency of SOS_ConvNet, making it a
favourable choice for scenarios where minimizing parameters is crucial.
SOSCNN achieves an error rate of 5.68 % and a parameter count of 2.30
million, exhibiting a comparable performance profile to PSO_CNN.
However, the proposed SOS_ConvNet, with its slightly higher error rate
of 6.7 % and significantly fewer parameters (0.24 million), offers a more
parameter-efficient alternative. This underscores SOS_ConvNet’s ability
to strike a balance between error rate and model simplicity. The

Fig. 10. Training and testing processes of the compared models on CIFAR-10 dataset.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

17

comparison in Table 5 demonstrates that the proposed SOS_ConvNet
model achieves competitive performance on the Fashion_MNIST dataset.
Despite having a slightly higher error rate compared to some existing
models, it stands out by offering a significantly smaller number of pa
rameters. This indicates that the proposed model can achieve compa
rable accuracy while being more parameter-efficient and potentially
more computationally efficient, making it an attractive solution for
image classification tasks. Generally, the training and testing curves,
along with the achieved accuracies and error rates, indicate that the
proposed SOS_ConvNet model performs exceptionally well on the
Fashion_MNIST dataset. Its high accuracy, minimal error rate, and
absence of overfitting contribute to its reliability and effectiveness in
accurately classifying images from the Fashion-MNIST dataset.

5.3. Results on CIFAR-10 dataset

The evaluation of the proposed SOS_ConvNet algorithm on the
CIFAR-10 dataset involved a systematic experiment. Initially, architec
tures were generated using the dataset, and these architectures under
went optimization through a single epoch and 10 iterations to identify
the global best architecture. Subsequently, the global best architecture
was further trained on the CIFAR-10 dataset for a total of 30 epochs. The
structural details of the resulting global best model are outlined in
Table 6.

To conduct a comprehensive evaluation, well-known handcrafted
models, including AlexNet, ResNet, VGG, and MobileNet, were trained
on the same platform as the proposed model. This comprehensive
evaluation considered key criteria, including both time efficiency and
accuracy. The results obtained from this evaluation offer valuable in
sights into the effectiveness of the proposed model compared to these
established models. The results of this evaluation are succinctly pre
sented in Table 7.

From the results on Table 7; AlexNet, VGG19, and VGG16 achieved
remarkable training accuracies of 98.54 %, 97.68 %, and 97.48 %,
respectively. However, despite their impressive performance on the
training data, these models paradoxically demonstrate lower accuracy
when assessed on the test set. In fact, even the best-performing model,
AlexNet, displayed the lowest overall test accuracy of 65.87 %. This
consistent trend of high training accuracy coupled with low test accu
racy strongly suggests that these models are suffering from overfitting
when evaluated on the test data. MobileNet and ResNet, in contrast,
demonstrated robust performance on both the training and testing
datasets. MobileNet achieved training and test accuracies of 84.10 %

and 82.18 %, respectively, while ResNet achieved training and test ac
curacies of 84.97 % and 82.08 %. Importantly, these models exhibited
no apparent signs of overfitting, as indicated by the relatively small
variation between their training and testing accuracies. This consistency
in performance between the training and testing datasets suggests that
MobileNet and ResNet have successfully learned to generalize from the
training data to unseen examples. They appear to capture meaningful
features and patterns that are applicable beyond the specific training set,
resulting in reliable and consistent predictions on new data. The absence
of overfitting is a positive indicator of these models’ ability to generalize
effectively.

The model generated by the proposed SOS_ConvNet achieved an
impressive test accuracy of 82.78 %, while its training accuracy stood at
84.52 %. Importantly, this performance indicates that no overfitting was
observed in the SOS_ConvNet model. Furthermore, the training time
required by SOS_ConvNet was reasonable, demonstrating that it can
efficiently generate models with strong performance on a given dataset.
These findings highlight the effectiveness of SOS_ConvNet in producing
models that not only excel in terms of accuracy but also exhibit a
balanced learning process. The absence of overfitting underscores the
model’s ability to generalize well to unseen data, while its efficient
training time adds to its appeal as a practical and efficient approach for
generating high-performing models for specific image classification
tasks. In terms of training time, VGG19 emerged as the fastest model,
requiring approximately 4 min and 45 s for training, followed closely by
VGG16, which took approximately 5 min. In contrast, MobileNet had the
longest training time, demanding approximately 25 min and 55 s. The
proposed SOS_ConvNet model fell in between with a training time of
22.5 min. It’s noteworthy that despite the moderate training time, the
SOS_ConvNet model achieved a test accuracy comparable to that of
MobileNet and ResNet20, even though its training accuracy was slightly
lower. This balance between training time and performance is a notable
advantage. In summary, the proposed SOS_ConvNet model effectively
demonstrates its competence by achieving competitive test accuracy on
the CIFAR-10 dataset while maintaining a reasonable training time. It
performs on par with the MobileNet and ResNet20 models and surpasses
the VGG16, VGG19, and AlexNet models in terms of test accuracy. The
training and testing processes for each of these models are visually
represented in Fig. 10, providing a comprehensive view of their learning
curves and performance trends.

5.4. Results on breakhis dataset

To evaluate the performance of the proposed SOS_ConvNet on the
BreakHis dataset, a comprehensive experiment was conducted. Initially,
architectures were generated using the BreakHis dataset, leveraging the
capabilities of SOS_ConvNet’s algorithm. These generated architectures
were then optimized through a single epoch and 10 iterations to ulti
mately obtain the global best architecture, ensuring that it represents the
most promising ConvNet structure for the given dataset. Subsequently,
the global best architecture was subjected to further refinement through
intensive training on the BreakHis dataset. This refinement involved
training the global best architecture for a total of 100 epochs, allowing it
to adapt and improve its performance on the dataset. The structure and
configuration details of this global best model can be found in Table 8.

For the purpose of evaluation, popular handcrafted models; AlexNet
(Krizhevsky et al., 2012), ResNet (He et al., 2016), VGG (Simonyan &
Zissermann, 2015), EfficientNet (Tan & Le, 2019), and MobileNet
(Howard et al., 2012) were trained on the same dataset and compared
with the global best model. The results obtained are presented in
Table 9.

From the results presented in Table 9, SOS_ConvNet clearly stands
out as the top-performing model on the BreakHis dataset, achieving the
highest accuracy of 89.12 % while maintaining a compact model size of
38,868 parameters. MobileNet and EfficientNet, while having reason
able performance of 70.01 % and 84.44 % respectively, couldn’t match

Table 8
Layers and Hyperparameters of the Global Best Model on BreakHis dataset.

Layer Hyperparameters

Conv Kernel size = 4 × 4, No. of kernels = 15
Pooling Pool window = 3 × 3
Conv Kernel size = 3 × 3, No. of kernels = 11
Pooling Pool window = 3 × 3
Conv Kernel size = 3 × 3, No. of kernels = 17
FC Number of neurons = 17
FC(output) Number of neurons = 1

Table 9
Models evaluation results on BreakHis Dataset.

Model Accuracy (%) No. of Parameters Training time

MobileNet 70.01 1103,345 20.10
EfficientNet 84.44 7267,317 21.33
VGG16 73.03 14,854,273 20.25
ResNet 85.25 24,097,601 22.22
SOS_ConvNet 89.12 38,868 18.33

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

18

the accuracy of SOS_ConvNet. Furthermore, EfficientNet had a sub
stantially larger model size of 1103,345 parameters. VGG16 and ResNet,
despite their higher parameter counts, achieved lower accuracy at 73.03
% and 85.25 % respectively, when compared to SOS_ConvNet. Signifi
cantly, SOS_ConvNet not only excelled in accuracy but also demon
strated efficiency by requiring less training time compared to the other
models. This reinforces its effectiveness in generating high-performing
and resource-efficient models for specific image classification tasks on
the BreakHis dataset. In summary, SOS_ConvNet proves to be a
compelling choice for the BreakHis dataset, offering an excellent balance

of accuracy, model size, and training efficiency. This shows that many
handcrafted models have a lot of unnecessary parameters despite their
good performance. Having lighter models would save a lot of disk space,
and computational power. The training curves of the models on Break
His dataset are displayed on Fig.11.

6. Conclusion and future work

This research adopts a neural architecture search (NAS) methodol
ogy employing the innovative Symbiotic Organism Search (SOS)

Fig. 11. Training and testing process on BreakHis dataset.

F. Jauro et al.

Intelligent Systems with Applications 22 (2024) 200349

19

optimization algorithm to autonomously evolve Convolutional Neural
Network (ConvNet) models. The study’s approach involves evolving
ConvNet architectures through SOS, selecting the best-performing
models for further refinement and training. The proposed NAS algo
rithm’s generalization capabilities were rigorously evaluated across
diverse datasets, spanning domains such as handwritten digits (MNIST),
fashion items (Fashion-MNIST), general image classification (CIFAR-
10), and medical image analysis (Breast Cancer dataset). These datasets
serve as a robust foundation for evolving optimal ConvNet models using
the SOS_ConvNet approach. The generated architectures were subjected
to comprehensive comparisons against existing models, encompassing
both manually designed architectures and those derived from other NAS
methodologies. The compelling comparative results underscore the su
perior performance of the models generated by the proposed
SOS_ConvNet. This comprehensive analysis reaffirms the effectiveness
and versatility of the SOS_ConvNet methodology in automatically
generating ConvNet architectures that excel across diverse image clas
sification tasks. By consistently outperforming established models,
SOS_ConvNet demonstrates its potential to revolutionize neural archi
tecture search, making significant contributions to the field of deep
learning. The introduction of innovative operators, such as mutual
vector, modified difference, parasite generator, and sum operators, en
hances the efficiency of ConvNet generation. Additionally, the ability to
achieve competitive accuracy with reduced model complexity empha
sizes resource efficiency, crucial for applications with limited compu
tational resources. SOS_ConvNet’s versatility and adaptability, coupled
with its symbiotic organism search framework, contribute to the broader
landscape of NAS. For future improvements, the incorporation of more
sophisticated operators could further enhance the optimization process.
Additionally, exploring automated hyperparameter tuning techniques to
optimize the hyperparameters of the generated ConvNet models holds
the potential for achieving even better-performing architectures. These
potential enhancements will continue to advance the state-of-the-art in
NAS methodologies and ConvNet architectures.

CRediT authorship contribution statement

Fatsuma Jauro: Conceptualization, Methodology. Abdulsalam
Ya’u Gital: Writing – review & editing, Supervision. Usman Ali
Abdullahi: Writing – review & editing, Supervision. Aminu Onimisi
Abdulsalami: Conceptualization, Methodology. Mohammed Abdul
lahi: Methodology. Adamu Abubakar Ibrahim: Writing – review &
editing. Haruna Chiroma: Conceptualization, Methodology,
Supervision.

Declaration of competing interest

The authors declare no conflict of interest

Data availability

The data used is available online.

References

Baker, B., Gupta, O., Naik, N., & Raskar, R. (2016). Designing neural network
architectures using reinforcement learning. ArXiv Preprint ArXiv:1611.02167.
https://doi.org/10.48550/arXiv.1611.02167

Chen, X., Xie, L., Wu, J., & Tian, Q. (2019). Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (pp. 1294–1303).

Cheng, M., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic
optimization algorithm. Computers and Structures, 139, 98–112.

Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., et al. (2020). Hierarchical
neural architecture search for deep stereo matching. Advances in Neural Information
Processing Systems, 33, 22158–22169.

Darwish, A., Hassanien, A. E., & Das, S. (2020). A survey of swarm and evolutionary
computing approaches for deep learning. Artificial Intelligence Review, 53(3),
1767–1812.

Fernandes Junior, F. E., & Yen, G. G. (2019). Particle swarm optimization of deep neural
networks architectures for image classification. Swarm and Evolutionary Computation,
49, 62–74.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
770–778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. (2012).
MobileNets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.. https://doi.org/10.48550/arXiv.1704.04861

Jauro, F., Gital, A. Y.u., Abdulsalami, A. O., Abdullahi, M., Zambuk, F. U., Jalo, H. S.,
et al. (2021). Investigating the influence of multiple parameter settings on selected
metaheuristic algorithms. In 2021 IEEE Mysore Sub Section International Conference
(pp. 29–35). MysuruCon 2021.

Jiang, J., Han, F., Ling, Q., Wang, J., Li, T., & Han, H. (2020). Efficient network
architecture search via multiobjective particle swarm optimization based on
decomposition. Neural Networks, 123, 305–316.

Kabir Anaraki, A., Ayati, M., & Kazemi, F. (2019). Magnetic resonance imaging-based
brain tumor grades classification and grading via convolutional neural networks and
genetic algorithms. Biocybernetics and Biomedical Engineering, 39(1), 63–74.

Khan, M., Jan, B., Farman, H., Ahmad, J., Farman, H., & Jan, Z. (2019). Deep learning
methods and applications. Deep Learning: Convergence To Big Data Analytics, 31–42.
https://doi.org/10.1007/978-981-13-3459-7_3

Kong, G., Li, C., Peng, H., Han, Z., & Qiao, H. (2023). EEG-Based Sleep Stage
Classification via Neural Architecture Search. IEEE Transactions On Neural Systems
And Rehabilitation Engineering, 31, 1075–1085.

Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances In Neural Information Processing Systems, 25.
URL https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6
b76c8436e924a68c45b-Paper.pdf.

Kyriakides, G., & Margaritis, K. (2020). An introduction to neural architecture search for
convolutional networks. https://doi.org/10.48550/arXiv.2005.11074.

Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-
series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. ArXiv
Preprint ArXiv:1806.09055. https://doi.org/10.48550/arXiv.1806.09055

Martín, A., Manuel, V. V., Antonio, P. G., Camacho, D., & Hervas-Martnez, C. (2020).
Optimising convolutional neural networks using a hybrid statistically-driven coral
reef optimisation algorithm. Applied Soft Computing Journal, 90, Article 106144.
https://doi.org/10.1016/j.asoc.2020.106144

Miao, F., Yao, L., & Zhao, X. (2021). Evolving convolutional neural networks by
symbiotic organisms search algorithm for image classification. Applied Soft
Computing, 109, Article 107537. https://doi.org/10.1016/j.asoc.2021.107537

Mishra, V., & Kane, L. (2023). An evolutionary framework for designing adaptive
convolutional neural network. Expert Systems with Applications, 224, Article 120032.
https://doi.org/10.1016/j.eswa.2023.120032

Musa, N., Gital, A. Y., Aljojo, N., Chiroma, H., Adewole, K. S., Mojeed, H. A., et al.
(2023). A systematic review and Meta-data analysis on the applications of deep
learning in electrocardiogram. Journal of Ambient Intelligence and Humanized
Computing, 14(7), 9677–9750.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient neural
architecture search via parameter sharing. In In Proceedings of the 35th International
conference on machine learning (pp. 4095–4104). PMLR.

Rasdi Rere, L. M., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic algorithms for
convolution neural network. Computational Intelligence and Neuroscience. https://doi.
org/10.1155/2016/1537325. 2016.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., et al. (2017). Large-scale
evolution of image classifiers. In Proceedings of the 34thInternational Conference on
Machine Learning, 70, 2902–2911. PMLR.

Sharif, M. I., Li, J. P., Khan, M. A., Kadry, S., & Tariq, U. (2024). M3BTCNet: Multi model
brain tumor classification using metaheuristic deep neural network features
optimization. Neural Computing and Applications, 36(1), 95–110.

Simonyan, K., & Zissermann, A. (2015). Very deep convolutional networks for large-scale
image recognition. 1–14. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/
arXiv.1409.1556

Sun, Y., Xue, B., Zhang, M., & Yen, G. G. (2019). Evolving deep convolutional neural
networks for image classification. IEEE Transactions on Evolutionary Computation, 24
(2), 394–407.

Sun, Y., Xue, B., Zhang, M., Yen, G. G., & Lv, J. (2020). Automatically designing CNN
architectures using the genetic algorithm for image classification. IEEE Transactions
on Cybernetics, 50(9), 3840–3854.

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the 36th International Conference on Machine Learning, 97,
6105–6114.

Wang, D., Zhai, L., Fang, J., Li, Y., & Xu, Z. (2024). psoResNet: An improved PSO-based
residual network search algorithm. Neural Networks, 172, Article 106104. https://
doi.org/10.1016/j.neunet.2024.106104

Wang, Y., Qiao, X., & Wang, G. G. (2023). Architecture evolution of convolutional neural
network using monarch butterfly optimization. Journal of Ambient Intelligence and
Humanized Computing, 14, 12257–12271, 2023.

Wani, A., Ahmad, F., Saduf, B., Asif, A., & Khan, I. (2020). Advances in deep learning, 57.
Springer Nature.. ISBN: 978-981-13-6793-9.

F. Jauro et al.

https://doi.org/10.48550/arXiv.1611.02167
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0003
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0003
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0007
https://doi.org/10.48550/arXiv.1704.04861
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0010
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0010
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0010
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0011
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0011
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0011
https://doi.org/10.1007/978-981-13-3459-7_3
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0013
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://doi.org/10.48550/arXiv.2005.11074
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0016
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0016
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0017
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0017
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1016/j.asoc.2020.106144
https://doi.org/10.1016/j.asoc.2021.107537
https://doi.org/10.1016/j.eswa.2023.120032
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0023
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0023
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0023
https://doi.org/10.1155/2016/1537325
https://doi.org/10.1155/2016/1537325
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0025
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0025
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0025
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0026
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0026
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0026
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0030
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0030
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0030
https://doi.org/10.1016/j.neunet.2024.106104
https://doi.org/10.1016/j.neunet.2024.106104
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0032
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0032
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0032
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0033
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0033

Intelligent Systems with Applications 22 (2024) 200349

20

Wen, L., Gao, L., Li, X., & Li, H. (2022). A new genetic algorithm based evolutionary
neural architecture search for image classification. Swarm and Evolutionary
Computation, 75, 101191. https://doi.org/10.1016/j.swevo.2022.101191.

Wu, X., Hu, S., Wu, Z., Liu, X., & Meng, H. (2022). Neural architecture search for speech
emotion recognition. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 6902–6906). Singapore pp.

Xue, Y., Chen, C., & Słowik, A. (2023). Neural architecture search based on a multi-
objective evolutionary algorithm with probability stack. IEEE Transactions on
Evolutionary Computation, 27(4), 778–786.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural
networks: An overview and application in radiology. In Insights Into Imaging, 9(4),
611–629.

Zaman, K., Zhaoyun, S., Shah, S. M., Shoaib, M., Lili, P., & Hussain, A. (2022). Driver
emotions recognition based on improved faster R-CNN and neural architectural
search network. Symmetry, (4), 14. https://doi.org/10.3390/sym14040687

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.015785. https://doi.org/10.48550/arXiv.1611.01578

F. Jauro et al.

http://doi.org/10.1016/j.swevo.2022.101191
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0036
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0036
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0036
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0037
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0037
http://refhub.elsevier.com/S2667-3053(24)00025-5/sbref0037
https://doi.org/10.3390/sym14040687
https://doi.org/10.48550/arXiv.1611.01578

	Modified symbiotic organisms search optimization for automatic construction of convolutional neural network architectures
	1 Introduction
	2 Background and related works
	2.1 Convolutional neural networks
	2.2 Symbiotic organism search algorithm
	2.2.1 Mutualism
	2.2.2 Commensalism
	2.2.3 Parasitism

	2.3 Related works

	3 Proposed SOS_ConvNet
	3.1 Organism encoding strategy
	3.2 Initialization of the ecosystem
	3.3 Organism update operators
	3.3.1 Difference operator
	3.3.2 Average operator for mutual vector
	3.3.3 Novel sum operator
	3.3.4 Mutation operator for parasite vector generation

	3.4 Fitness evaluation

	4 Experiment set up
	4.1 Datasets
	4.2 Parameter settings

	5 Results and discussion
	5.1 Results on MNIST dataset
	5.2 Results on fashion_ mnist dataset
	5.3 Results on CIFAR-10 dataset
	5.4 Results on breakhis dataset

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

