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A B S T R A C T   

Convolutional Neural Networks (ConvNets) have demonstrated impressive capabilities in image classification; 
however, the manual creation of these models is a labor-intensive and time-consuming endeavor due to their 
inherent complexity. This research introduces an innovative approach to Convolutional Neural Network (Con
vNet) architecture generation through the utilization of the Symbiotic Organism Search ConvNet (SOS_ConvNet) 
algorithm. Leveraging the Symbiotic Organism Search optimization technique, SOS_ConvNet evolves ConvNet 
architectures tailored for diverse image classification tasks. The algorithm’s distinctive feature lies in its ability to 
perform non-numeric computations, rendering it adaptable to intricate deep learning problems. To assess the 
effectiveness of SOS_ConvNet, experiments were conducted on diverse datasets, including MNIST, Fashion- 
MNIST, CIFAR-10, and the Breast Cancer dataset. Comparative analysis against existing models showcased the 
superior performance of SOS_ConvNet in terms of accuracy, error rate, and parameter efficiency. Notably, on the 
MNIST dataset, SOS_ConvNet achieved an impressive 0.31 % error rate, while on Fashion-MNIST, it demon
strated a competitive 6.7 % error rate, coupled with unparalleled parameter efficiency of 0.24 million param
eters. The model excelled on CIFAR-10 and BreakHis datasets, yielding accuracies of 82.78 % and 89.12 %, 
respectively. Remarkably, the algorithm achieves remarkable accuracy while maintaining moderate model size.   

1. Introduction 

Deep learning algorithms, in contrast to traditional machine learning 
algorithms, can independently learn the features of a given dataset 
without the need for human experts to conduct feature extraction (Wani 
et al., 2020). A prominent approach in deep learning is the Convolu
tional Neural Network (ConvNet), which has exhibited remarkable 
performance in diverse domains such as object detection, image classi
fication, and robotics. ConvNet models like LeNet (Lecun & Bengio, 
1995), AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2016), VGG 
(Simonyan & Zissermann, 2015), and MobileNet (Howard et al., 2012) 
have displayed exceptional proficiency in image classification. 

However, these models were manually crafted by domain experts with 
specific knowledge, and their optimality may not be universal for every 
problem and dataset. Furthermore, transferring models from one 
domain to another necessitates expert modifications, posing a challenge 
in developing ConvNets for new domains where locating relevant ex
perts can be challenging. The manual design of ConvNets can be a 
laborious task due to the intricate nature of the networks and the critical 
hyperparameters that require careful adjustment, including network 
depth, number of filters, filter size, and number of neurons. These 
hyperparameters significantly impact the performance of ConvNets. The 
challenges associated with manual design make automating ConvNet 
design a necessity. 
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Neural Architecture Search (NAS) has emerged as a research frontier 
facilitating the automatic generation of deep learning models through 
optimization algorithms (Kyriakides & Margaritis, 2020). NAS algo
rithms harness metaheuristic optimization methods that emulate the 
behaviour and evolution of species to address NAS challenges. These 
methods not only explore neural architectures but also optimize the 
weights of these architectures, a process known as NeuroEvolution (NE). 
The automation of ConvNet design via NAS enhances efficiency and 
reduces dependence on domain experts, allowing for the exploration of 
tailored architectures for specific domains. Recent developments in NAS 
have explored the application of Evolutionary Computing (EC) and 
Swarm Intelligence (SI) methods to autonomously generate ConvNet 
models without extensive reliance on experts or domain knowledge 
(Darwish et al., 2020). For example, the PSO_CNN algorithm (Fernandes 
Junior & Yen, 2019) was introduced to automatically search for Con
vNets using the particle swarm optimization algorithm. While demon
strating commendable performance, the PSO algorithm requires tuning 
multiple parameters, posing a formidable challenge. Inadequate 
parameter selection can detrimentally impact the algorithm’s efficacy. 
An investigation by Jauro et al. (2021) revealed that metaheuristic al
gorithms with fewer parameter settings can outperform popular algo
rithms relying on more parameters. One such algorithm is the Symbiotic 
Organism Search Optimization (SOS) algorithm, which has exhibited 
competitive or superior performance compared to other algorithms 
(Jauro et al., 2021). The SOS_CNN approach proposed by Miao et al. 
(2021) utilized the SOS algorithm to generate ConvNet architectures. 
Although the algorithm yielded promising results, it depended on 
random number generation, potentially limiting diversity in the solution 
space and leading to suboptimal solutions. 

In this study, we adopt the SOS algorithm to explore ConvNet 
models. Diverging from SOS_CNN, our proposed approach adheres to the 
foundational steps of the traditional SOS algorithm, integrating a simple 
arithmetic rule for computations. This simplicity not only renders the 
algorithm straightforward but also fosters ample diversity in the solu
tion space, potentially enhancing the quality of the generated ConvNet 
architectures. The primary objective is to introduce an algorithm for the 
automatic generation of ConvNet architectures using the symbiotic or
ganism search optimization algorithm. In contrast to traditional Con
vNets with fixed architectures, our approach permits individual 
architectures to dynamically adjust in length, thereby elevating flexi
bility and adaptability. The key contributions of this research include: 

1. Introduction of a novel mutual vector operator, facilitating the al
gorithm to compute the average between two organisms with 
distinct architectural structures.  

2. Design of a modified difference operator tailored for comparing two 
structurally different individuals, ensuring optimal updates during 
both the mutualism and commensalism phases.  

3. Proposal of a novel sum operator that applies a simple arithmetic 
rule to compute the sum of two individual architectures that may 
vary in terms of the number of layers and hyperparameters. 

4. Introduction of an enhanced initialization method that systemati
cally generates a population of individual architectures with fewer 
pooling layers. This innovative approach establishes a foundation for 
efficient convergence and improved algorithm initialization.  

5. The development of a novel strategy for generating parasite vectors, 
wherein one among multiple mutation strategies is randomly 
selected to obtain the parasite individual. This approach fosters di
versity and introduces potential architectural enhancements.  

6. Notably, the proposed method seamlessly applies the basic SOS 
without modifications to its phases and steps, ensuring adaptability 
to other metaheuristic algorithms. This underscores the versatility 
and ease of integration into various optimization frameworks. 

In summary, this study introduces a comprehensive and innovative 
approach to ConvNet architecture generation, employing the SOS 

algorithm along with several novel operators and strategies to achieve 
superior performance and enhanced optimization capabilities. The 
subsequent sections are organized as follows: Section 2 provides a re
view of related works in the field, with a focus on NAS and ConvNets. 
Section 3 outlines the proposed SOS_ConvNet algorithm, offering a 
detailed explanation of the method. Section 4 details the experimental 
setup, including the datasets used and training procedures, to evaluate 
the performance of SOS_ConvNet. Section 5 presents the results and 
analysis of the experiments, highlighting the effectiveness of 
SOS_ConvNet in comparison to existing methods. Finally, Section 6 
concludes the study, discussing findings, contributions, and future im
provements for SOS_ConvNet. 

2. Background and related works 

2.1. Convolutional neural networks 

The Convolutional Neural Network (ConvNet), originally designed 
by Lecun and Bengio (1995), is a deep learning technique primarily 
crafted for processing visual data, including images and videos. How
ever, its versatility has been widely acknowledged, enabling effective 
handling of diverse data types, such as text and audio. ConvNets exhibit 
exceptional performance in various image-related tasks, including 
classification, detection, recognition, segmentation, restoration, and 
enhancement (Khan et al., 2019). These networks leverage a funda
mental mathematical operation known as convolution, denoted as (f * 
g), where f and g represent functions. The result of convolution for a 
specific domain ’n’ is defined as (Wani et al., 2020): 

(f ∗ g)(n) =
∑

m
f (m)g(n − m) (1) 

Convolution can be extended to multi-dimensional functions as well. 
For example, when dealing with a two-dimensional image represented 
as Z, a 2D filter of m× n denoted as K, and a 2D feature map represented 
as X, the convolution operation can be mathematically expressed as 
follows: 

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(m, n)K(i − m, j − n) (2) 

This operation is commutative and can thus be expressed as: 

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(i − m, j − n)K(m, n) (3) 

The commutative property holds because the kernel is flipped rela
tive to the input. If the kernel is not flipped, the operation becomes a 
cross-correlation operation, as shown below: 

X(i, j) = (Z ∗K)(i, j)
∑

m

∑

n
Z(i+m, j+ n)K(m, n) (4) 

ConvNets consist of various layers, each tasked with distinct func
tions: convolution layer, activation function layer, pooling layer, fully 
connected layer, and dropout layer. Convolutional layers serve as the 
foundational building blocks of ConvNets, applying the convolution 
operation to capture local features within an image and transform them 
into feature maps (Yamashita et al., 2018). Activation functions such as 
the commonly used Rectified Linear Unit (ReLU), introduce 
non-linearity to enhance the network’s training speed. In addition to 
convolutional layers, ConvNets incorporate crucial layers like pooling 
layers for dimensionality reduction, fully connected layers for classifi
cation, and dropout layers to mitigate overfitting. This collaborative 
interplay among these layers empowers ConvNets to effectively learn 
and represent intricate patterns and structures within data, establishing 
them as valuable tools in modern machine learning and computer vision 
applications. ConvNets find applications across diverse sectors, 
including healthcare, where they prove instrumental in the classification 
of electrocardiogram (ECG) images. This is attributed to their capability 
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to convert 1D ECG signals into 2D image representations, facilitating 
effective classification (Musa et al., 2023). 

2.2. Symbiotic organism search algorithm 

The Symbiotic Organism Search Algorithm (SOS) is a metaheuristic 
technique introduced by (M. Cheng & Prayogo, 2014) to emulate the 
interdependent relationships among various species within an ecolog
ical system. In ecosystems, numerous organisms depend on each other 
for survival, forming symbiotic relationships. These relationships fall 
into three main categories: Mutualism, Commensalism, and Parasitism. 
Mutualism involves two interacting organisms that both derive benefits 
from the relationship. Commensalism describes a scenario where two 
organisms interact, with one deriving benefit while the other remains 
unaffected. In contrast, parasitism characterizes relationships where one 
organism benefits at the expense of harm inflicted upon the other. In line 
with the principles common to various algorithms, SOS operates by 
employing a population of potential solutions to systematically explore 
and identify the optimal one. Initially, this population, commonly 
known as the ecosystem, is randomly generated within the search space 
of potential solutions, with each solution represented as organism. Each 
organism in the ecosystem is assigned a fitness value, serving as an in
dicator of its viability within the system. The solution space undergoes 
iterative modifications through a series of processes involving mutu
alism, commensalism, and parasitism, persisting until the predefined 
termination criteria are met. This dynamic approach allows SOS to 
efficiently navigate the solution landscape in its quest for optimal 
solutions. 

2.2.1. Mutualism 
In a given population comprising organisms, each organism Xi en

gages in interaction with another randomly selected organism Xj (where 
(i ∕= j)) from the ecosystem. The purpose of this interaction is to 
improve their chances of coexisting harmoniously within the ecosystem. 
New solutions resulting from mutualism for Xi and Xjare updated using 
the following equations introduced by (M. Cheng & Prayogo, 2014): 

Xinew = Xi + rand(0, 1) ∗ (Xbest − MutualVector ∗BF1) (5)  

Xjnew = Xj + rand(0, 1) ∗ (Xbest − Mutual Vector ∗BF2) (6)  

MutualVector =
Xi + Xj

2
(7) 

The term “ rand(0, 1)” represents a vector containing random 
numbers falling within the specified range of 0 to 1. BF1 and BF2denote 
benefit factors that are randomly chosen to be either 1 or 2. MutualVector is 
a vector representing the extent of mutuality between organisms Xi and 
Xj. Xbestrepresents the organism with the highest fitness value. The term 
(Xbest − MutualVector ∗BF1) signifies the joint effort made by organisms to 
enhance their chances of survival. It’s important to note that updates to 
solutions occur only if the new fitness values surpass the previous ones. 
When this condition is met, organisms Xinew and Xjnewreplace Xiand Xj, 
respectively, resulting in an update to the ecosystem. Conversely, if Xinew 

and Xjnewdo not meet this condition, Xiand Xj continue to exist while the 
new solutions are discarded. 

2.2.2. Commensalism 
In commensalism, a type of relationship where one organism benefits 

while the other is neither helped nor harmed, the interaction involves 
selecting a random organism, Xj, to interact with a given organism, Xi, in 
the ecosystem. In this scenario, Xi gains an advantage from the inter
action, while Xj remains unaffected. The update for Xiin the ecosystem is 
carried out using the following equation: 

Xinew = Xi + rand(− 1, 1) ∗
(
Xbest − Xj

)
(8) 

Here, (Xbest − Xj) denote the benefit derived by Xi from Xj. Xinew 

replaces Xiin the ecosystem only when Xinew demonstrates superior 
fitness value compared to Xi, otherwise, Xiremains in the ecosystem, and 
Xinew is discarded. 

2.2.3. Parasitism 
Parasitism is a form of relationship where one organism benefits at 

the expense of harming another. In this context, the benefiting organism 
is referred to as the parasite. Within an ecosystem, an organism Xi is 
chosen and replicated to form a parasite vector. Simultaneously, another 
organism Xjis randomly selected from the ecosystem to serve as the host 
for this parasite vector. If the fitness value of the parasite vector sur
passes that of Xj, it takes over Xj’s position by replacing it. However, if 
Xjexhibits a superior fitness value, it remains the fittest and the parasite 
vector does not survive. 

2.3. Related works 

Advancements in Neural Architecture Search (NAS) aim to develop 
neural architectures that achieve optimal performance with limited 
computing resources, minimizing human intervention (X. Cheng et al., 
2020). Pioneering contributions by (Baker et al., 2016) and (Zoph & Le, 
2016) stand out as seminal works in the NAS domain. These approaches 
are recognized for their innovative use of reinforcement learning (RL) 
techniques, demonstrating their effectiveness in achieving 
state-of-the-art accuracy in image classification tasks. Their success 
highlights the potential and practicality of automated neural architec
ture design. 

RL-based NAS algorithms play a crucial role in automating the neural 
architecture design process. The introduction of the Neural Architecture 
Search with Reinforcement Learning (NAS_RL) algorithm by (Zoph & Le, 
2016) represents a milestone in this approach. NAS_RL represents neural 
architecture as a variable-length string generated by a recurrent neural 
network (RNN) acting as a controller. This string serves as a blueprint for 
constructing the corresponding neural architecture. Subsequently, 
reinforcement learning is employed as the search strategy to optimize 
and adjust the neural architecture search process based on this blue
print. NAS_RL, demonstrating superiority over some manually generated 
architectures, showcases the potential of RL-based NAS. A pivotal study, 
"Large-scale Evolution" (Real et al., 2017), further substantiates the 
viability of NAS concepts. This research, employing evolutionary 
learning, achieves results comparable to RL-based approaches, empha
sizing the adaptability and robustness of NAS methodologies. NAS has 
gained prominence in the deep learning community, leading to the 
proposal of various NAS algorithms, including DARTS (Liu et al., 2018), 
ENAS (Pham et al., 2018), and P-DARTS (Chen et al., 2019). These al
gorithms exhibit significant improvements across diverse tasks such as 
image classification, object detection, and natural language processing. 

In addition to RL methods, alternative approaches employ meta
heuristic techniques for ConvNet search or optimization of hyper
parameters. For instance, (Fernandes Junior & Yen, 2019) introduced a 
Particle Swarm Optimization (PSO)-based algorithm for searching the 
best ConvNet architecture in image classification. The algorithm en
compasses various procedures, including ConvNet representation, 
swarm initialization, particles’ fitness evaluation, measurement of dif
ferences between particles, velocity estimation, and particle update to 
explore an optimal ConvNet architecture. Evaluation results demon
strated the algorithm’s capability to discover an optimal architecture for 
any given dataset without requiring prior domain knowledge. However, 
due to limited computational power, the algorithm faced challenges in 
discovering more complex networks. Another study by (Rasdi et al., 
2016) delved into the performance assessment of three different meta
heuristic algorithms for ConvNet optimization. The algorithms consid
ered in this research are Harmony Search (HS), Simulated Annealing 
(SA), and Differential Evolution (DE). These optimization algorithms 
operate in the last layer of the ConvNet, where the values of weights and 
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biases form the solution vector for searching the optimal fitness func
tion. The obtained results are then utilized to retrain the preceding 
layers. This comprehensive investigation contributes valuable insights 
into the effectiveness of various metaheuristic algorithms in optimizing 
ConvNet architectures. The study conducted by (Kabir Anaraki et al., 
2019) explores the integration of ConvNets and Genetic Algorithm (GA) 
for the classification and grading of brain tumors based on magnetic 
resonance imaging (MRI) data. By employing ConvNets, the study fa
cilitates the automatic extraction of intricate features from MRI images, 
enabling the classification of brain tumor grades. Genetic Algorithm is 
then employed to optimize the ConvNet architecture and hyper
parameters, resulting in an overall enhancement of performance in 
terms of accuracy and efficiency. Another utilization of Genetic Algo
rithm for the automated ConvNet architecture generation was intro
duced by (Sun et al., 2020). This algorithm eliminates the need for users 
to possess ConvNet expertise to obtain effective architectures. An 
asynchronous component is incorporated to harness available compu
tational resources, enhancing the efficiency of fitness evaluation. 
Additionally, the algorithm integrates skip connections to address the 
challenge of vanishing gradients in complex data. Further optimization 
in evaluation time is achieved through the inclusion of a cache 
component, reducing the time required for evaluating the entire 
population. 

A multi-objective approach to neural architecture search was intro
duced by (Jiang et al., 2020), presenting an improved 
decomposition-based multi-objective PSO algorithm. This novel algo
rithm aims to optimize two conflicting objectives of neural networks, 
namely high accuracy and minimized learned parameters. Notably, the 
algorithm focuses on the search for ConvNet architectures, contributing 
to the field by addressing multiple objectives simultaneously and tar
geting the specific requirements of ConvNets. In a study by (Martín 
et al., 2020), a hybridized statistical coral-reef optimization algorithm 
was proposed to reduce the complexity of ConvNets without compro
mising their performance. The metaheuristic algorithm focuses on the 
reconstruction of the last layers, particularly the fully connected layers, 
in the ConvNet. A hybridization method incorporating backpropagation 
is included as the final stage to fine-tune the parameters of the network. 

This research presents an innovative approach to enhancing ConvNet 
architectures by addressing complexity issues in a targeted manner. 
Furthermore, the study by (Miao et al., 2021) proposed SOS-CNN for 
ConvNet architecture search. This research introduces three new 
non-numeric computational strategies—binary segmentation, slack 
gain, and dissimilar mutation. These strategies are seamlessly integrated 
with the Symbiotic Organism Search (SOS) algorithm, enriching its 
optimization capabilities for ConvNet architecture search. The algo
rithm demonstrated good performance in terms of accuracy, showcasing 
the effectiveness of the proposed non-numeric computational strategies 
in optimizing ConvNet architectures. 

Wen et al. (2022) introduced the Evolutionary Neural Architecture 
Search algorithm with RepVGG nodes (EvoNAS-Rep), presenting a new 
encoding strategy that maps fixed-length encoding individuals to deep 
learning structures with variable depth. The algorithm leverages 
RepVGG nodes, and a Genetic Algorithm (GA) is employed to search for 
optimal individuals and their corresponding deep learning models. The 
iterative training process is designed to simultaneously evolve the GA 
and train the deep learning model. The research focuses on enhancing 
the efficiency and effectiveness of Neural Architecture Search (NAS) for 
image classification, utilizing GA and innovative encoding strategies to 
improve the search and optimization process. Additionally, (Kong et al., 
2023) proposed a novel NAS framework specifically tailored for 
EEG-based sleep stage classification. The framework conducts archi
tectural searches using a bilevel optimization approximation, refining 
the model through search space approximation and search space regu
larization while sharing parameters across cells. The study aims to 
enhance the accuracy and efficiency of sleep stage classification using 
EEG data. The NAS framework optimizes the neural architecture for this 
particular application, addressing the unique challenges and re
quirements of EEG-based sleep stage classification. 

An algorithm called the Multi-Objective Evolutionary Algorithm 
with Probability Stack (MOEA-PS) for Neural Architecture Search (NAS) 
was proposed by (Xue et al., 2023). The study focuses on optimizing 
precision and time consumption as the primary objectives. The method 
utilizes an adjacency list to represent the internal structure of deep 
neural networks and incorporates a unique mechanism in the 

Fig. 1. General architecture of the proposed SOS_ConvNet.  
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Algorithm 1 
The proposed SOS_ConvNet 
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multi-objective genetic algorithm to guide crossover and mutation 
processes during offspring generation. Additionally, structure blocks are 
stacked using a proxy model to generate deep neural networks. The 
approach aims to strike a balance between precision and computational 
efficiency, highlighting the potential of MOEA-PS in enhancing NAS for 
evolving optimal neural network architectures. An automated CNN 
design approach using Monarch Butterfly Optimization (MBO) was 
proposed by (Wang et al., 2023). The method focuses on creating a 
comprehensive Neural Function Unit (NFU)-based architecture repre
sentation, combining elements from GoogLeNet, ResNet, and DenseNet. 
This integration facilitates a joint exploration of both 
macro-architecture and depth in convolutional neural networks (CNNs). 
Additionally, a direct architecture encoding is implemented to leverage 
the fast convergence of MBO. This involves using evolutionary operators 
with minimal computational complexity to iteratively refine the archi
tecture population through encoding optimization. Through extensive 
experiments the proposed method demonstrates consistently competi
tive performance with significantly reduced time and computational 
requirements. (Mishra & Kane, 2023)introduced a framework that em
ploys a modified Genetic Algorithm (GA) to autonomously evolve a 
proficient Convolutional Neural Network (CNN) architecture for image 
classification. The GA is improved through the formulation of an effec
tive encoding scheme, a method for initializing the input population, 
and a diverse approach for generating offspring. Furthermore, an opti
mized fitness function is suggested to accelerate convergence and miti
gate the risk of becoming trapped in local optima. Experimental results 
affirm the efficacy of the approach, showcasing its performance on par 
with the top-performing manual and state-of-the-art automatic archi
tectures in terms of accuracy, convergence rate, and computational 
resource utilization. 

An optimization approach for residual networks by utilizing an 
improved Particle Swarm Optimization (PSO) algorithm was proposed 
by (Wang et al., 2024). The fundamental unit for architecture explora
tion is a low-complexity residual architecture block, enabling a more 
diverse investigation into network architectures while minimizing pa
rameters. Additionally, a depth initialization strategy is employed to 
restrict the search space within a reasonable range, preventing unnec
essary particle exploration. Furthermore, a unique method for calcu
lating particle differences and updating velocity mechanisms is 
presented to enhance the exploration of updated trajectories. This 
approach significantly contributes to better utilization of the search 
space and increased particle diversity. Experimental results showcase 
that the algorithm can design lightweight networks with superior clas
sification performance. In a recent work by (Sharif et al., 2024), a novel 
approach employing metaheuristic algorithms for brain tumor 

classification is introduced. The initial step involves enhancing contrast 
through a combination of hybrid division histogram equalization and an 
ant colony optimization approach. Subsequently, a newly designed 
nine-layered CNN model is trained on this preprocessed data. Feature 
extraction from the second fully connected layer is executed and opti
mized using both differential evolution and moth flame optimization. 
The outputs from these optimization methods are fused using a matrix 
length approach and fed into a multi-class support vector machine 
(MC-SVM). Comparative analysis with existing techniques highlights the 
superior performance of the proposed approach. Beyond its significant 
contributions to image classification and various optimization tech
niques for Convolutional Neural Networks (ConvNets), NAS has 
extended its impact into diverse domains. Particularly noteworthy are 
its applications in speech emotion recognition, as evidenced by the work 
of Wu et al. (2022), and driver emotion recognition, as showcased by 
Zaman et al. (2022). These additional domains underscore the versatility 
and adaptability of NAS, affirming its role in advancing not only com
puter vision and deep learning but also in enhancing our understanding 
of emotional cues in speech and drivers. 

3. Proposed SOS_ConvNet 

The fundamental architecture of SOS_ConvNet relies on a set of 
essential input hyperparameters, with the training data standing as a 
cornerstone within the framework. Beyond the training data, the algo
rithm’s behaviour is intricately influenced by several key hyper
parameters. These pivotal hyperparameters encompass the maximum 
number of layers during initialization, the count of organisms, the total 
number of iterations, the batch size, the number of epochs, the number 
of neurons, the number of outputs, the kernel count, and the kernel 
dimension. Each of these hyperparameters plays a critical role in 
shaping and defining the characteristics and performance of the 
SOS_ConvNet algorithm. 

The SOS_ConvNet process for architecture creation and optimization 
revolves around three fundamental stages: initialization, optimization, 
and evaluation, as illustrated in Fig. 1. The optimization stage, a pivotal 
element of the process, encompasses three crucial phases; Mutualism, 
Commensalism, and Parasitism, similar to the basic SOS algorithm. To 
effectively apply these phases in the context of non-numeric neural ar
chitecture search, five distinct strategies have been developed: 

1. Organism Encoding Strategy for Non-Numeric ConvNet Represen
tation: This strategy defines how ConvNet architectures are non- 
numerically represented, offering a means to manipulate and 
evolve them within the algorithm. 

Fig. 2. Sample of a single organism representation.  
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2. Average Operator: Applied during the Mutualism phase, this oper
ator generates mutual vectors by computing the average between 
two organisms, facilitating cooperative optimization.  

3. Modified Difference Operator: Utilized in both Mutualism and 
Commensalism phases, this operator computes the difference be
tween two organisms in a manner tailored to non-numeric repre
sentations, aiding in architecture refinement.  

4. Novel Sum Operator for Non-Numeric Summation: In the Mutualism 
and Commensalism phases, this strategy defines how non-numeric 
summation between two organisms is carried out, promoting coop
erative evolution.  

5. Mutation Strategy for Parasite Vector Creation: Employed in the 
Parasitism phase, this strategy guides the creation of parasite or
ganisms, contributing to diversity in the population. 

During the optimization process, the architecture exhibiting the 
lowest loss value typically denotes the most optimal organism, with the 
loss value serving as the fitness metric. The overarching process is out
lined in Algorithm 1. A crucial aspect of the proposed algorithm is that 
the best architecture, along with all its features, advances to the next 
phase without undergoing re-optimization. This strategic choice is 
pivotal in retaining and building upon the most promising architectures. 
The ensuing sections will delve into these methodologies in greater 
detail, offering a comprehensive understanding of their implementation 
and significance within the algorithm. 

Input: Eco size (ecosize), maximum number of layers (lmax), 
maximum number of filters (nfmax), maximum filter size (fmax), 
maximum number of neurons in FC layer (nmax), number of outputs 
(nop), training data (X), epochs (epochs), maximum iteration (maxIt). 

Output: Best SOS_ConvNet model architecture  
1 Eco = {oi,…,on}←InitializeEco(ecosize, lmax,nfmax, fmax ,nmax, nop)

(continued on next page) 

Algorithm 2 
Initialization of the ecosystem (InitializeEcosystem()) 

Algorithm 3 
ConvNetDiff() 
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(continued ) 

2 for (i= 1 to n) do 
3 oi.loss = ComputeLoss(oi ,X, epoch)
4 End 
5 While (it< maxIt)
6 for(i= 1 to n) do 
7 select obest , oi, oj where oi ∕= oj 

8 //mutualism 
9 MutualVector = MV(oi, oj)

10 oinew = ConvNetSum(oi,ConvNet diff(obest , MutualVector)) 
11 ojnew = ConvNetSum(oj,ConvNet diff(obest , MutualVector)) 
12 if (ComputeLoss(oinew )) < oi.loss 
13 Replace oi with oinew 
14 end if 
15 if (ComputeLoss(ojnew )) < oj.loss 
16 Replace oj with ojnew 
17 end if 
18 //commensalism 
19 select oj where oi ∕= oj 

20 oinew = sum (oi,diff(obest ,oj) )

21 if (ComputeLoss(oinew )) < oi.loss 
22 Replace oi with oinew 
23 end if 
24 //Parasitism 
25 Select oi 

26 oparasite = oi.copy 
27 If oparasite.length < 3 
28 If rand() > rand()
29 oparasite.push(addConv)
30 else 
31 oparasite.push(addPool)
32 end if 
33 else 
34 prob = rand()
35 If prob > 0.5 
36 If rand() > rand()
37 oparasite.push(addConv)
38 else 
39 oparasite.push(addPool)
40 end if 
41 else 
42 ridx = rand(2,oparasite.length)
43 oridx = null 
44 end if 
45 end if 
46 If (ComputeLoss(oparasite)) < oi.loss 
47 Replace oi with oparasite 

48 end if 
49 end  

3.1. Organism encoding strategy 

A critical aspect of developing any population-based approach 
geared towards the evolution of ConvNets lies in the encoding or rep
resentation scheme. This work introduces a straightforward yet effective 
organism encoding strategy. Each organism in the population of SOS 
serves as a potential solution. In this encoding strategy, an organism 
represents a complete ConvNet architecture. It’s crucial to emphasize 
that this proposed model does not optimize the weights of the network 
but focuses solely on defining the architectural components, such as 
layer types (convolution, pooling, and fully connected), and other 
pertinent hyperparameters. These hyperparameters include the number 
of kernels and kernel sizes for convolutional layers, pool window spec
ifications for pooling layers, and the number of neurons for fully con
nected layers, all of which are essential for evolving architectures. 

In a typical ConvNet architecture, three main hidden layers are 
involved: convolutional, pooling (which can be either max or average 
pooling), and fully connected layers. Within the proposed encoding 
strategy, an individual organism that represents a ConvNet includes all 
three layers. These layers are organized in the form of a list of dictio
naries, where each dictionary entry corresponds to one layer. Each 
dictionary contains specific information related to the layer type and its 
respective hyperparameters. For example, a position in the list (a 

dictionary) stores details such as the type of layer, the number of ker
nels, kernel dimension, and stride for a convolution. In the case of a 
pooling layer, it includes information about the layer type, kernel di
mensions, and stride value. A position representing a fully connected 
layer provides details about the layer type and the number of neurons. 
Fig. 2 illustrates this encoding strategy, where C, P, and FC respectively 
signify convolution, pooling, and fully connected layers. This encoding 
approach offers a concise yet comprehensive representation of ConvNet 
architectures, allowing the evolutionary algorithm to effectively explore 
and optimize these architectures. 

3.2. Initialization of the ecosystem 

The initial step in the proposed model involves the initialization of 
the Ecosystem. The function initializeEcosystem() is invoked to randomly 
generate N organisms, each representing distinct ConvNet models 
within the initial population. Adhering to ConvNet architectural con
ventions, it is a prerequisite for a ConvNet to consist of at least three 
layers, with convolution as the first layer and a fully connected layer as 
the final layer. Accordingly, a range between three to lmax is defined, 
within which the number of layers for each architecture is randomly 
generated. To ensure the validity of all generated architectures, two 
conditions are enforced. The first condition mandates that the first and 
last layers of every architecture must be convolution and fully connected 
layers, respectively. The second condition ensures that no other layer 
follows a fully connected layer except another fully connected layer. 
This adheres to the established convention in the literature on ConvNet 
design. Introducing a fully connected layer in-between other layers 
significantly increases the number of trainable parameters in a model, 
making it more complex. Pooling layers are strategically placed to 
reduce the number of output features by a factor of two, resulting in a 
more suitable input for the fully connected layer, where fewer neurons 
are required. 

The algorithm’s initialization process is executed through various 
functions as depicted in Algorithm 2. The InsertConv() function adds a 
convolution to the architecture, incorporating a random number of fil
ters within the range 1 to nfmax. The filter size is also randomly selected 
within the range of 3 X 3 to fmax X fmax, where fmax represents the 
maximum filter size, and the sliding value is set to 1. In this research, the 
activation function for all layers is consistently the rectified linear unit 
(ReLU), except for the softmax (output) layer. The InsertPool() function 
adds a max pooling layer randomly to the individual architecture, 
featuring a window size of 3 X 3 and a stride value of 1. To mitigate the 
risk of excessive inclusion of pooling layers, the probability of adding 
pooling layers is kept very low. This precaution is crucial to prevent 
over-pooling, which could lead to the loss of vital image details. The 
InsertFC() function adds a fully connected layer to the individual ar
chitecture, with the number of neurons ranging from 2 to a maximum of 
nmax. It’s noteworthy that the initialization method is adapted from 
PSOCNN (Fernandes Junior & Yen, 2019) and has been modified to meet 
the specific requirements of the current research. Algorithm 2 orches
trates these functions to generate the initial population of ConvNet 
architectures. 

Input: Eco size (n), maximum number of layers (lmax), maximum 
number of filters (nfmax), maximum filter size (fmax), maximum number 
of neurons in F layer (nmax), number of outputs (nop). 

Output: A population of (ecosize) organisms eco = {o1, …,on }

1 For i = i to n do 
2 oi.lenght = rand(3, lmax); 

for j = 1 to oi.lenght do 3 
4 If j == 1 then 
5 list layers[j]←InsertConv(fmax,nfmax); 
6 else if j == oi.lenght then 
7 list layers[j]←InsertF(nop); 
8 else if list layers[j − 1].type == ˝fully − connected˝ then 
9 list layers[j]←InsertF(nmax); 

(continued on next page) 
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(continued ) 

10 else 
11 layer type← rand(1, 3);
12 if layer type == 1 then 
13 list layers[j]←InsertConv(fmax ,nfmax); 
14 else if layer type == 2 then 
15 list layers[j]←InsertPool(); 
16 else 
17 list layers[j]←InsertFC(nmax); 
18 end 
19 end 
20 end 
21 orgi. list layers ←list layers;
22 end 
23 return eco = {o1 , …,on}

3.3. Organism update operators 

This section elaborates on the operators employed for updating in
dividual architectures in alignment with the three phases of the SOS 
algorithm. The key operators utilized during the mutualism and 
commensalism phases are the sum and the difference operators, while 
the average operator plays a crucial role in generating mutual vectors at 
the Mutualism phase. 

3.3.1. Difference operator 
To measure the difference between two individual architectures, the 

approach outlined in Fernandes Junior and Yen (2019) was adopted and 
subsequently modified. First, each randomly selected individual is par
titioned into two sections: one section comprises the convolution and 
pooling layers, and the other section encompasses the fully connected 
layers. This separation ensures that no fully connected layer is inter
posed between other layers, thereby preventing the formation of invalid 
architectures. This separation facilitates the computation of the differ
ence between the convolution/pooling layers and the fully connected 
layers independently. The fully connected layer representing the output 
is isolated. The computation of the difference between two individuals, 
as outlined in algorithm 3, takes into consideration the layer types under 
the following conditions:  

1. If both individuals have convolution layers at the current position, 
the difference is computed as 0, disregarding hyperparameters. This 
indicates to the update operator that the layer at this position should 
remain unchanged, preserving the hyperparameters of the corre
sponding layer in the first individual  

2. If the layer types differ, the layer from the first individual is retained 
along with its hyperparameters  

3. If the first individual has more layers than the second individual, an 
extra layer is appended to the final difference. The additional layer is 
randomly chosen from convolution, pooling, or fully connected 
layers. Conversely, if the first individual has fewer layers than the 
second individual, − 1 is appended to the final result, signaling to the 
update operator to discard the layer at this position. The algorithm 
outlining the difference procedure is presented in Algorithm 3. 

Input: two architectures o1, o2 
Output: an architecture  

1 If (o1 .length > o2.length)
2 O = o1.length 
3 else if (o1.length < o2.length)
4 O = o2.length 
5 else 
6 O = o1.length 
7 end if 
8 ConvNetDiff←[]

9 For i = 1 to O do 
10 If (o1[i] is not Empty and o2[i] is not Empty) 
11 If(o1[i].type = = o2[i].type) 

(continued on next column)  

(continued ) 

12 o1[i].type=″keep″ 

13 ConvNetDiff←o1[i]

14 else 
15 ConvNetDiff←o1[i]

16 else if (o1[i] is not Empty and o2[i] is Empty) 
17 ConvNetDiff←o1[i]

18 else if (o1[i] is Empty and o2[i] is not Empty) 
19 o2[i].type = ″remove″ 

20 end if 
21 Return ConvNetDiff  

3.3.2. Average operator for mutual vector 
The mutual vector operation in SOS_ConvNet, as outlined in Algo

rithm 4, is designed to calculate the mean of two chosen individuals. 
This involves implementing an average operator to compute the mean of 
hyperparameter values specifically within the convolution layers of the 
selected architectures. The exclusive application of the average operator 
to convolution layers is based on their paramount importance in a 
ConvNet. The average operation between two selected individuals in
volves calculating the mean of their kernel counts (number of kernels). It 
is crucial to emphasize that the previously discussed split operation is 
also applied at this stage. The average operation between layers can be 
formulated as follows: 

MV
(
Ci,Cj

)
=

KernelCnt(Ci) + KernelCnt
(
Cj
)

2
(9) 

Here, KernelCnt(Ci) represents the number of kernels in the given 
convolution layer of the first selected architecture, and KernelCnt(Cj)

represents the number of kernels in the corresponding convolution layer 
of the second selected architecture. When the respective layers are not 
the same, the convolution layer with its features is chosen, given its high 
significance in feature extraction. In situations where one of the archi
tectures has an empty layer while the other does not, the non-empty 
layer is added, and its features are retained. 

Input: two architectures o1, o2 
Output: Architecture representing the average between two 

architectures  
1 If (o1.length > o2.length)
2 O = o1.length 
3 else If (o1.length < o2.length)
4 O = o2.length 
5 else 
6 O = o1.length 
7 Endif 
8 layersList←[]

9 For i = 1 to O do 
10 If (o1[i].type is not Empty and o2[i].type is not Empty) 
11 If(o1[i] .type == ˝C˝ and o2[i].type = = ˝C˝) 
12 o1.kernelCount = (o1[i].kernelCount + o2[i].kernelCount)/2 
13 layersList←o1 
14 Kerneldim.average 
15 Strides.average 
16 else if (o1[i] .type == ˝C˝ and o2[i].type = = ˝P˝) 
17 layersList←o1[i]

18 else if(o1[i].type == ˝P˝ and o2[i].type = = ˝C˝) 
19 layersList←o2[i]

20 else (tupleaverage.poolwindow o1, poolwindow o2 
21 end if 
22 else if (o1[i] .type is not Empty and o2[i] .type is Empty) 
23 layersList←o1[i]

24 else if (o1[i] .type is Empty and o2[i] .type is not Empty) 
25 layersList←o2[i]

26 endif  

3.3.3. Novel sum operator 
The addition operation is a fundamental operation extensively uti

lized in the SOS algorithm, applied during both the Mutualism and 
Commensalism phases. To implement the summation of individual ar
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chitectures, a simple arithmetic method is proposed. When two in
dividuals are selected for summation, their layers are combined 
following the elementary arithmetic rule of x+ x = 2x. This implies, for 
any two randomly selected architectures, the addition operator adds the 
respective layers of the two architectures. The length of the resulting 
architecture equals the total length of the two architectures. For 
instance, if two architectures with lengths of 5 and 4 are selected, the 
resultant architecture generated by the sum operator will have a length 

of 9, representing the total combined layers. In essence, this operation is 
analogous to the union operation in set theory. To maintain the validity 
and adherence to architectural conventions, the split operation is 
implemented at this stage. This process ensures that the resulting ar
chitecture remains structurally sound. A visual representation of the 
sum operation is illustrated in Fig. 3, and the operational process is 
detailed in Algorithm 5.  

Algorithm 4 
The average operator algorithm 

Fig. 3. Addition of two individuals.  
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Input: two architectures o1, o2 
Output: convNet  

1 If (o1 .length > o2.length)
2 O = o1.length 
3 else if (o1.length < o2.length)
4 O = o2.length 
5 else 
6 O = o1.length 
7 end if 
8 ConvNetSum←[]

9 For i = 1 to O do 
10 If (o1[i].type is not Empty and o2[i].type is not Empty) 
11 If(o1[i].type == ˝C˝ and o2[i] .type = = ˝C˝) 
12 ConvNetSum.extend(o1[i] , o2[i]

13 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝keep˝) 
14 ConvNetSum.append(o1[i])

15 else if (o1[i].type == ˝keep˝ and o2[i].type = = ˝C˝) 
16 ConvNetSum.append(o2[i])

17 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝remove˝) 
18 Pass 
19 else if (o1[i].type == ˝remove˝ and o2[i] .type = = ˝C˝) 
20 Pass 
21 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝C˝) 
22 ConvNetSum.extend(o1[i] , o2[i]

23 else if (o1[i].type == ˝C˝ and o2[i] .type = = ˝P˝) 
24 ConvNetSum.extend(o1[i] , o2[i])

25 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝P˝) 
26 ConvNetSum.extend(o1[i] , o2[i])

27 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝keep˝) 
28 ConvNetSum.append(o1[i])

29 else if (o1[i].type == ˝keep˝ and o2[i].type = = ˝P˝) 
30 ConvNetSum.append(o2[i])

31 else if (o1[i].type == ˝P˝ and o2[i].type = = ˝remove˝) 
32 Pass 
33 else if (o1[i].type == ˝remove˝ and o2[i] .type = = ˝P”) 
34 Pass 
35 end if 
36 else if(o1[i] .type is not Empty and o2[i] .type is Empty) 
37 ConvNetSum.append(o1[i])

38 else if(o1[i] .type is Empty and o2[i] .type is not Empty) 
39 if(o2[i].type = = ˝keep˝)
40 pass 
41 else if(o2[i] .type = = ˝remove˝)
42 pass 
43 else 
44 ConvNetSum.append(o2[i])

45 end if 
46 end if 
47 Return ConvNetSum  

3.3.4. Mutation operator for parasite vector generation 
In the main SOS algorithm, a randomly selected organism within the 

ecosystem is subject to modification to generate the parasite vector. 
Subsequently, a second individual, also randomly chosen, is compared 
with the parasite vector. The outcome dictates the survival of the best 
individual, while the other ceases to exist in the ecosystem. To imple
ment the creation of parasite ConvNet as the parasite vector, an indi
vidual architecture is randomly selected for modification. This 
modification encompasses actions such as adding or removing a layer, or 
altering the type of a layer. During the generation of the parasite, the 
architecture is split into two distinct sections: the Conv/Pool section, 
comprising convolution and pooling layers, and the FC section, housing 
the fully connected layers. The mutation of the selected architecture 
solely occurs within the Conv/Pool section. The process involves a 
randomized selection of one of the following actions: adding a layer, 
removing a layer, or changing the layer type. If the chosen action is to 
add a layer, either a pooling or convolution layer is automatically 
inserted at the end of the Conv/Pool section. Conversely, in the case of 
choosing to remove a layer, a layer is randomly selected from the ar
chitecture and discarded. Otherwise, if the selected option is to change a 
layer type, a layer is randomly selected and its type is modified (e.g., 
from Conv to Pool, or Pool to Conv). It is important to note that a higher 

probability is assigned to the removal or changing options, particularly 
for pooling layers. This emphasis on reducing the number of pooling 
layers aligns with the objective of minimizing the architecture’s pooling 
layers, as mentioned earlier. 

3.4. Fitness evaluation 

In the process fitness evaluation, conventional metaheuristic algo
rithms often consider individual with the minimum objective function 
value as the best individual. In this study, the objective function is 
represented by the loss function, specifically the cross-entropy loss 

Algorithm 5 
ConvNetSum() 
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function. Therefore, the fitness evaluation involves the comparison of 
the loss function for each individual based on the cross-entropy loss 
function. Consequently, the algorithm strives to identify an individual 
architecture with the lowest loss value. This is accomplished through a 
function called evolve(). At this stage, each individual architecture is 
compiled into a complete ConvNet and subjected to training using a 
specified data set for a predetermined number of epochs and iterations 
to obtain the corresponding the loss value. The training process employs 
the Adam optimizer and Xavier weight initializer. The choice of Adam 
optimizer and Xavier weight initializer is grounded in their proven 
ability to expediate training, and enhance the convergence properties of 
deep neural networks. These techniques have gained widespread 
adoption in the deep learning community due to their empirical success 
across various applications. However, a major challenge is that each and 

every individual architecture in the ecosystem has to be trained with the 
same dataset which is a computationally intensive task. 

4. Experiment set up 

The proposed algorithms for SOS_ConvNet were implemented using 
Python, utilizing the Google Colab platform for execution and experi
mentation. This study adhered to a meticulous approach, involving 
thorough testing and evaluation of SOS_ConvNet across diverse datasets. 
The subsequent subsections offer comprehensive insights into the 
datasets utilized and the specific parameter settings employed in the 
experimental procedures. 

Fig. 4. Sample images from MNIST dataset.  

Fig. 5. Sample images from Fashion-MNIST dataset.  

Fig. 6. Sample images from CIFAR-10 dataset.  
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4.1. Datasets 

The study rigorously tested the proposed SOS_ConvNet algorithm 
across four distinct benchmark datasets: MNIST, Fashion-MNIST, 
BreakHis, and CIFAR-10. These datasets were carefully chosen to 
cover a range of image classification tasks. Through systematic experi
ments and evaluations on these datasets, the research validates and es
tablishes the reliability of the proposed NAS algorithm. The obtained 
results underscore the algorithm’s capacity to generate convolutional 
neural network architectures that exhibit outstanding performance 
across diverse image classification domains. MNIST Dataset: MNIST is a 
well-known dataset containing grayscale images of handwritten digits 
(0–9), each sized at 28 × 28 pixels. It stands as a cornerstone for image 
classification tasks, featuring 60,000 training samples and 10,000 
testing samples. Exemplary samples from the MNIST dataset are illus
trated in Fig. 4. 

Fashion-MNIST Dataset: Fashion-MNIST, tailored for image clas
sification tasks, stands as another prominent dataset in the study. It 
encompasses grayscale images featuring various fashion items, 
including clothing and accessories. Similar to MNIST, this dataset in
corporates 60,000 training samples and 10,000 testing samples. Visual 
representations of sample images from the Fashion-MNIST dataset are 
depicted in Fig. 5. 

CIFAR-10 Dataset: CIFAR-10, renowned for its complexity, features 
coloured images categorized into ten classes, including airplanes, au
tomobiles, and various animals. Comprising 60,000 training images and 
10,000 testing images, this dataset poses a significant challenge for 
image classification algorithms. Fig. 6 provides visual samples from the 
CIFAR-10 dataset 

BreakHis Dataset: The BreakHis dataset is a specialized medical 

dataset tailored for breast cancer diagnosis. It encompasses microscopic 
breast histopathology images, meticulously classified into benign and 
malignant classes. This dataset serves as a pivotal benchmark for 
assessing the efficacy of SOS_ConvNet in the domain of medical image 
classification. Fig. 7 showcases representative samples from the Break
His dataset. 

4.2. Parameter settings 

The success of SOS_ConvNet relies on carefully configured hyper
parameters that govern various aspects of the SOS algorithm, ConvNet 
initialization, and training. Table 1 encapsulates the hyperparameter 
settings utilized in the experiments, providing insights into critical as
pects of the optimization process. In the first column, parameters 
steering the behavior of the SOS algorithm are delineated. The basic SOS 
require few parameters setting that is the ecosystem size (eco size). 
Similarly, in the proposed SOS_ComvNet, the “eco size” determines the 
number of ConvNet architectures under consideration. Simultaneously, 
the “number of iterations” is required by all optimization algorithms to 
mark the termination point of the optimization. 

The second group or column outlines the hyperparameters necessary 
for the initial generation of the organism population. These hyper
parameters set boundaries for the random architectures within the 
initial population, establishing the foundation for subsequent evolu
tionary processes. The final group of parameters presented in the third 
column governs the training of the architectures. The “individual opti
mization epochs” hyperparameter dictates the number of epochs for 
which the architectures are trained during the optimization process. 
Additionally, the “training epochs for best ConvNet” hyperparameter 
specifies the number of epochs dedicated to training the globally 
recognized best architecture. Furthermore, batch normalization and 
dropout rates have been included as essential components to mitigate 
overfitting. 

5. Results and discussion 

In this section, the results obtained from the proposed SOS_ConvNet 
are presented and analyzed. The SOS_ConvNet model was evaluated 
using various datasets, and thus, the best model generated by 
SOS_ConvNet for each dataset is showcased. Additionally, a thorough 
comparison is conducted, comparing the performance of the 
SOS_ConvNet models against established models from the literature. The 
selection of compared models was driven by their prevalence in the NAS 
literature, representing some of the most common NAS models. Addi
tionally, we included popular handcrafted models for a comprehensive 
comparison. This evaluation approach ensures a well-rounded analysis 
by considering both state-of-the-art NAS models and widely recognized 
handcrafted models, providing a comprehensive perspective on the 
performance of our proposed SOS_ConvNet. For each dataset, the eval
uation results highlight the strengths and capabilities of the best 
SOS_ConvNet model. The evaluation results are discussed in detail, 
emphasizing the advantages and improvements achieved by the 

Fig. 7. Sample images from BreakHis dataset.  

Table 1 
Hyperparameter Settings.  

SOS settings ConvNet initialization 
settings 

ConvNet training settings 

Eco size 20 Minimum number 
of layers 

3 Individual 
optimization epochs 

3 

Number of 
iterations 

10 Maximum number 
of layers 

20 Training epochs for 
best ConvNet 

300   

Minimum kernel 
size for Conv layers 

3 ×
3 

Dropout rate 0.4   

Maximum kernel 
size f or Conv layers 

7 ×
7 

Batch normalization 
layers 

yes   

Minimum number 
of filters 

3    

Maximum number 
of filters 

256    

Minimum number 
of neurons in FC 
layer 

1    

Maximum number 
of neurons in FC 
layer 

300   
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SOS_ConvNet models in terms of classification accuracy, model 
complexity, or other relevant factors. 

5.1. Results on MNIST dataset 

To evolve models using the MNIST dataset, the algorithm was trained 
for 3 epochs and 10 iterations. Subsequently, the global best architecture 
at the end of iterations was further trained for 300 epochs. The details of 
the best model obtained is shown in Table 2. 

Fig. 8 illustrates the training and testing process of the SOS_ConvNet 
model over 300 epochs. The curves displayed in the figure demonstrate 
the model’s performance throughout the training and testing phases. 
The absence of significant deviations or irregularities in these curves 
indicates that the proposed model does not suffer from overfitting or 
underfitting issues. This observation confirms that the generated Con
vNet is capable of generalizing well to unseen data, ensuring reliable and 
consistent image classification. 

The proposed SOS_ConvNet algorithm achieved remarkable results 
with the global best architecture, achieving an impressive accuracy of 
0.9969, equivalent to 99.69 %. The corresponding error rate was 
calculated to be 0.0031, which translates to an error rate of 0.31 %. 
These results demonstrate the high precision and effectiveness of the 
SOS_ConvNet model in accurately classifying images. 

Table 3 provides a comprehensive comparison of the proposed model 
with other algorithms based on the reported error rates as percentages. 
The comparison aims to assess the performance of the proposed algo
rithm relative to the compared approaches. Notably, the compared al
gorithms consist of both manually generated models such as LeNet5, and 
automatically generated models using population-based algorithms, 
including IPPSO, PSO_CNN, and SOSCNN. The comparison is based on 
results reported in the literature. Based on the error rates reported in 
Table 3, the following analysis can be made: LeNet5 (LeCun et al., 1998) 
is a manually generated model with an error rate of 0.95 %. The pro
posed SOS_ConvNet algorithm outperforms LeNet5, achieving a lower 
error rate of 0.31 %. This indicates that the automatically generated 

SOS_ConvNet model is more effective in image classification compared 
to the manually designed LeNet5. The error rate reported for IPPSO 
(Wang et al., 2018) is 1.13 %. In comparison, the proposed SOS_ConvNet 
algorithm demonstrates superior performance with an error rate of 0.31 
%. This shows that the SOS_ConvNet outperforms IPPSO in terms of 
classification accuracy. The PSO_CNN (Fernandes Junior & Yen, 2019) 
algorithm achieved an error rate of 0.32 %. The proposed SOS_ConvNet 
algorithm performs competitively, exhibiting a slightly lower error rate 
of 0.31 %. This suggests that both algorithms are effective in image 
classification, with the SOS_ConvNet demonstrating comparable per
formance to PSO_CNN. The SOSCNN (Miao et al., 2021) algorithm re
ported an error rate of 0.38 %. Once again, the proposed SOS_ConvNet 
algorithm outperforms SOSCNN achieving a lower error rate of 0.31 %. 
This indicates that the SOS_ConvNet approach is more successful in 
generating ConvNets with higher accuracy for image classification tasks. 
This comparison underscores the effectiveness of the SOS_ConvNet al
gorithm in generating ConvNets with superior accuracy for image clas
sification tasks. The results showcase its competitive performance 
against both manually designed models and other automated algorithms 
based on population-based techniques. The high accuracy achieved by 
the global best architecture, coupled with the absence of overfitting or 
underfitting issues, reinforces the reliability and robustness of the pro
posed SOS_ConvNet model for image classification tasks. 

Table 2 
Description of the model generated on MNIST dataset.  

Layer Hyperparameters 

Conv Kernel size = 6 × 6, No. of kernels = 216 
Conv Kernel size = 5 × 5, No. of kernels = 25 
Pooling Pool window = 3 × 3 
Pooling Pool window = 3 × 3 
Conv Kernel size = 7 × 7, No. of kernels = 101 
Conv Kernel size = 7 × 7, No. of kernels = 11 
Conv Kernel size = 7 × 7, No. of kernels = 11 
Pooling Pool window = 3 × 3 
FC Number of neurons = 10  

Fig. 8. Training curves of SOS_ConvNet on MNIST dataset.  

Table 3 
Comparison results of the proposed algorithm on MNIST dataset.  

Model Error (%) 

LeNet5 (LeCun et al., 1998) 0.95 
IPPSO (Wang et al., 2018) 1.13 
PSO_CNN (Fernandes Junior & Yen, 2019) 0.32 
SOSCNN (Miao et al., 2021) 0.38 
Proposed SOS_ConvNet 0.31  

Table 4 
Layers and hyperparameters of the Global Best Model on Fashion-MNIST 
Dataset.  

Layer Hyperparameters 

Conv Kernel size = 4 × 4, No. of kernels = 161 
Conv Kernel size = 4 × 4, No. of kernels = 86 
Pooling Pool window = 3 × 3 
Conv Kernel size = 5 × 5, No. of kernels = 4 
FC No. of neurons = 512 
FC(output) Number of neurons = 10  
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5.2. Results on fashion_ mnist dataset 

The best-performing model generated by SOS_ConvNet showcased 
exceptional results, prompting a detailed comparison with published 
outcomes from other models based on neural architecture generation 
and manually designed models. The specifics of the top-performing 
model obtained through SOS_ConvNet are meticulously presented in 
Table 4. This comparison provides valuable insights into the efficacy of 
SOS_ConvNet in achieving remarkable performance relative to existing 
models in the domain of neural architecture search. 

The training and testing curves, as depicted in Fig. 9, present the 

performance of the proposed SOS_ConvNet model on the Fashion_
MNIST dataset. These curves serve as valuable indicators of the model’s 
learning dynamics and its capacity to generalize to previously unseen 
data. Analyzing the training curves reveals a consistent improvement in 
accuracy over the course of the training process. The training accuracy 
progressively rises to a commendable value of 0.9722, equivalent to 
97.22 %. This signifies the model’s adeptness in learning from the 
training data, effectively capturing intrinsic patterns and features 
crucial for accurate classification. 

The test curve reveals the model’s proficiency on previously unseen 
test data. The highest test accuracy achieved by the model is 0.9330, 
equivalent to an impressive accuracy rate of 93.30 %. This demonstrates 
that the model can successfully generalize its learnings to new and un
seen examples, achieving a high level of accuracy in effectively classi
fying images from the Fashion_MNIST dataset. The error rate for the test 
accuracy is computed as 0.067, equivalent to a commendably low rate of 
6.7 %. This signifies that the model exhibits a relatively low level of 
misclassification, further highlighting its efficacy in accurately predict
ing the class labels of the Fashion-MNIST images. Importantly, the 
minimal discrepancy between the training and testing accuracy suggests 
that the model does not suffer from overfitting. Overfitting occurs when 
a model performs exceptionally well on the training data but fails to 
generalize to new data. The results were benchmarked against PSO_CNN 
(Fernandes Junior & Yen, 2019), SOSCNN (Miao et al., 2021), Evo_CNN 
(Sun et al., 2019), AlexNet, VGG16, MobileNet, and GoogleNet. 

Table 5 provides a comprehensive comparison between the proposed 
SOS_ConvNet model and other existing models on the Fashion_MNIST 
dataset. The comparison considers both the reported error rates and the 
number of parameters (the weights) in millions. An analysis of the re
sults reveals the following insigths: AlexNet achieves an error rate of 
10.1 % on the Fashion_MNIST dataset, with a relatively high parameter 
count of 62.3 million. AlexNet is outperformed by the proposed 
SOS_ConvNet, which demonstrates a lower error rate of 6.7 % and a 
significantly reduced parameter count of 0.24 million. Vgg_16 achieved 
an error rate of 6.5 % with a parameter count of 26.0 million. The 
proposed SOS_ConvNet model exhibits slightly higher error rate (6.7 %) 
but stands out for its efficiency, boasting a much smaller parameter 
count of 0.24 million. This indicates that the proposed model offers 
competitive performance while being more parameter-efficient. Mobi
leNet achieves a better error rate of 5.0 %, the proposed SOS_ConvNet, 
with its higher error rate of 6.7 %, stands out for its remarkable 
parameter efficiency, featuring only 0.24 million parameters compared 
to MobileNet’s 4.0 million. This emphasizes the compact and light
weight nature of the SOS_ConvNet architecture. GoogleNet achieved an 
error rate of 6.3 % with a parameter count of 23.0 million. The proposed 
SOS_ConvNet model exhibits a slightly higher error rate of 6.7 % but 
significantly reduced parameter counts of 0.24 million. This underscores 
the potential of the proposed model to achieve comparable performance 

Fig. 9. Training and Testing Process of the Global Best Model on Fashion_MNIST dataset.  

Table 5 
Comparison results of the proposed algorithm on Fashion_ MNIST dataset.  

Model Error (%) Parameters in millions 

AlexNet* 10.1 62.3 
Vgg_16* 6.5 26.0 
MobileNet* 5.0 4.0 
GoogleNet* 6.3 23.0 
Evo_CNN (Sun et al., 2019) 5.47 6.68 
PSO_CNN (Fernandes Junior & Yen, 2019) 5.53 2.32 
SOSCNN (Miao et al., 2021) 5.68 2.30 
Proposed SOS_ConvNet 6.7 0.24  

* https://github.com/z alandoresearch/fashion-mnist. 

Table 6 
Layers and Hyperparameters of the Global Best Model on CIFAR-10 dataset.  

Layer Hyperparameters 

Conv Kernel size = 3 × 3, No. of kernels = 52 
Conv Kernel size = 3 × 3, No. of kernels = 95 
Conv Kernel size = 4 × 4, No. of kernels = 95 
Pooling Pool window = 2 × 2 
Conv Kernel size = 3 × 3, No. of kernels = 128 
Conv Kernel size = 3 × 3, No. of kernels = 128 
Conv Kernel size = 3 × 3, No. of kernels = 128 
FC Number of neurons = 512 
FC(output) Number of neurons = 10  

Table 7 
Models evaluation results on CIFAR-10 Dataset.  

Model Train Accuracy (%) Test Accuracy (%) Time (minutes) 

VGG16 97.48 67.62 4.99 
VGG19 97.68 67.93 4.45 
AlexNet 98.54 65.87 11.66 
MobileNet 84.10 82.18 25.55 
ResNet20 84.97 82.08 20.62 
SOS_ConvNet 84.52 82.78 22.50  
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to GoogleNet while featuring a simpler and more resource-efficient 
architecture. 

Evo_CNN achieves a lower error rate of 5.47 %, the proposed 
SOS_ConvNet, with its 6.7 % error rate, stands out for its exceptional 
parameter efficiency, having only 0.24 million parameters compared to 
Evo_CNN’s 6.68 million. This suggests that SOS_ConvNet can offer 
comparable performance with significantly fewer parameters, empha
sizing its efficiency and suitability for resource-constrained scenarios. 
PSO_CNN achieves an error rate of 5.53 % with a parameter count of 
2.32 million. The proposed SOS_ConvNet model with a marginally 

higher error rate of 6.7 %, showcases superior parameter efficiency, 
boasting only 0.24 million parameters. This emphasizes the compact 
architecture and resource efficiency of SOS_ConvNet, making it a 
favourable choice for scenarios where minimizing parameters is crucial. 
SOSCNN achieves an error rate of 5.68 % and a parameter count of 2.30 
million, exhibiting a comparable performance profile to PSO_CNN. 
However, the proposed SOS_ConvNet, with its slightly higher error rate 
of 6.7 % and significantly fewer parameters (0.24 million), offers a more 
parameter-efficient alternative. This underscores SOS_ConvNet’s ability 
to strike a balance between error rate and model simplicity. The 

Fig. 10. Training and testing processes of the compared models on CIFAR-10 dataset.  
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comparison in Table 5 demonstrates that the proposed SOS_ConvNet 
model achieves competitive performance on the Fashion_MNIST dataset. 
Despite having a slightly higher error rate compared to some existing 
models, it stands out by offering a significantly smaller number of pa
rameters. This indicates that the proposed model can achieve compa
rable accuracy while being more parameter-efficient and potentially 
more computationally efficient, making it an attractive solution for 
image classification tasks. Generally, the training and testing curves, 
along with the achieved accuracies and error rates, indicate that the 
proposed SOS_ConvNet model performs exceptionally well on the 
Fashion_MNIST dataset. Its high accuracy, minimal error rate, and 
absence of overfitting contribute to its reliability and effectiveness in 
accurately classifying images from the Fashion-MNIST dataset. 

5.3. Results on CIFAR-10 dataset 

The evaluation of the proposed SOS_ConvNet algorithm on the 
CIFAR-10 dataset involved a systematic experiment. Initially, architec
tures were generated using the dataset, and these architectures under
went optimization through a single epoch and 10 iterations to identify 
the global best architecture. Subsequently, the global best architecture 
was further trained on the CIFAR-10 dataset for a total of 30 epochs. The 
structural details of the resulting global best model are outlined in 
Table 6. 

To conduct a comprehensive evaluation, well-known handcrafted 
models, including AlexNet, ResNet, VGG, and MobileNet, were trained 
on the same platform as the proposed model. This comprehensive 
evaluation considered key criteria, including both time efficiency and 
accuracy. The results obtained from this evaluation offer valuable in
sights into the effectiveness of the proposed model compared to these 
established models. The results of this evaluation are succinctly pre
sented in Table 7. 

From the results on Table 7; AlexNet, VGG19, and VGG16 achieved 
remarkable training accuracies of 98.54 %, 97.68 %, and 97.48 %, 
respectively. However, despite their impressive performance on the 
training data, these models paradoxically demonstrate lower accuracy 
when assessed on the test set. In fact, even the best-performing model, 
AlexNet, displayed the lowest overall test accuracy of 65.87 %. This 
consistent trend of high training accuracy coupled with low test accu
racy strongly suggests that these models are suffering from overfitting 
when evaluated on the test data. MobileNet and ResNet, in contrast, 
demonstrated robust performance on both the training and testing 
datasets. MobileNet achieved training and test accuracies of 84.10 % 

and 82.18 %, respectively, while ResNet achieved training and test ac
curacies of 84.97 % and 82.08 %. Importantly, these models exhibited 
no apparent signs of overfitting, as indicated by the relatively small 
variation between their training and testing accuracies. This consistency 
in performance between the training and testing datasets suggests that 
MobileNet and ResNet have successfully learned to generalize from the 
training data to unseen examples. They appear to capture meaningful 
features and patterns that are applicable beyond the specific training set, 
resulting in reliable and consistent predictions on new data. The absence 
of overfitting is a positive indicator of these models’ ability to generalize 
effectively. 

The model generated by the proposed SOS_ConvNet achieved an 
impressive test accuracy of 82.78 %, while its training accuracy stood at 
84.52 %. Importantly, this performance indicates that no overfitting was 
observed in the SOS_ConvNet model. Furthermore, the training time 
required by SOS_ConvNet was reasonable, demonstrating that it can 
efficiently generate models with strong performance on a given dataset. 
These findings highlight the effectiveness of SOS_ConvNet in producing 
models that not only excel in terms of accuracy but also exhibit a 
balanced learning process. The absence of overfitting underscores the 
model’s ability to generalize well to unseen data, while its efficient 
training time adds to its appeal as a practical and efficient approach for 
generating high-performing models for specific image classification 
tasks. In terms of training time, VGG19 emerged as the fastest model, 
requiring approximately 4 min and 45 s for training, followed closely by 
VGG16, which took approximately 5 min. In contrast, MobileNet had the 
longest training time, demanding approximately 25 min and 55 s. The 
proposed SOS_ConvNet model fell in between with a training time of 
22.5 min. It’s noteworthy that despite the moderate training time, the 
SOS_ConvNet model achieved a test accuracy comparable to that of 
MobileNet and ResNet20, even though its training accuracy was slightly 
lower. This balance between training time and performance is a notable 
advantage. In summary, the proposed SOS_ConvNet model effectively 
demonstrates its competence by achieving competitive test accuracy on 
the CIFAR-10 dataset while maintaining a reasonable training time. It 
performs on par with the MobileNet and ResNet20 models and surpasses 
the VGG16, VGG19, and AlexNet models in terms of test accuracy. The 
training and testing processes for each of these models are visually 
represented in Fig. 10, providing a comprehensive view of their learning 
curves and performance trends. 

5.4. Results on breakhis dataset 

To evaluate the performance of the proposed SOS_ConvNet on the 
BreakHis dataset, a comprehensive experiment was conducted. Initially, 
architectures were generated using the BreakHis dataset, leveraging the 
capabilities of SOS_ConvNet’s algorithm. These generated architectures 
were then optimized through a single epoch and 10 iterations to ulti
mately obtain the global best architecture, ensuring that it represents the 
most promising ConvNet structure for the given dataset. Subsequently, 
the global best architecture was subjected to further refinement through 
intensive training on the BreakHis dataset. This refinement involved 
training the global best architecture for a total of 100 epochs, allowing it 
to adapt and improve its performance on the dataset. The structure and 
configuration details of this global best model can be found in Table 8. 

For the purpose of evaluation, popular handcrafted models; AlexNet 
(Krizhevsky et al., 2012), ResNet (He et al., 2016), VGG (Simonyan & 
Zissermann, 2015), EfficientNet (Tan & Le, 2019), and MobileNet 
(Howard et al., 2012) were trained on the same dataset and compared 
with the global best model. The results obtained are presented in 
Table 9. 

From the results presented in Table 9, SOS_ConvNet clearly stands 
out as the top-performing model on the BreakHis dataset, achieving the 
highest accuracy of 89.12 % while maintaining a compact model size of 
38,868 parameters. MobileNet and EfficientNet, while having reason
able performance of 70.01 % and 84.44 % respectively, couldn’t match 

Table 8 
Layers and Hyperparameters of the Global Best Model on BreakHis dataset.  

Layer Hyperparameters 

Conv Kernel size = 4 × 4, No. of kernels = 15 
Pooling Pool window = 3 × 3 
Conv Kernel size = 3 × 3, No. of kernels = 11 
Pooling Pool window = 3 × 3 
Conv Kernel size = 3 × 3, No. of kernels = 17 
FC Number of neurons = 17 
FC(output) Number of neurons = 1  

Table 9 
Models evaluation results on BreakHis Dataset.  

Model Accuracy (%) No. of Parameters Training time 

MobileNet 70.01 1103,345 20.10 
EfficientNet 84.44 7267,317 21.33 
VGG16 73.03 14,854,273 20.25 
ResNet 85.25 24,097,601 22.22 
SOS_ConvNet 89.12 38,868 18.33  
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the accuracy of SOS_ConvNet. Furthermore, EfficientNet had a sub
stantially larger model size of 1103,345 parameters. VGG16 and ResNet, 
despite their higher parameter counts, achieved lower accuracy at 73.03 
% and 85.25 % respectively, when compared to SOS_ConvNet. Signifi
cantly, SOS_ConvNet not only excelled in accuracy but also demon
strated efficiency by requiring less training time compared to the other 
models. This reinforces its effectiveness in generating high-performing 
and resource-efficient models for specific image classification tasks on 
the BreakHis dataset. In summary, SOS_ConvNet proves to be a 
compelling choice for the BreakHis dataset, offering an excellent balance 

of accuracy, model size, and training efficiency. This shows that many 
handcrafted models have a lot of unnecessary parameters despite their 
good performance. Having lighter models would save a lot of disk space, 
and computational power. The training curves of the models on Break
His dataset are displayed on Fig.11. 

6. Conclusion and future work 

This research adopts a neural architecture search (NAS) methodol
ogy employing the innovative Symbiotic Organism Search (SOS) 

Fig. 11. Training and testing process on BreakHis dataset.  
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optimization algorithm to autonomously evolve Convolutional Neural 
Network (ConvNet) models. The study’s approach involves evolving 
ConvNet architectures through SOS, selecting the best-performing 
models for further refinement and training. The proposed NAS algo
rithm’s generalization capabilities were rigorously evaluated across 
diverse datasets, spanning domains such as handwritten digits (MNIST), 
fashion items (Fashion-MNIST), general image classification (CIFAR- 
10), and medical image analysis (Breast Cancer dataset). These datasets 
serve as a robust foundation for evolving optimal ConvNet models using 
the SOS_ConvNet approach. The generated architectures were subjected 
to comprehensive comparisons against existing models, encompassing 
both manually designed architectures and those derived from other NAS 
methodologies. The compelling comparative results underscore the su
perior performance of the models generated by the proposed 
SOS_ConvNet. This comprehensive analysis reaffirms the effectiveness 
and versatility of the SOS_ConvNet methodology in automatically 
generating ConvNet architectures that excel across diverse image clas
sification tasks. By consistently outperforming established models, 
SOS_ConvNet demonstrates its potential to revolutionize neural archi
tecture search, making significant contributions to the field of deep 
learning. The introduction of innovative operators, such as mutual 
vector, modified difference, parasite generator, and sum operators, en
hances the efficiency of ConvNet generation. Additionally, the ability to 
achieve competitive accuracy with reduced model complexity empha
sizes resource efficiency, crucial for applications with limited compu
tational resources. SOS_ConvNet’s versatility and adaptability, coupled 
with its symbiotic organism search framework, contribute to the broader 
landscape of NAS. For future improvements, the incorporation of more 
sophisticated operators could further enhance the optimization process. 
Additionally, exploring automated hyperparameter tuning techniques to 
optimize the hyperparameters of the generated ConvNet models holds 
the potential for achieving even better-performing architectures. These 
potential enhancements will continue to advance the state-of-the-art in 
NAS methodologies and ConvNet architectures. 
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