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Abstract— Unmanned Aerial Vehicles (UAV) problematic 

vibration detection as a flaw detection and identification (FDI) 

method has emerged as a feasible tool for assessing a UAV's 

health and condition. This paper shows the potential of 

optimization-based UAV problematic vibration detection. A 

proposed fitness function based on the frequency domain has 

been detailed. The fitness function with the Genetic Algorithm 

(GA) optimization method is tested and evaluated based on Root 

Mean Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and detection time. 51 sets of data have been 

collected using software in the loop (SITL) methods and are 

used to determine the effectiveness of the proposed fitness 

function and GA. The test results show promising results with 

obtained mean RMSE = 1407.2303, mean MAPE = 0.7135, and 

mean detection time = 2.6129s for a data range of between 3955 

to 9057. 

Keywords—Problematic Vibration, Genetic Algorithm, 

Frequency-Domain, Root Mean Square Error, Mean Absolute 

Percentage Error. 

I. INTRODUCTION 

UAVs (Unmanned Aerial Vehicles) are becoming 
increasingly important in a variety of applications, including 
but not limited to structural health monitoring and fault 
identification. UAV vibration detection as a means of fault 
detection and identification (FDI) has emerged as a viable tool 
for analyzing the health and condition of a UAV. 

Previous research has demonstrated the importance of 
sensor placement and optimization in UAV applications. A 
study on "Optimisation and control application of sensor 
placement in aeroservoelastic of UAV" for example, 
emphasized the incorporation of vibration energy-based 
observability measurement for sensor location [1]. 
Furthermore, a study on "A Path Planning Method with 
Perception Optimization Based on Sky Scanning for UAVs" 
shows the ability to maximize sensor node lifetime, 
emphasizing the need for optimization in UAV operations [2]. 

Furthermore, the employment of optimization approaches 
for state estimation and problem detection in UAVs has 
piqued the interest of researchers. For example, a study titled 
"Optimal control and state estimation for unmanned aerial 

vehicle under random vibration and uncertainty" highlighted 
the importance of optimal estimation in inferring information 
about the UAV state [3]. "Vibration-Based Fault Detection in 
Drones Using Artificial Intelligence" developed a fault 
detection method based on multirotor arm vibration, 
demonstrating the use of a Neural Network in vibration-based 
fault detection [4]. 

Furthermore, the integration of computer vision and 
optimization algorithms for structural vibration assessment 
utilizing unmanned aerial vehicles (UAVs) has been 
investigated. A succinct assessment emphasized the 
advancements and applications of unmanned aerial vehicle-
based computer vision in structural dynamics, emphasizing 
the potential for new measuring methods [5]. A study titled "A 
Bridge Vibration Measurement Method by UAVs Based on 
CNNs and Bayesian Optimisation" demonstrated the use of 
convolutional neural networks and Bayesian optimization for 
vibration measurement, demonstrating the potential for 
advanced techniques in UAV-based vibration detection [6]. 

Other fault diagnostics in UAV are Neural-Network 
Extended Kalman Filters (NN-EKF) [7], Particle Filter (PF) 
with k-means cluster, and Multilayer Perceptron (MLP) [8] 
and EIKF with Bhattacharyya distance [9]. None of the 
aforementioned articles dealt with optimization-based fault 
detection and identification. 

The suggested method in this work intends to find out the 
feasibility of using the optimization method as problematic 
vibration detection for fault detection and identification. This 
paper will provide the formulated fitness function and the 
evaluation matrix used to evaluate the formulated fitness 
function in genetic algorithms (GA) optimization methods. 

II. METHODOLOGY

The methodology of this research starts by acquiring data 
sets for the problematic vibration during flights. As of the date 
this paper is written, there are no available data sets online. 
The data sets can be obtained from the author with proper 
application.  

With the data sets acquired, the frequency domain fitness 
function is established and with the use of Genetic Algorithm 
(GA), the performance of the fitness function is accessed.  
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A. Data Sets 

Data were collected using the software-in-the-loop (SITL) 
method with four software. The software is Mission Planner, 
MAV Proxy, ArduCopter, and physics simulation 
sim_multicopter [10]. The Mission Planner was utilized as a 
data logging tool. MAVProxy is a user-interactive software to 
input commands to ArduCopter. The use of MAVProxy will 
enable ArduCopter to run with physics simulator 
sim_multicopter in the background without specific hardware. 
The SITL setup can be seen in Fig 1. This setup has been used 
by other researchers and published in a paper [10]. 

Fig. 1. SITL setup. 

The quadrotor is flown autonomously with the use of 
waypoint navigation. While cruising, a vibration is injected 
into the quadrotor sensors to depict problematic vibration due 
to component failure on the quadrotor. The placement and 
duration of the vibration are varied for each data set. Besides 
that, surrounding wind velocity and direction are also varied. 
By using Mission Planner Software, the attitude (roll, pitch, 
and yaw angular velocity) and altitude (z-axis) data are 
logged. A sample of data obtained in the roll angular velocity 
channel can be seen in Fig 2. A total of 51 sets of data were 
collected. 

Fig. 2. Sample Roll Angle Data. 

Fig 2 shows a sample of flight data whereby the vibration is 
induced at data 3553 (marked in red dotted line and labeled 
problematic vibration). The surrounding spikes are due to the 

quadcopter maneuvering in variable wind velocity in the x-
direction. The fitness function while using GA must find the 

starting point of the problematic vibration.  

B. Fitness Function 

The fitness function developed is initially based on paper 
[11] by using Discrete Cosine Transform (DCT) which is 
altered to meet fault detection and identification (FDI) 
purposes. The block diagram for the fitness function can be 
seen in Fig 3. 

Fig. 3. Fitness function flow chart. 

Two back-to-back frames made of 30 data per frame are 
used. The data in each frame is transformed into frequency 
domain data by using DCT. The peak frequency for the first 
frame is compared to the second frame. If the peak frequency 
of the second frame is twice or more larger than the first frame, 
then it is considered a problematic frequency. This is to ensure 
that the beginning of the problematic vibration is captured by 
considering operational vibration. Next, the peak of the 
second frame is subtracted from the first to determine the 
severity of the problematic frequency. Equation (1) will 
calculate the score of the fitness function. The minimum the 
score, the more accurate the detection. 

���� � ����10 � ���� � ������ (1) 

Where x = data position, S(x) is the severity of the 
problematic frequency and R(x) is depicted in (2). 

��� � � 0, ���� � 2
����, ���� � 2 (2) 

Where k is the ratio between the peak frequency of the 
second frame to the peak frequency of the first frame. 

C. Genetic Algorithm 

The GA for this study is based on paper [12] and is stated 
here for completeness of this paper. Algorithm 1 shows the 
GA pseudo-code. 
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Algorithm 1: Genetic Algorithm pseudo-code 

FOR (k = 1 to DataSet) DO 

IF (k == 1) 

Create an initial population through random generation; 

ELSE 

Create an initial population in proximity to the previously  

      optimal solution.; 

END IF; 

FOR (i =1 to Ngen individuals) DO 

FOR (j =1 to N_pop individuals) DO 

Assess the fitness of an individual j: fj(i); 

END FOR; 

Preserve the best individual in the population i+1; 

FOR (j = 2 to N_pop) DO 

Choose two individuals 

perform crossover to generate two new individuals 

mutate the newly created individuals 

integrate them into the population i +1; 

END FOR; 

END FOR; 

Preserve the optimal position; 

END FOR; 

Return to the final optimal position; 

D. Evaluation Matrix 

The GA with the proposed fitness function is run 500 times 
and the data is evaluated. Equations (3) and (4) show the two 
main evaluation metrics that were used to evaluate the fitness 
function: RMSE and MAPE. Besides that average time to 
detect is also evaluated. 

��� � ��
� ∑���� ��� � � ��! (3) 

�"#� � �
� ∑���� | %&'% &

%&
| (4) 

Where n, yi, and ˆyi denote the number of samples, the 
actual value, and the estimated value respectively. 

III. RESULT & DISCUSSIONS

Fig 4 shows the RMSE evaluation for all 51 sets. Referring 
to Fig 4, the RMSE ranges from 4.5279 to 3858.4657 with the 
mean at 1407.2303. Since RMSE shows how dispersed the 
residuals are, the lower the value, the tighter the estimated 
location is with the real location. Based on Fig 4, the five sets 
of data that yield the highest RMSE are data set 18 (RMSE = 
3858.47), 7 (RMSE =   3592.07), 13 (RMSE = 3378.63), 16 
(RMSE = 3303.5), and 22 (RMSE = 3102.19). After 
reviewing the sample sets, the high RMSE on these particular 
sets was due to multiple vibration patterns with different 
intensities where the other intensity is not due to induced 
vibration (Refer Fig 5). 

Fig. 4. RMSE of GA using a proposed fitness function. 

Fig. 5. Data set 18. 

Fig. 6. MAPE of GA using the proposed fitness function. 

Fig 6 shows MAPE results of the proposed fitness function 
with GA. Referring to Fig 6, the MAPE performance is 
between 0.0012 and 2.7319 with the mean at 0.7135. The 
lower the MAPE, the better the performance. The lowest 
performance was when using data set 7 which yielded MAPE 
= 2.7319. This is the same data set that yielded the worst 
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RMSE performance. But overall, the mean for vibration 

detection is low. 

Fig 7 shows the detection time for all data sets. The 
detection performance is between 2.0065s to 2.9261s for the 
number of data points between 3955 to 9057. The mean 
acquired is 2.6129s. 

Fig. 7. Detection Time 

IV. CONCLUSIONS & FUTURE WORKS

This study investigated the potential of using the 
optimization method as a means of problematic vibration 
detection in UAVs. The fitness function has been formulated 
and is detailed in subsection B. Using GA as the optimization 
method, the fitness function has been evaluated. Based on the 
result, the fitness function using GA has resulted in mean 
RMSE = 1407.2303, mean MAPE = 0.7135, and mean 
detection time = 2.6129s. The result shows good detection 
time. The RMSE and MAPE for some of the tested data sets 
resulted in good results. This shows that the optimization 
method has the potential to be used for problematic vibration 
detection in UAVs.  

To accommodate all the data sets, more work needs to be 
done. Future works that can be done are using other variations 
of optimization algorithms. Using the latest optimization 
algorithm might give a better result than GA. Besides that, 
rather than using only the frequency measurement, adding 
time-based data might also give better results. 
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