

ADVANCEMENT IN ICT: EXPLORING
INNOVATIVE SOLUTIONS (AdICT)

SERIES 1/2024

Editors
Noor Azura Zakaria

Dini Oktarina Dwi Handayani
Elin Eliana Abdul Rahim
Ahmad Fatzilah Misman

KICT Publishing

ADVANCEMENT IN ICT: EXPLORING INNOVATIVE

SOLUTIONS (AdICT)

SERIES 1/2024

First Publication 2024

© Copyright by KICT Publishing

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written consent of Kulliyyah of Information and

Communication Technology (KICT), including in any network or other electronic storage or transmission, or

broadcast for distance learning

Published by

KICT Publishing

International Islamic University Malaysia

53100 Kuala Lumpur, Selangor, Malaysia

KICT Publishing

(Online)

Preface

Advancement in ICT: Exploring Innovative Solutions (AdICT) Series 1/2024 is an e-book showcases the collective

achievements of Final Year Project (FYP) in Kulliyyah of Information and Communication Technology (KICT). This

compilation represents evidence to the technical passion and academic skills of our students before they venture

into the professional realm.

FYP is a journey that demands creativity, critical thinking, and perseverance. This book encapsulates the diverse

range of projects undertaken by our students, each a unique exploration into the vast landscape of Information and

Communication Technology (ICT). From cutting-edge software applications to groundbreaking research, these

projects not only demonstrate technical proficiency but also the ability to address real-world challenges.

In this comprehensive collection, the topics covered span a spectrum from cutting-edge software development,

cybersecurity, artificial intelligence and multimedia technologies reflecting the breadth and depth of our academic

program. This offers a curated journey through the diverse landscape of final year ICT projects to the readers while

appreciating the impact these projects can have on the wider community.

This e-book carries significant benefits and impact whereby it serves as a valuable knowledge repository, offering a

diverse audience—from students and educators to industry professionals—a comprehensive view of the latest

innovations and technological solutions in ICT. Moreover, the book fosters a culture of knowledge sharing and

collaboration, as each project represents a unique contribution to the broader technological landscape.

“When the human being dies, his deeds end except for three: ongoing charity, beneficial knowledge, or a

righteous child who prays for him” – Sahih Muslim

Editors

Noor Azura Zakaria

Dini Oktarina Dwi Handayani

Elin Eliana Abdul Rahim

Ahmad Fatzilah Misman

TABLE OF CONTENTS

No. Content

Page No.

1 EasyKos: Room Rental Management System

Nisa Ranti Khairun, Noor Azura Zakaria

1

2 Medical Supply Chain using Smart Contracts and Blockchain

Soomro Taha Ali, Hamza Khaled Hamdy Eldemery, Nurul Liyana Mohamad Zulkufli

5

3 Automated Payment System (APS) using RFID and e-wallet

Muhammad Izwan Kamarudzaman, Rashydan Rafi Jamsari, Normi Sham Awang Abu Bakar

11

4 A Machine Learning-Based Automated Vehicle Classification Implementation on Toll

System in Malaysia: A Preliminary Study

Raini Hassan, Aisyah Afiqah Mohd Ridzal, Nur Zulfah Insyirah Fadzleey

16

5 iDonor App for Blood Donation in Malaysia

‘Arisya Mohd Dzahier, Sakinah Shamsuddin, Nurul Liyana Mohamad Zulkufli

36

6 Exploring Students' Performance in Mathematics in Portugal Using Data Analytics

Techniques: A Data Science Use-Case

Raini Hassan, Nur Zulfah Insyirah Fadzleey, Annesa Maisarah Ab Hamid, Rabiatul Adawiyah

Abd Aziz, Afiefah Jamalullain, Fatin Syafiqah Syaiful ‘Adli

43

7 iMelon: Watermelon Sweetness Prediction using Pattern Recognition System Development

Nur Zafirah Mohd Faudzi, Nurul Syakilah Noorhamidi, Amir ‘Aatieff Amir Hussin, Amelia

Ritahani Ismail, Ahmad Anwar Zainuddin

57

8 Security and Privacy in Next-Generation Mobile Payment Systems

Ani Afiqah, Hafizah Mansor

67

9 3D Natural Interface to Teach Piano for Beginners

Pang Hao Jie, Nurazlin Zainal Azmi

73

10 Muar-in-Motion: Elevating Tourism with a Dynamic Website

Alya Husna Ibrahim, Marini Othman

79

11 Voice Biometric Detection System Towards English Pronunciation Among Malaysians

Nik Asyraaf Imran Nik Mohd Hasanuddin, Nooramiruddin Shaharudin, Akram M Zeki

85

12 Safiyyah Care: A Donation System Platform for Mahallah Safiyyah IIUM

Mohd Khairul Azmi Hassan, Nur Afiqah Mohd Rosli, Nurharith Akma Harisa

91

13 Lost and Found Tracking System

Imtinan Mohd Zulkhairi, Muhd Rosydi Muhammad

96

14 "Zizz" A Mobile Application to Track Sleeping Patterns and Individual Moods

Bintaleb Afnan Basem Abdulhameed, Murni Mahmud

106

15 In-N-Out PSP: Polytechnic Outing System

Muhammad Syahizzat Mohd Shafie, Nur Raimi Rahim, Lili Marziana Abdullah

111

16 Exam Scheduling System

Muhammad Hafiz Zuhari, Intan Najwa Mazlan, Lili Marziana Abdullah

116

No. Content

Page No.

17 Unveiling Volunteer4U: Mobilizing Opportunities for Volunteering

Nur Hanani Ab Hannan, Nurul ‘Aqilah Zakaria, Akram M Zeki

121

18 Journey of Hajj: The Simulation

Muhammad Asyraf Azman, Nur Khaliesah Muhamad Radzali, Suhaila Samsuri

129

19 Cyber Security Awareness Training (SecurityGuts)

Fatin Najwa Ramli, Nur Alya Nadirah Mohd Fauzi, Shuhaili Talib

134

 16

A Machine Learning-Based Automated Vehicle

Classification Implementation on Toll System in

Malaysia: A Preliminary Study

Raini Hassan

Department of Computer Science

Kulliyyah of ICT, International Islamic

University Malaysia

Kuala Lumpur, Malaysia

hrai@iium.edu.my

 Aisyah Afiqah Mohd Ridzal

Department of Computer Science

Kulliyyah of ICT, International Islamic

University Malaysia

Kuala Lumpur, Malaysia

aisyah.ridzal@live.iium.edu.my

Nur Zulfah Insyirah Fadzleey

Department of Computer Science

Kulliyyah of ICT, International Islamic

University Malaysia

Kuala Lumpur, Malaysia

insyirah.fadzleey@live.iium.edu.my

Abstract— Congestion in toll plazas has prompted the
exploration of various solutions, from infrastructure
improvements to advanced technologies. Enhancing toll plaza
infrastructure, such as constructing additional tollbooths and
widening lanes while implementing electronic toll collection
systems, has had some positive impacts. However, these existing
measures have faced limitations in effectively addressing
congestion. The use of mixed-mode lanes at the leftmost toll lanes
still applied manual vehicle classification, which relies on human
operators, but it has yet to sufficiently overcome congestion,
given the diverse vehicle types and toll rates. This situation leads
to human error and affects traffic flow. Although RFID (Radio
frequency identification) technology has been widely adopted at
only a few toll lanes, challenges in implementation have led to
congestion issues due to insufficient infrastructure and reliability
problems. Therefore, the outcome of this project is to develop the
best model detector of automated real-time multiclass vehicle
classification for all lanes in the toll plaza. This model input is
extracted from a pre-trained 800 images, which consist of 6
classes of vehicles and their annotated XML file, respectively, for
one stage detector: Faster Region-Convolutional Neural
Network (Faster R-CNN), ResNet-50 and two-stage detectors;
You Only Look Once (YOLO), YOLOv8 Darknet-53. The
classification model performs well in YOLOv8 architecture with
the highest mean average precision (MAP-50) of 95.0% and has
a good performance measurement on loss function compared to
Faster R-CNN architecture.

Keywords—Vehicle Classification, Toll System, MLFF,

RFID system, You Only Look Once, Faster R-CNN, Machine

Learning.

I. INTRODUCTION

A. Current Toll System

The current toll collection system in Malaysia heavily
relies on manual processes conducted by human operators to
set toll rates for each vehicle passing through the leftmost
lane's booth. This manual approach is susceptible to human
errors and can lead to congestion at toll booths, resulting in
inefficient highway traffic flow. Furthermore, an automated
vehicle classification system must be revised to differentiate
between various vehicle types accurately, leading to potential
misclassification and inaccurate toll rates. These issues
significantly hinder the toll collection system's efficiency,
accuracy, and overall performance, negatively impacting road
service providers and users. According to statistical data from

the Malaysian government, traffic congestion during peak
hours has been a persistent problem, causing substantial
economic losses. For instance, in 2021, traffic congestion in
the Greater Kuala Lumpur area alone resulted in an estimated
economic loss of over RM 4.3 billion (approx. USD 1 billion)
due to wasted time and fuel consumption [1]. Additionally,
manual toll collection processes contribute to increased travel
times, fuel consumption, and vehicle emissions, adversely
affecting air quality and exacerbating environmental
concerns.

B. Project Overview

The project aims to develop an automated vehicle
classification system for toll collection in Malaysia that can
operate accurately and efficiently in real-time while
contributing to smoother traffic flow on highways. This
project proposes the implementation of a computer vision-
based solution using the Region-of-Interest (ROI) method for
vehicle detection and extraction from video footage obtained
from toll booths, combined with machine learning techniques
which are Faster R-CNN and YOLOv8 algorithms for vehicle
classification. Combining the ROI method and the Faster R-
CNN or YOLO algorithm shows promising potential for
accurately detecting and classifying vehicles passing through
toll booths. Upon complete integration, the system can
substantially enhance toll collection efficiency and precision,
curtail operational expenses, and elevate the smoothness of
traffic movement along highways. The project aligns with
Goal 11 of the Sustainable Development Goals (SDGs),
Sustainable Cities and Communities. Efficient transportation
and toll collection systems are vital for sustainable urban
development, as highlighted in SDG Goal 11. By accurately
classifying vehicles based on their characteristics, such as
size, number of axles, and type, the toll collection system can
incentivize using cleaner and more fuel-efficient vehicles,
reduce traffic congestion, and improve air quality. Thus, the
project also contributes to other related SDGs such as Goal 13
(Climate Action), Goal 3 (Good Health and Well-being), and
Goal 9 (Industry, Innovation, and Infrastructure) by
promoting technological innovation and investment in
infrastructure. Overall, the project intends to achieve an
advanced and efficient toll system in Malaysia, bringing it in
line with international standards.

 17

C. Project Objectives

As stated, this project focuses on implementing machine
learning to solve the problem statements. The main objectives
are as follows:

1) Develop an automated image-based vehicle

classification system for toll collection in Malaysia by

implementing computer vision techniques, such as the

Region-of-Interest (ROI) method, to accurately detect and

extract vehicles from toll booth video footage as well as

utilizing machine learning algorithms like Faster R-CNN or

YOLO for efficient, and real-time vehicle classification.

2) Build a robust system that accurately classifies

various vehicle classes based on their attributes, aiming to

create an effective toll collection system that minimizes

human errors in toll rate settings and reduces congestion at

toll booths.

3) Align Malaysia's toll system with international

standards and best practices to enhance the overall user

experience by implementing a smoother and more efficient

toll collection process.

4) Contribute to sustainable urban development and

the accomplishment of SDG 11 (Sustainable Cities and

Communities) by incentivizing the use of cleaner and more

fuel-efficient vehicles through the implementation of an

automated vehicle classification system, supporting

sustainable mobility practices.

D. Significances of Project

 The significance of this project is that the evolution of
Malaysia in tolling technology to aim for Multi-Lane free flow
(MLFF) since 2009 can be done practically by providing one
of the best models to detect and localize vehicle classes by
capturing real-time objects with high accuracy and speed
performance. In addition, the system improves the current
tolling system by adding new features and variables, such as
an alert system when unclassed vehicles enter the toll.
Meanwhile, different latest models of Convolutional Neural
Networks-based approach, FRCNN and YOLOv8 (version
2023) performance are provided to compare which model
performs well, and the ideal results in a detection model will
perform well as it trains explicitly and validates Malaysia's
vehicle datasets of different toll classes. Lastly, this project
contributes to the development of the Machine Learning
approach in Malaysia. We observed one of the current real
Malaysia problems and were able to implement it with the
computational science area that allows the enhancement of
features in the toll system using an image classification for
multiple Malaysia vehicle classes.

This paper is organized as follows: Section 2, Literature
Reviews, discusses similar and previous papers as well as re-
highlights the concepts of Machine Learning used in this
paper. Section 3 Methodology presents the overall method
adopted and implemented in order to execute this project.
Section 4, Project Development, elaborates on the approaches
from the beginning of the development process until model
findings and enhancements for future projects.

II. LITERATURE REVIEWS

RFID technology has been widely adopted in toll
collection systems worldwide, including in Malaysia. RFID

(Radio Frequency Identification) technology is designed to
make toll collection more efficient and faster. It allows
vehicles to pass through toll gates without stopping to make a
payment manually. Instead, the toll fee is automatically
deducted from the driver's prepaid RFID account. However,
there have been reports of congestion at some toll gates in
Malaysia due to the implementation of RFID technology. One
of the main reasons for this congestion is the need for proper
infrastructure and equipment to handle the increased traffic
flow caused by RFID. Additionally, there have been issues
with the reliability of the RFID system, such as faulty RFID
readers and insufficient funds in the drivers' RFID accounts.
These issues can lead to delays and frustration for drivers,
further exacerbating traffic congestion. RFID technology is
designed to read and collect information from RFID tags or
stickers attached to the vehicle, even when moving at high
speed. However, certain factors can affect the readability of
the RFID sticker, such as the distance between the reader and
the sticker and the angle at which the sticker is positioned. In
some cases, if the RFID reader is not calibrated correctly or
positioned, it may not be able to read the RFID sticker when
the vehicle moves quickly. Hence, it can cause delays and
inconvenience for drivers, especially during peak hours when
heavy traffic is heavy. RFID systems depend highly on
technology and can be vulnerable to disruptions and
malfunctions. For example, if a vehicle's tag is damaged, lost,
or stolen, the system may be unable to detect it. In addition,
the RFID signals can be interfered with by other electronic
devices or materials, which can cause inaccuracies in data
collection. Additionally, one of the primary disadvantages of
RFID technology is the cost of implementing and maintaining
the system. It includes the cost of purchasing and installing the
RFID readers, as well as the cost of replacing and upgrading
the technology as it becomes outdated. Furthermore, RFID
systems require regular maintenance to ensure they function
correctly. It can include cleaning and repairing the equipment
and updating software and firmware to keep the system up to
date with the latest security protocols and features [2].

One of the computer vision techniques is object detection.
It requires identifying and localizing images or videos by
tracking the object's location. The procedure initiates by
directly extracting image characteristics from the unaltered
image. These features are then systematically relayed through
successive layers, enabling the accumulation of intricate high-
dimensional insights inherent to the image. This
accomplishment stands as a significant triumph within the
realm of computer vision. Efficient vehicle image
classification is imperative, demanding both rapidity and a
commendably elevated level of accuracy. This urgency arises
from the need to discern the vehicle's category while it is
moving along roadways. Simultaneously, it facilitates the
identification of numerous classifiable vehicles and road-
related entities within a single scene, allocating accurate labels
to the bounding boxes encompassing these entities.
Noteworthy contemporary models for target detection
encompass R-CNN, SPP-Net, Fast-RCNN, Faster-RCNN,
SSD, YOLO, and ResNet [3]. You Only Look Once (YOLO)
is one of the best algorithms to pass the real-time object to a
fully connected neural network and is recognized as a
regression problem. YOLO is a one-stage detector approach
based on deep neural networks without a specific region
proposal step that uses the whole picture as the network's input
and goes forward from image pixels to bounding box
coordinates and class probabilities [4]. A single instance of

 18

forward propagation through the network allows this
algorithm to generate predictions, producing outcomes that
encompass identified objects, corresponding confidence level
scores, and bounding box specifications.

Several studies discuss comparing Faster-RCNN, YOLO,
and SSD for real-time vehicle type recognition [5]. Some
works elaborated on the real-time detection of traffic
participants using the YOLO algorithm [6]. The multitask loss
function is used to ze and realize single-stage object detection,
allowing all network layers to be updated in the model training
without needing disc storage to cache the features [7]. To
compare Faster-RCNN, YOLO, and SSD, the author trained
1447 vehicle image datasets named car, mini_van, big_van,
mini_truck, truck, and compact for each model. YOLO v4 was
used to improve the performance with a more prominent
solution. The data's Region of Interest (ROI) was extracted
from the vehicle's front window to the bumper to keep the
features. As a result, the accuracy of CNN is relatively high,
but the speed is significantly slower than other models.
Despite its faster processing speed compared to YOLO and
CNN, the SSD model exhibits diminished accuracy due to its
reliance on the lightweight MobileNet architecture. This
showed that it sometimes failed to recognize a vehicle, while
YOLO had a low accuracy but better precise value for the
number of vehicles that can be detected in each frame of video
[5]. As a result, the studies indicate that the YOLO approach
is the best model among the trained object detection models.

Several previous works have implemented the Faster R-
CNN algorithm for vehicle image classification,
demonstrating its effectiveness in addressing similar
challenges to the proposed project. These works provide
valuable insights into the strengths and weaknesses of
applying Faster R-CNN in vehicle classification. One recent
research study by [8] focused on vehicle classification using
Faster R-CNN and transfer learning techniques. The study
utilized a large-scale dataset of vehicle images and trained the
Faster R-CNN model with a pre-trained convolutional neural
network (CNN). The results showed high accuracy in
classifying various vehicle types, indicating the effectiveness
of the Faster R-CNN algorithm in this domain. However, one
limitation of the study was the reliance on a pre-trained CNN,
which may affect the model's adaptability to new or unseen
vehicle classes. Another relevant work by Wen Li [9]
explored the application of Faster R-CNN for vehicle
detection and classification in urban traffic scenarios. The
study employed a region proposal network (RPN) to generate
candidate regions and utilized the Faster R-CNN framework
for classification. The results demonstrated the robustness of
the approach in accurately detecting and classifying vehicles
under challenging conditions, such as occlusions and varying
scales. However, the study acknowledged that the
computational requirements of Faster R-CNN could be
demanding, particularly for real-time applications, which may
limit its practical implementation in resource-constrained
environments. In a separate research endeavor, Jiani Xi [10]
investigated using Faster R-CNN for vehicle attribute
recognition. The study aimed to classify vehicles based on
color, type, and brand attributes. The Faster R-CNN model
was trained on a diverse dataset comprising various vehicle
attributes. The findings highlighted the model's ability to
accurately recognize vehicle attributes, providing valuable
information for traffic surveillance and law enforcement
applications. However, the study acknowledged that

occlusions and variations in lighting conditions can still pose
challenges to the accuracy of attribute recognition.

In conclusion, the reviewed works demonstrate that Faster
R-CNN remains relevant and effective for vehicle image
classification tasks. It offers high accuracy in detecting and
classifying vehicles, even in complex urban traffic scenarios.
However, limitations such as reliance on pre-trained models,
computational requirements, and challenges in handling
occlusions and variations in lighting conditions should be
considered in implementing Faster R-CNN for real-world
applications. Further research and development efforts are
needed to enhance the algorithm's adaptability, efficiency, and
robustness to ensure its practical viability in automated toll-
collection systems.

The realm of computer vision has transformed by
integrating machine learning techniques, ushering in an era of
practical and precise object detection and classification. These
techniques have been extensively studied and applied in
various domains, including toll-collection systems [11]. By
leveraging machine learning algorithms, toll collection
systems can accurately classify and differentiate various
vehicle classes based on their attributes, improving efficiency
and accuracy in toll collection processes. The reviewed
literature highlights the effectiveness of object detection
algorithms such as YOLO (You Only Look Once) and Faster
R-CNN in the context of toll collection systems. These
algorithms have been chosen over other models due to their
unique advantages and proven performance. For instance,
YOLO stands out in its ability to achieve real-time processing
through its approach of treating object detection as a
regression challenge. It directly predicts bounding box
coordinates and class probabilities, eliminating the need for a
separate region proposal step. This approach improves speed
and efficiency, making it highly suitable for real-time vehicle
classification in toll-collection scenarios.

On the other hand, Faster R-CNN is a two-stage detector
known for its accuracy and robustness. It utilizes a region
proposal network (RPN) to generate candidate regions, which
are then classified and refined. Despite its computational
demands, Faster R-CNN demonstrates high accuracy in
detecting and classifying vehicles, even in complex urban
traffic scenarios. Its ability to handle occlusions and variations
in lighting conditions makes it a reliable choice for accurate
vehicle classification [12].

The extensive research and successful application of
YOLO and Faster R-CNN in automated toll collection
systems reinforce their effectiveness and establish them as
preferred choices in the reviewed literature. These algorithms
offer real-time performance, accuracy, and robustness,
making them well-suited for the challenges and requirements
of toll collection systems. By leveraging the capabilities of
these machine learning algorithms, toll collection systems can
achieve efficient, accurate, and real-time vehicle
classification, leading to improved congestion management,
reduced human errors, and enhanced overall system
performance. Moreover, the continued relevance of YOLO
and Faster R-CNN in computer vision and object detection is
evident through ongoing research and projects utilizing these
models. Researchers and practitioners continue to explore and
refine these algorithms, incorporating advancements and
improvements to address specific challenges in toll collection
systems and other related domains. The consistent utilization
of YOLO and Faster R-CNN in recent studies indicates their

 19

effectiveness and reliability, reinforcing their position as
preferred choices for vehicle classification and object
detection tasks [12].

Despite implementing RFID technology in Malaysia's toll
collection systems, these problems have affected its
effectiveness in reducing congestion and improving the
overall toll collection process. Therefore, developing an
automated image-based vehicle classification system using
YOLO and Faster R-CNN, such as the one proposed, can
provide an alternative solution to address these issues and
ensure accurate toll rates, smoother traffic flow, and reduced
operational costs. Overall, this system ensures that all lanes
will be available for all vehicles except motors while
expecting that the RFID system will be improved in its
effectiveness; if RFID is not possible, any advanced system
will suffice.

III. PROJECT SCHEDULES

Fig. 1. Phase 1 Gannt Chart.

Fig. 2. Phase 1 Milestone.

Fig. 3. Phase 2 Gannt Chart.

Fig. 4. Phase 2 Milestone.

 20

IV. METHODOLOGY

A. Implementation

Fig. 5. Flowchart Implementation Machine Learning Approach.

Fig. 6. Algorithms Approaches.

B. Data Collection

Malaysia vehicle datasets were collected manually from
various trusted website online platforms such as mytruck,
WapCar, Flickr, Dreamstime, BusOnlineTicket, redbus,
caricarz, mytruck, and carousell. We also obtained some

images from social media such as Facebook and Twitter.
Triangulation techniques were used to gather images of
vehicles from multiple sources and collect images from
various angles. We ensure all the images are in the same
digital format, jpg. Different image formats will be converted
using an online image converter before being categorized into
distinct types of vehicle classes. All saved images with the
same format are divided into classes accordingly to ensure the
total number of images for each class is balanced. One
thousand four hundred vehicle images have been collected and
uploaded to Google Drive for easy access.

C. Software, Features, and Packages Required

The following table shows the functions, features, and

packages utilized from selected software.

TABLE I. SOFTWARE, FEATURES AND PACKAGES UTILIZED

Software/Features/

Packages

Functions

OpenCV Library of programming functions mainly for

real-time computer vision

ultralytics Ultralytics YOLOV8 for SOTA object
detection, multi-object tracking, instance

segmentation, pose estimation and image

classification.

Roboflow Software to manage image data, annotate and
label datasets, apply preprocessing and

augmentations, convert annotation file

formats

LabelImg A graphical image annotation tool and label

object bounding boxes in images.

Pycharm An integrated development environment used
for programming in Python

Google Colab The cloud-based development environment is

used for running the Python code.

Jupyter Notebook Used to split image folders and rescale

images.

TensorFlow 2.0 The deep learning framework is used for

importing, utilizing the pre-trained model,

training, and inference. Also, using
TensorFlow Object Detection API.

Pandas A Python library is used for data manipulation

and analysis.

PIL (Python Imaging
Library)

A Python library is used for image processing
and manipulation.

Matplotlib A plotting library is used for visualizing

images and results.

NumPy A Python library is used for numerical
operations and array manipulation.

Visual Studio Code Create yaml file for Yolov8 configure files.

D. Develop Algorithm

In object detection models, a dichotomy exists between

single-stage and two-stage variants. Single-shot detectors,

also called one-stage models, are designed to identify objects

in a single traversal of the input image. These models employ

a singular neural network to predict object positions and class

designations simultaneously. In contrast, two-stage object

detection models follow a bipartite process. The initial phase

employs a distinct network, known as a Region Proposal

Network (RPN), to generate a set of potential object

locations, termed region proposals. Subsequently, the second

stage engages another network to classify these regional

proposals and refine their positional accuracy. Consequently,

this project introduces two distinct models: a one-stage object

detection model represented by YOLO and a two-stage object

detection model exemplified by Faster R-CNN.

 21

a) YOLOv8 (2023)

The algorithm used uses a convolutional neural network
(CNN) approach to analyze an entire picture in a single
forward pass. YOLO's primary feature is its single-stage
detection, which is meant to find objects in real-time with
high accuracy and performance. YOLO processes differ from
two-stage detection models such as RCNN because it
processes the entire picture in a single pass, making it quicker
and more efficient than two-stage detectors that need to
indicate regions of interest and classify the object's region.
Regarding network design, new features, and applications,
Yolov8 is the most recent version of YOLO. Since it does not
deal with complicated pipelines, YOLO is highly efficient in
speed, as it has a processing speed of 45 frames per second
(FPS) [14].

This model comes equipped with several different pre-
trained models: instance segmentation, image classification,
and object identification. The annotation format employed by
YOLOv8 corresponds to the YOLOv5 PyTorch TXT
annotation format, which itself is a variation of the Darknet
annotation format. The process of YOLOv8 is the most recent
version of the YOLO object detection model, intending to
improve accuracy and efficiency over prior versions. Key
improvements encompass an enhanced and finely tuned
network architecture, a revised design for anchor boxes, and
a modified loss function tailored to greater accuracy [13]. As
our project performs custom datasets to specific Malaysia
vehicles only, YOLOv8 will fine-tune custom datasets to
boost their accuracy for specific object identification
applications.

Fig. 7. YOLOv8 layers.

The original YOLO design incorporates as many as 24

convolutional layers, succeeded by two fully connected
layers. In contrast, YOLOv8 introduces Darknet-53 as a
novel backbone network, which substantially enhances both
speed and accuracy compared to the preceding backbone of
YOLOv7. DarkNet-53 is a convolutional neural network
consisting of 53 layers and can classify images across a
spectrum of 1000 distinct object categories. This model also
adopts an anchor-free detection methodology, wherein the
object detection prediction involves determining the object's
centre rather than referencing an offset from a predefined
anchor box, as explained by Encord [13]. Previously, anchor
boxes were predefined rectangles with specific dimensions to
identify object classes with suitable scales and aspect ratios.
The innovation in YOLOv8 lies in its elimination of manual
anchor box specification, a feature that augments flexibility
and cost-effectiveness. As seen in prior YOLO versions like
v1 and v2, manual anchor selection often posed challenges
leading to suboptimal outcomes.

Furthermore, the network generates several attributes,
including background, IoU, and offsets, for each gridded box.
These attributes contribute to the adaptation of anchor boxes.

While traditional anchor strategies entail numerous
predefined starting points for bounding box predictions,
YOLOv8 departs from this approach, resulting in fewer
predictions per image. This strategic shift optimizes inference
time without compromising accuracy.

The operational flow of this algorithm commences with
the prediction of numerous bounding boxes per grid cell;
however, solely those bounding boxes exhibiting the highest
Intersection Over Union (IOU) with the ground truth are
retained, a procedure commonly referred to as Non-Maxima
Suppression (NMS). In its initial steps, the YOLO algorithm
extracts an individual image from the video stream to serve
as input. What sets YOLO apart is its methodology of
segmenting images into grid cells. Each image input is
divided into a grid of dimensions S x S, with every grid cell
making predictions for three distinct bounding boxes [14].
Distinguishing itself further, the algorithm executes a
singular forward propagation pass through the network to
formulate predictions and categorize either an entire image or
an object presented within the image into one of its
predefined classes or categories.

After applying non-maximum suppression, the system
generates identified entities alongside corresponding
bounding boxes. The non-maximum suppression mechanism
entails comparing the bounding box with the highest
probability score and all other bounding boxes, assessing their
intersection sequentially. Those classes whose Intersection
over Union (IoU) value exceeds 0.5 are excluded from
consideration. IoU calculates the overlap region between
predicted and actual bounding boxes, assigning a quantitative
score to evaluate the extent of alignment between predicted
bounding boxes and ground truth. Predicted bounding boxes
that exhibit substantial overlap with the actual objects are
awarded a higher score. An intersection score surpassing 0.5
signifies a robust prediction. YOLO employs a singular
regression module to define the characteristics of these
bounding boxes. The final vector representation for each
bounding box is denoted as Y = [pc, bx, by, bh, bw, c1, c2] in
the format described [14].

b) Faster R-CNN ResNet50

Faster R-CNN stands as a renowned architectural solution
for object detection. This cutting-edge algorithm, Faster R-
CNN, ingeniously merges the deep convolutional neural
networks with the two-stage framework for object detection.
The initial stage involves a region proposal network (RPN)
that generates a collection of potential object regions.
Subsequently, these regions enter the second stage,
encompassing a Fast RCNN network responsible for
assigning class labels to the regions and enhancing the
precision of bounding box positioning. These two stages
collaborate to recognize objects within an image proficiently
by suggesting numerous prospective regions. These regions
are then meticulously classified and precisely located using
the Fast RCNN network. Notably, the critical strength of
Faster RCNN lies in its end-to-end training approach. This
strategy empowers the algorithm to learn object detection
directly from image data without being dependent on
subjective rules or manually crafted characteristics [15]. The
proposed model for Faster RCNN, employing ResNet50 for
the identification and categorization of vehicle objects, can be
segmented into the subsequent modules:

 22

ResNet50 Backbone: Within this component lies the
ResNet50 network, which is pre-trained and serves as the
feature extractor. It generates a corresponding feature map as
output by operating on an image input. In the context of Faster
RCNN, the ResNet-50 backbone assumes the feature
extraction network's role, condensing the input image's
essential attributes. Subsequently, this compact representation
journeys through the convolutional neural network,
constituting the backbone. This process entails resizing the
input image and preserving the aspect ratio by capping the
longer side at 1000 pixels while adjusting the shorter side
proportionally. This manipulation leads to the creation of the
feature, as mentioned earlier, map through the backbone
network.

Consequently, these feature maps are harnessed to fuel the
Fast RCNN network, facilitating tasks like classification and
fine-tuning bounding box coordinates. Notably, Faster RCNN
leverages the insights gleaned from extensive picture
classification endeavors by leveraging a pre-trained ResNet50
network as its feature extraction foundation. This strategic
integration significantly bolsters its prowess in object
detection tasks [15].

Furthermore, utilizing ResNet50 as a backbone presents
an opportunity for transfer learning. This practice permits
fine-tuning the feature extractor to cater to the specific
demands of the object detection task, even with a more limited
dataset. The ResNet architecture brought about a
breakthrough by introducing the concept of Residual
Networks, primarily aimed at mitigating the challenge of
exploding gradients. This predicament is effectively
addressed through the implementation of a technique referred
to as a skip connection. Renowned for its adeptness with skip
connections, the ResNet architecture incorporates these
shortcut links to combat the issue of gradients vanishing
within profoundly deep neural networks. The mechanics of
these skip connections within ResNet involve allowing the
network to circumvent one or multiple layers, thereby
facilitating the direct backpropagation of gradients to
preceding layers, as illustrated in the diagram. This strategic
approach safeguards the information inherent to the original
input, thus enhancing the network's capacity to comprehend
and enhance its performance. The network's learning process
is enriched and refined by upholding the integrity of the
original input information [15].

Fig. 8. FRCNN layers.

In the absence of employing skip connections, the input 'x'

undergoes multiplication with the layer's weights, succeeded

by the addition of a bias term:

𝐻(𝑥) = 𝑓(𝑤𝑥 + 𝑏) (1)

or

𝐻(𝑥) = 𝑓(𝑥) (2)

With the integration of the skip connection mechanism, the

layer's output transforms to

𝐻(𝑥) = 𝑓(𝑥) + 𝑥 (3)

Like most deep learning architectures, ResNet50 employs
a categorical cross-entropy loss function. This specific loss
function is commonly utilized when dealing with multiclass
classification challenges. Its primary role is to measure the
disparity between the predicted probability distribution of
classes and the actual class label. To illustrate, here is an
equation delineating calculating the categorical cross-entropy
loss.

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝ℎ𝑦 = −
1

𝑁
∑ 𝑙𝑜𝑔𝑃𝑚𝑜𝑑𝑒𝑙[𝑦𝑖

𝑁
𝑖=1 ∈ 𝐶𝑦𝑖

] (4)

Region Proposal Network (RPN): Plays a pivotal role
within the Faster RCNN object detection framework. Its
primary responsibility revolves around formulating a
collection of region proposals sourced from the candidate
object regions present in the input image. The central outcome
of a regional proposal network is the generation of multiple
proposals, each encapsulating a distinct region. These
generated proposals subsequently undergo detection via the
identification network. The Region Proposal Network (RPN)
encompasses three fundamental components: the anchor
window, the loss function, and the set of region proposals. To
execute its operations, the RPN adopts a sliding window
approach. This technique involves subjecting a compact sub-
network to an exhaustive 3x3 sliding window traversal.
Consequently, the RPN adeptly utilizes the Intersection over
Union (IoU) ratios and the ground-truth bounding boxes to
create an extensive array of anchors, optimizing the proposal
process.

The Region Proposal Network (RPN) employs anchor
boxes, predefined shapes for bounding boxes, to steer the
process of generating region proposals. Subsequently, the
outcomes from the network are combined with these anchor
boxes to yield the ultimate collection of regional proposals.
The sequence of actions unfolds as outlined below: (i) The
process of RPN involves sliding a window across the feature
map for each individual region. (ii) At each location, k (where
k=9) anchor boxes are employed. These anchors possess
scales of 128, 256, and 512, along with aspect ratios of 1:1,
1:2, and 2:1, effectively constituting the foundation for
generating region proposals. (iii) The CLS layer is responsible
for generating 2k scores corresponding to k boxes, irrespective
of whether an object is detected or not. (iv) Conversely, the
reg layer contributes by producing 4k values that denote the
center coordinates, width, and height of the k boxes. (v) In
totality, the count of anchors sums up to WHk, correlating
with the dimensions of the WH feature map.

The multitask loss function computes the RPN's total loss.
The formula for calculation is:

 23

1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠𝑖 (𝑝𝑖 , 𝑝𝑖

∗) + 𝐿({𝑝𝑖}, {𝑡𝑖}) =

𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡1

∗) (5)

Here, let 𝑁𝑐𝑙𝑠 Denote the count of training data within the
batch, 𝑁𝑟𝑒𝑔 Signify the count of anchors, 𝜆 stands for the

balancing weight. The notation 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) Pertains to the

logarithmic loss function, characterized as follows:

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) = −log [𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖)] (6)

The regression loss, denoted as 𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗), is evaluated

through the application of the subsequent Smooth L1 function:

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = {

0.5 (𝑡𝑖 − 𝑡𝑖
∗)2, |𝑥| < 1

|𝑡𝑖 − 𝑡𝑖
∗| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

Here, 𝑝𝑖 denotes the likelihood assigned to the anchor
being identified as the intended target, and 𝑝𝑖

∗ is the truth value
of the prediction outcome: if the anchor is predicted as a
positive sample, the value of tag 𝑝𝑖

∗ is 1; otherwise, the value
is 0; 𝑡𝑖 = {𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ} is the location of the predicted

detection box; and 𝑡𝑖
∗ is the ground truth coordinate.

As a result, the RPN network must determine which
location contains the object ahead of time. Subsequently, the
detection network incorporates the provided coordinates and
bounding boxes to execute object class recognition and
furnish the corresponding object bounding box (Ren et al.,
2015) [15].

RoI Pooling Layer: The RoI (Region of Interest) pooling
mechanism is a pivotal component within Faster RCNN,
meticulously handling the region proposals that emerge from
the preliminary RPN phase. Nestled within the Fast RCNN
network, the RoI pooling layer interfaces with two primary
inputs: the feature map engendered by the ResNet-50
backbone and a collection of region proposals. Its core
functionality revolves around resizing each proposed region
to a standardized dimension, irrespective of the original size
or aspect ratio. Subsequently, this layer amalgamates the
features within each designated region into a concise feature
portrayal. This strategic maneuver equips the Fast RCNN
network to engage in object classification and regression,
emancipating from object dimensions or aspect ratio
constraints. The essence of the RoI pooling process lies in its
pivotal role, enabling the Faster RCNN architecture to
effectively discern and categorize objects possessing varying
scales and aspect ratios within a given image. Furthermore,
the RoI pooling layer bestows the Fast RCNN network with a
consistent input size, streamlining the training and
optimization process. This attribute facilitates adept handling
of diverse object sizes within the image, rendering the network
more manageable in practice while retaining its capacity to
accommodate dimensional variability [15].

Fast RCNN Classifier and Bounding Box Regressor:
Following the RoI pooling stage, the features extracted from
the proposed regions are channeled into the classifier and
bounding box regressor components within the Faster RCNN

architecture. The fully connected layer classifier undertakes
the object classification task by making predictions regarding
the likelihood of each region proposal being associated with
distinct object classes. In essence, the classifier computes a
score for each combination of region proposal and class,
signifying the probability of the presence of an object from
that specific class within the region. On the other hand, the
bounding box regressor, also implemented as a fully
connected layer, specializes in refining bounding box
positions. It takes the feature representation extracted from the
region proposals as its input and subsequently generates
outputs that denote adjustments to the positions of these region
proposals. These adjustments enhance the proposals'
alignment with the actual objects depicted in the image. The
Fast RCNN network is comprised of the classifier and
bounding box regressor components. This amalgamation
effectively identifies and categorizes objects within images,
leveraging a fusion of insights from region proposals,
classifier scores, and refined bounding box coordinates.

In this project, we implement Faster R-CNN to replicate a
specific general detector within this undertaking. Our
approach entails harnessing object proposals trained through
an RPN (Region Proposal Network) and the corresponding
features derived from a ResNet50 CNN architecture. This
amalgamation furnishes an effective strategy for identifying
and categorizing various vehicle classes. By harmoniously
integrating RPN and Fast R-CNN, we consolidate their
convolutional capabilities by utilizing the contemporary
neural network framework. The blueprint of our proposed
methodology encompasses three profound networks: the
feature network, RPN, and detection network. The Faster R-
CNN methodology adopts a bounding box strategy that
empowers the operator to define potential regions for
submission to the RPN. Employing the devised technique, we
set a CNN model into motion on our vehicle dataset.
Following a meticulous analysis of the input image, a selective
search procedure comes into play to pinpoint a region of
interest (RoI). This delineated RoI is subjected to a refinement
process, classifying candidates within the nearest raster
frames. This fine-tuning is done by leveraging the intricate
model generated through deep learning methodologies [15].

 24

Fig. 9. Region of Interest (ROI) layers.

E. Performance Evaluation

Several metrics, such as Mean Average Precision (mAP),
precision, F1 score, and recall, can be used to evaluate the
performance of a vehicle detection and classification model.
These metrics provide insights into the model's performance
and help assess its effectiveness in detecting and classifying
vehicles accurately [16].

V. PRECISION

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (8)

Precision quantifies the fraction of accurately anticipated
positive occurrences (in this case, vehicles) within the entirety
of instances projected as positive by the model. Specifically
concerning the realm of vehicle detection, precision serves as
an indicator of the model's effectiveness in accurately
recognizing vehicles amidst the identified objects. A
heightened precision score signifies the model's capability to
minimize false positives, denoting infrequent
misclassification of non-vehicle entities as vehicles.

VI. RECALL

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (9)

The concept of recall, alternatively termed sensitivity or
the true positive rate, quantifies the ratio of accurately
predicted positive instances (referring to vehicles) relative to
the total actual positive instances within the dataset. In the

realm of vehicle detection, recall serves as an indicator of the
model's efficacy in encompassing all the vehicles existing
within the images. A substantial recall value implies that the
model exhibits minimal false negatives, signifying infrequent
instances where it overlooks or neglects to identify vehicles.

VII. F1-SCORE

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10)

The F1-score finds its essence in being the harmonic
average of precision and recall, culminating in a well-rounded
gauge of the model's efficacy, encompassing both erroneous
positives and negatives. Within vehicle detection, the F1-
score mirrors the model's proficiency in precisely identifying
vehicles while mitigating the instances of mistaken positives
and negatives. Elevating the F1-score signifies an augmented
equilibrium between precision and recall, increasing accuracy
in detection and classification endeavors.

VIII. MEAN AVERAGE PRECISION (MAP)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) = ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) −𝑘=𝑛−1
𝑘=0

𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘) (11)

𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝐴𝑃) =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1 (12)

mAP is a commonly used metric in object detection tasks.
It evaluates the overall mean Average Precision (mAP), which
is a prevalent metric within object detection undertakings. Its
role encompasses assessing a model's efficacy
comprehensively, factoring in precision and recall at varying
confidence thresholds. The mAP computation involves
arranging the model's output following the assigned
confidence scores for each detected object. This arrangement
facilitates the creation of a precision-recall curve, the enclosed
area of which signifies the mAP value. By encapsulating
precision and recall dynamics across multiple confidence
levels, mAP offers an inclusive gauge of the model's
competence in diligently recognizing objects.

A. Testing Prototypes

We propose to evaluate the performance of the prototype

real-time moving vehicle toll collecting system using a
database, Microsoft SQL Server Management Studio, linked
to the program through ODBC Drivers. The database will
include the vehicle toll classes, owner's vehicle class detected,
the toll fare, and the owner's remaining wallet balance. The
prototypes are as follows :

 25

Fig. 10. Situation 1: Toll users of Class 1 that have a sufficient

credit balance.

Fig. 11. Situation 2: Toll user of Class 0 with zero toll fare

deduction.

Fig. 12. Situation 3: Toll users of Class 4 that have insufficient

credit balance.

IX. PROJECT DEVELOPMENT

A. Data Pre-processing

X. IMAGES RESCALING

In this process, a code snippet was implemented to rescale

a collection of vehicle images stored in a specified folder. This
process aimed to standardize the images to a specific target
size while preserving their aspect ratio. In machine learning,
it is essential to maintain consistency in the input data to
ensure fair comparisons and reliable model performance
evaluation. By rescaling all the images in the folder to the
same target size, any image dimensions or aspect ratio
variations are standardized, providing a consistent input for
the machine learning model. The code utilized the OpenCV
library in Python to perform image manipulation tasks. The
rescaling procedure involved iterating through each image in
the folder, loading it using OpenCV, and applying the resizing
transformation to match the target dimensions. A black canvas
of the target size was created to ensure the rescaled images
were centred, and the resized image was pasted onto it with
the appropriate padding. The original images vary in pixels. In

this project, a target size of (800, 600) was chosen as it is
commonly used for some object detection models.

Fig. 13. Rescale Image user-defined function

XI. SPLITTING FOLDERS FOR TRAIN, TEST, AND VALIDATION

DATASET

The dataset is split into train, test, and validation phases

where in each phase, there are seven classes of image, which
are Alert, Class 0, Class 1, Class 2, Class 3, Class 4, and Class
5. The splitting of folders is being done on the rescaled
images. The split folders library was employed to split the
input images. The split was performed using a specified ratio
of 70% for training, 10% for validation, and 20% for testing.
The process ensured consistent and standardized data division
for subsequent stages of the project, such as model training,
validation, and testing.

Fig. 14. Data Splitting Folders.

XII. IMAGES LABELING

The vehicle image dataset acquired was unlabeled, so it

had to be labeled manually. To annotate the dataset for two
different object detection models, YOLO and Faster R-CNN,
the open-source tool called "labelImg" tool was utilized. The
tool supports generating annotations in two different formats:
YOLO (TXT file) and Faster R-CNN (XML file). The
command ! python labelImg/labelImg.py was run to start the
"labelImg" tool.

Fig. 15. Label image command

 26

This opened the graphical user interface (GUI) of
"labelImg" where images from the dataset could be loaded,
and annotations could be created and saved as below:

 Fig. 16. Labelimg tool interface.

This process facilitated efficient and accurate labeling of

the dataset by providing an intuitive graphical interface for
annotating objects of interest in the images. The vehicle image
dataset is labeled with their corresponding predefined classes:
Alert, Class 0, Class 1, Class 2, Class 3, Class 4, or Class 5.

For YOLO annotation, each image in the dataset was
loaded into the "labelImg" tool's graphical user interface
(GUI). Bounding boxes were manually drawn around the
objects of interest in the image, specifying their class labels.
The tool then generated a TXT file for each annotated image
containing the coordinates and class labels of the bounding
boxes. This format is compatible with the YOLO model's
training requirements.

For Faster R-CNN annotation, a similar process was
followed. The images were loaded into the "labelImg" tool,
and bounding boxes were created around the objects. Class
labels were assigned to the bounding boxes. However, instead
of generating text files, the tool produced XML files following
the PASCAL VOC format. These XML files contained the
bounding box coordinates, class labels, and additional
information required by the Faster R-CNN model.

By using "labelImg" and its support for both YOLO and
Faster R-CNN annotation formats, the dataset was effectively
labeled to cater to the requirements of both models. This
facilitated seamless training and evaluation processes for each
model, ensuring accurate and consistent annotations for their
respective object detection tasks.

 Fig. 17. XML annotation.

 Fig. 18. TXT annotation.

A. Build Model

XIII. YOLO

1) Accessing the datasets and importing necessary
packages in Google Colab

The Yolo algorithm used an annotation format in the TXT
file that is extracted from software named Roboflow. This
software provides a workspace for uploading images and other
annotation formats that need to be converted into the format
that Yolo requires [17]. Firstly, we created a workspace for
random images in each folder, train, test, and validation before
uploading all the random split images and XML files. The
software then converts the image format into a text file. This
software also includes some advanced features to ensure the
images do not contain null files and duplicate images. Before
extracting the text file, we set the format as autorotation to
remove any bias and improve performance during training.
The images and its text files were kept in Google Drive
accordingly, located in path (..content/MyDrive/FYP/Yolo) to
access to Google Collab.

 Fig. 19. Roboflow Vehicle Datasets Workspace.

In Google Collab, we changed the runtime type for the
hardware accelerator to GPU type T4 to increase the iteration
speed. The iteration starts by mounting the drive to access the
content of MyDrive. Yolov8 required ultralytics packages to
perform multi-image classification and object detection [19].
The YOLO function is imported after ultralytics packages
have successfully been executed to continue the prediction
and training tasks.

2) Detect object with yolov8l.pt model

We first test the yolo model named yolov8l.pt by
performing predict model to the image named vehicles.jpg.
The task's objectives are to ensure the Yolo model is located
in the workspace and can successfully execute to detect any
object in the frame. As a result, the Yolo model detected 3
persons, 12 cars, 2 motorcycles, 2 buses, and 4 trucks in this

 27

image and saved the detection results as predict3 in the runs
folder.

 Fig. 20. Pre-test image for yolov8l.pt model.

Fig. 21. Result of Pre-test image.

3) Create human-readable data serialization language

A folder named 'data.yaml' was created in Visual Code
Studio before training the model. This file indicates where the
train and validation images are located, the total number of
classes, and the list of predefined classes in a single array.
YAML is a popular programming language because it is
designed to be easy to read and understand.

4) Custom Data Training

All the images are being extracted from 'data. yaml' path
file with the yolo model with 50 epochs and in train mode.

Fig. 22. Execution of Train mode to data.yaml file.

XIV. FASTER R-CNN RESNET50

1) Import Libraries

The code begins by importing the required libraries,
including os, glob, XML.etree. ElementTree as ET, pandas as
pd, and tensorflow as tf, to facilitate subsequent steps in the
project. The version of TensorFlow being used is printed to
the console, 2.12.0.

2) Clone the TensorFlow Models Git Repository and

install the TensorFlow Object Detection API.

 Fig. 23. Cloning and Installing TensorFlow.

 The TensorFlow Object Detection API is installed, which
is essential for implementing the vehicle detection model.

3) Test the Model Builder

The model builder module is responsible for constructing

the object detection model architecture and configuring its
components, such as the backbone network, feature extractors,
and region proposal networks. By performing this step, we can
ensure that the model builder is correctly implemented and
that there are no major issues that might hinder the subsequent
steps of your project, such as training the model on the vehicle
dataset.

4) Create the CSV Files and the Label Map File

This step involves creating CSV files and a label map file.

a) CSV files

 Fig. 24. Converting XML format to CSV format.

• In object detection tasks, it is expected to use CSV

(Comma-Separated Values) files to store the

information about the annotated objects in the images.

• The xml_to_csv function is responsible for converting

the XML files containing annotations into CSV format.

• The function iterates over the XML files in the specified

train_labels and test_labels directories, extracts relevant

information such as image filenames, object classes, and

 28

bounding box coordinates, and stores them in a

DataFrame.

• The resulting DataFrame is then saved as a CSV file

(train_labels.csv and test_labels.csv) using the to_csv

function.

• The CSV files serve as input for the subsequent steps in

the object detection pipeline, such as model training and

evaluation.

Fig. 25. Generated train_labels.csv.

Fig. 26. Generated test_labels.csv.

b) Label Map File

 Fig. 27. Generate Label Map.

• The label map file is used to map the class names to class

IDs in the object detection model.

• The xml_to_csv function retrieves the unique class names

from the XML annotations and sorts them.

• Then, the script iterates over the class names and assigns

a numerical ID to each class.

• The class names and their corresponding IDs are

formatted in the Protocol Buffers (protobuf) syntax and

stored in the pbtxt_content variable.

• Finally, the pbtxt_content is written to the label map file.

• The label map file is required during model training and

inference to map the predicted class IDs to their

corresponding human-readable class names.

Fig. 28. Label Map Output.

 By creating the CSV files and the label map file, it
organizes and provides the necessary data and metadata for
the subsequent steps in the object detection pipeline. The CSV
files contain the annotations, while the label map file provides
the mapping between class names and IDs, ensuring proper
identification and labeling of objects during training and
inference.

5) Create train.record & test.record Files

In this step, the generate_tfrecord.py script is used to

create TFRecord files, which are the required data formats for
training the object detection model. TFRecord is a binary file
format that efficiently stores large amounts of data. The script
takes as input the CSV files (train_labels.csv and
test_labels.csv) generated in the previous step, along with the
label_map.pbtxt file and the path to the image's directory. It
then generates TFRecord files for training and testing
purposes.

By creating the train.record, and test.record files in the
TFRecord format, the data is efficiently stored and ready to be
fed into the object detection model for training and evaluation.
These files contain the image data, along with their
corresponding annotations and class labels, in a format that
TensorFlow can process effectively during the training
process.

6) Download Pre-trained Model Checkpoint

In this step, a pre-trained model checkpoint is downloaded

and extracted. The pre-trained model checkpoint serves as a
starting point for transfer learning, where the already trained
weights and parameters of the model are used as a foundation

 29

for training on a new dataset, enabling faster convergence and
better performance on a specific task.

7) Edit the Model Pipeline Config File

We obtain the model pipeline configuration file, modify it

according to the requirements, and save it in the data folder.
The model pipeline configuration file contains various
settings and parameters that define the architecture and
behavior of the object detection model during training. The
changes that have been made includes:

• Change num_classes to 7:

This reflects the number of classes in our vehicle

classification task.

• Update paths for test.record, train.record, and labelmap:

This will update the paths to match the paths of the

corresponding files we generated in earlier steps.

• Change fine_tune_checkpoint and

fine_tune_checkpoint_type:

This will update the fine_tune_checkpoint parameter

with the path to the directory where we extracted the

downloaded checkpoint in a previous step. This should

be the directory containing the pre-trained model

checkpoint files.

Set the fine_tune_checkpoint_type to "detection" to

indicate that the checkpoint is used for object detection

tasks.

• Adjust batch_size and num_steps:

Modify the batch_size parameter based on the capability

of our GPU. In this step, we set it to 1 due to limited

GPU memory.

Update the num_steps parameter to the desired number

of training steps we want the object detector to go

through. In this step, we set it to 25000 for the training.

• Save the modified model pipeline config file:

After making the necessary changes, we save the

modified model pipeline config file.

• Put the modified config file in the data folder:

We move and copy the modified model pipeline

configuration file to the data folder where we store our

project data. This ensures that the training script can

access the updated configuration during the training

process.

By modifying the model pipeline config file, we customize

the behavior of the object detection model according to your
specific requirements. The changes we made include adjusting
the number of classes, updating file paths, specifying the
checkpoint directory, and setting batch size and training steps.
These modifications ensure that the model is trained on our
dataset and tuned to perform vehicle classification with the
desired settings and parameters.

8) Load Tensorboard

 Fig. 29. Load Tensorboard.

In this step, it will load TensorBoard, a web-based

visualization tool provided by TensorFlow, to monitor and
analyze the training progress of researchers' object detection
model. TensorBoard allows us to visualize various aspects of
our model's training, such as loss curves, accuracy metrics,
and other valuable statistics. It helps us gain insights into the
performance, identify potential issues, and make informed
decisions during training.

9) Train the Model

We train our object detection model with the prepared

vehicle data using the TensorFlow 2 Object Detection API.
This step involves feeding the dataset to the model and
iteratively adjusting the model's weights to improve its
performance. Running this step allows the model to learn from
the labeled vehicle images and improve its ability to classify
vehicles accurately. It took about 1 hour to complete the
training with the help of GPU memory to speed up the process.

10) Evaluate the Model

We then evaluate the performance of our trained object

detection model using the TensorFlow 2 Object Detection
API. By running this step, we can evaluate the effectiveness
of our trained object detection model and assess its
performance metrics, which can help us understand how well
it can classify vehicles in unseen data.

11) Export Inference Graph

In this step, we export the trained model as an inference

graph, which can be used to predict new images or videos. The
export graph will contain all the necessary information and
parameters for the trained model. The trained model is
exported as saved_model.pb.

12) Test the Trained Object Detection Model on New Data

Fig. 30. Model Testing on New Data

 30

 In this step, we test the trained object detection model on
a new image to perform inference and visualize the detected
objects. The code provided loads the saved model, loads the
label map, processes an input image, runs the inference, and
visualizes the detected objects on the image.

In the figure below, we test the trained object detection
model on "polis 218.jpg" and the detected vehicle result is
classified as Class 0 with a confidence score of 86%.

Fig. 31. Result of Detection for "polis 218.jpg".

A. Results and Discussion

In this section, we present and analyze the results of two

popular object detection models: YOLOv8 and Faster R-
CNN, with ResNet50 as the backbone. These models were
evaluated on a dataset of vehicle images, aiming to detect
various classes of vehicles accurately. The primary focus of
this section is to examine and compare the performance of
these models based on their evaluation metrics and provide
insights into their strengths and limitations.

a. YOLOv8

 Fig. 32. Summary of Line Plot Performance Representation

 Fig. 33. F1-Confidence Curve in Each Vehicle Classes.

TABLE II. SUMMARY OF YOLOV8 PERFORMANCE RESULTS

Class Images Insta
nces

Precisio
n

Recall mAP
50

mAP
50-95

All 241 337 0.874 0.934 0.945 0.877

Alert 241 43 0.934 0.930 0.946 0.826

Class 0 241 54 0.906 0.963 0.983 0.929

Class 1 241 86 0.774 0.814 0.836 0.716

Class 2 241 47 0.822 0.894 0.915 0.856

Class 3 241 26 0.971 1.000 0.995 0.934

Class 4 241 33 0.725 0.958 0.958 0.905

Class 5 241 48 0.987 0.979 0.982 0.970

The evaluation of the YOLOv8 model revealed promising
results. It successfully detected a total of 337 instances across
241 images, resulting in a high average precision (MAP) of
0.945. The model demonstrated a strong capability to identify
bounding boxes accurately, as indicated by a precision score
of 0.874 and a recall score of 0.934. The MAP@0.50-0.95
value of 0.877 further highlights the model's proficiency in
handling objects with varying levels of overlap and
positioning. We also assessed the performance of YOLOv8
for individual vehicle classes, such as Alert, Class 0, Class 1,
Class 2, Class 3, Class 4, and Class 5. The results showcased
varying precision, recall, and average precision levels for each
class, offering insights into the model's performance across
different vehicle types.

YOLOv8 performs exceptionally well in detecting the
'Alert' class, achieving high precision, recall, and mAP scores.
The precision of 0.934 indicates that when the model predicts
this class, it is correct 93.4% of the time. The recall of 0.930
indicates that the model captures 93.0% of all actual instances
of 'Alert' in the dataset. The mAP values are also notably high,
demonstrating the model's effectiveness in recognizing this
class accurately.

For 'Class 0,' YOLOv8 exhibits a high precision of 0.906,
signifying a solid ability to correctly identify instances of this
class. The recall of 0.963 indicates that it effectively captures
the majority of actual instances of 'Class 0.' The mAP values
are also notably high, demonstrating the model's accuracy in
detecting this class.

'Class 1' exhibits a lower precision and recall compared to
the previous classes. The precision of 0.774 suggests that the
model's predictions for this class may include some false
positives. The recall of 0.814 indicates that it captures around
81.4% of actual instances of 'Class 1.' The mAP values, while
lower, still indicate a reasonable level of detection
performance for this class.

YOLOv8 demonstrates a good balance of precision and
recall for 'Class 2.' The precision of 0.822 indicates that it
maintains a relatively low rate of false positives. The recall of
0.894 shows that it captures a significant portion of actual
instances of 'Class 2.' The mAP values further validate its
effectiveness in detecting this class.

YOLOv8 excels in 'Class 3' detection, achieving near-
perfect precision and recall scores. The precision of 0.971
indicates an extremely low rate of false positives. The recall
of 1.000 signifies that it captures all instances of 'Class 3' in

 31

the dataset. The mAP values reinforce its outstanding
performance for this class.

While 'Class 4' exhibits a lower precision of 0.725,
indicating some false positives, it compensates with a high
recall of 0.958, capturing the majority of actual instances. The
mAP values also suggest a good overall performance in
detecting this class.

YOLOv8 performs exceptionally well in detecting 'Class
5,' achieving high precision, recall, and mAP scores. The
precision of 0.987 indicates a very low rate of false positives,
and the recall of 0.979 signifies its ability to capture a
significant portion of actual instances of 'Class 5.'

On the other hand, YOLOv8 demonstrates strong
individual class performance across most classes, with
particularly impressive results for 'Alert' and 'Class 3.' While
some classes exhibit lower precision, the model generally
maintains a balanced trade-off between precision and recall,
resulting in solid mAP scores for most classes. Nevertheless,
these results collectively underscore YOLOv8's proficiency in
object detection tasks, offering a robust and balanced
performance across diverse vehicle classes in our dataset.

 Fig. 34. Confusion Matrix in Each Vehicle Classes.

 In the confusion matrix provided for YOLOv8, the true
positive results for each vehicle class offer valuable insights
into the model's performance. Notably, the model correctly
identified 40 instances in the' Alert' class, showcasing its
ability to effectively detect this class. Similarly, for 'Class 0,'
YOLOv8 demonstrated precision by correctly identifying 52
instances. 'Class 1' yielded 67 true positive results, signifying
the model's capability to accurately detect this class. In 'Class
2,' the model achieved a true positive count of 42, indicating
its proficiency in recognizing instances of this category. In the
'Class 3' category, YOLOv8 correctly identified 26 instances
as true positives, underscoring its competence in accurately
detecting this specific class. Furthermore, 'Class 4'
demonstrated the model's strong detection capabilities with 31
true positives. Lastly, 'Class 5' yielded an impressive 47 true
positive results, underlining the model's excellence in
identifying this class. These true positive outcomes across
various vehicle classes emphasize YOLOv8's effectiveness in
correctly detecting and categorizing instances, thereby
contributing to its overall robust performance in object
detection tasks.

b. Faster R-CNN

Fig. 35. Evaluation Metrics with Mean Average Precision (mAP) values

Fig. 36. Average Precision (AP) and Average Recall (AR) values

TABLE III. SUMMARY OF FASTER R-CNN PERFORMANCE

RESULTS

Metrics (area = all, maxDets = 100) Performance

mAP@.50:.95IoU 0.553335

mAP@.50IoU 0.749452

mAP@.75IoU 0.630845

AP@.50:.95IoU 0.553

AP@.50IoU 0.749

AP@.75IoU 0.631

AR@.50:.95IoU 0.733

As summarised in Table IV, the performance results for
Faster R-CNN provide insights into the model's effectiveness
in object detection. The metrics evaluated include mAP (mean
Average Precision) at various Intersections over Union (IoU)
thresholds, AP at specific IoU values, and AR (Average
Recall) at a range of IoU thresholds.

The evaluation results produced by Faster R-CNN
ResNet50 demonstrate the model's ability to detect objects
accurately but with some variations compared to YOLOv8.
The Faster R-CNN ResNet50 model detected 287 instances
across 241 images.

At an IoU range of 0.50 to 0.95, Faster R-CNN achieves
an mAP of 0.553, indicating its ability to accurately detect and
classify objects with a wide overlap range with ground truth
bounding boxes. This metric is crucial for assessing the
model's overall object detection performance across all
classes.

When considering a stricter IoU threshold of 0.75, the
model maintains a respectable mAP of 0.631. This suggests
that Faster R-CNN is capable of precise object localization,
particularly when high overlap between predicted and actual
bounding boxes is required.

 32

The model's performance is further detailed with AP
values at specific IoU thresholds. At IoU of 0.50, Faster R-
CNN achieves an AP of 0.749, demonstrating its proficiency
in detecting objects with moderate overlap. This is a valuable
metric as it reflects the model's performance under common
detection scenarios where objects may not be perfectly aligned
with ground truth annotations.

In addition, the Average Recall (AR) at an IoU range of
0.50 to 0.95 is reported at 0.733. This indicates the model's
ability to balance precision and recall across various IoU
thresholds, ensuring it can effectively capture objects even
with variations in overlap.

On the other hand, to make a comprehensive assessment,
these results should be compared with those of other models,
such as YOLOv8, to determine the most suitable option for
specific use cases. In this case, it is important to note that the
performance of the Faster R-CNN model is relatively lower
compared to YOLOv8.

TABLE IV. OVERALL PERFORMANCE EVALUATION

Performance

Evaluation

Precision Recall F1- score MAP50

YOLOv8

DarkNet-53

1.00 0.97 0.90 0.95

Faster R-CNN
ResNet-50

0.55 0.73 0.63 0.55

The overall performance evaluation of YOLOv8 DarkNet-
53 and Faster R-CNN ResNet-50 reveals key distinctions
between these object detection models. YOLOv8 DarkNet-53
stands out with a remarkable precision score of 1.00,
indicating its exceptional ability to classify and locate objects
within the given dataset precisely. This precision score
signifies a low rate of false positives, which is a valuable
attribute in applications where accuracy is paramount.
Additionally, YOLOv8 exhibits a strong recall of 0.97,
implying its proficiency in capturing a significant proportion
of the actual objects present in the images. This balance
between precision and recall is further reflected in its F1-score
of 0.90, signifying robust object detection performance.
Furthermore, YOLOv8 achieves a MAP50 of 0.95,
underscoring its excellence in accurately localizing and
classifying objects with a moderate overlap threshold.

Conversely, Faster R-CNN ResNet-50 demonstrates a
lower precision score of 0.55, suggesting a higher likelihood
of false positives than YOLOv8. While its recall score of 0.73
indicates its capability to capture a substantial portion of
actual objects, it does not match the recall performance of
YOLOv8. This trade-off between precision and recall is
mirrored in its F1-score of 0.63. Additionally, Faster R-CNN
achieves a MAP50 of 0.55, indicating that it excels in certain
detection scenarios but may struggle with higher accuracy
demands.

Therefore, YOLOv8 DarkNet-53 exhibits superior
precision, recall, F1-score, and MAP50 values compared to
Faster R-CNN ResNet-50, emphasizing its effectiveness in
precise and comprehensive object detection tasks. However,
the choice between these models should be based on specific
application requirements, as Faster R-CNN may still be a
suitable option in scenarios where precision-recall trade-offs

are acceptable or computational efficiency is a significant
concern.

c. Prediction and Comparative Analysis of Model Results on
Test Data

a) YOLOv8 DarkNet-53

 Fig. 37. YOLOv8 result for Image 1.

 Fig. 38. YOLOv8 result for Image 2.

b) Faster R-CNN ResNet-50

 Fig. 39. FRCNN results for Image 1.

 Fig. 40. FRCNN results for Image 2.

 33

TABLE V. SUMMARY OF FASTER R-CNN PERFORMANCE

RESULTS

Images Detected Vehicles and
Confidence Values

Correctly
Classified
(Yes/No)

Image 1 YOLOv8 1. Class 1: 0.94

2. Alert: 0.86

3. Alert: 0.40

Yes

Yes

Yes

Image 2 YOLOv8 1. Class 0: 0.96 Yes

Image 1 FRCNN 1. Alert: 0.48 Yes

Image 2 FRCNN 1. Class 0: 0.86 Yes

In detecting and classifying vehicles using YOLO and
Faster R-CNN ResNet50 models, we observed differences in
the number of vehicles detected and the confidence levels
assigned to the classifications.

Using the YOLO model, Image 1 correctly classified two
instances of the motor as Class Alert with a confidence level
of 0.86 and 0.40 for the second. Additionally, it accurately
classified a car as Class 1 with a high confidence level of 0.94.
In Image 2, the YOLO model correctly identified a police car
as Class 0 with a confidence level of 0.96.

Comparatively, the Faster R-CNN ResNet50 model
exhibited some variations in its detections. In Image 1, it only
detected and classified one motor as Class Alert, but with a
lower confidence level of 0.48. It did not detect the additional
motor or car in the image. Similarly, in Image 2, the model
correctly classified the police car as Class 0, but with a
confidence level of 0.86.

Both models produced correct classifications for the
vehicles present in the images. However, the YOLO model
detected and classified more vehicle instances than the Faster
R-CNN ResNet50 model. The YOLO model also tended to
assign higher confidence levels to its classifications,
indicating a higher degree of certainty in its predictions.

These observations suggest that the YOLO model may
have a more robust overall detection capability, capturing a
greater number of vehicles accurately and with higher
confidence. On the other hand, the Faster R-CNN ResNet50
model demonstrated limitations in detecting multiple
instances and exhibited lower confidence levels in its
classifications.

c) Findings for the Optimal Model: YOLOv8 with Darknet-
53

 By using the best pre-trained weight model named
"best.pt" from YOLOv8 model, we test the capability of the
model to detect in two different ways. One way uses test
images with multiple images of vehicles, while the other uses
images with less than three vehicle classes in each image. The
text appears in the detected green, orange, and red boxes, it
shows the information on the type of vehicle toll classes
versus MAP. For example, in Figure 45, Class 1:0.97 means
the detected vehicle is from Class 1, and its confidence score
is 0.97, equal to 97%. As depicted below, Figure 41 and Figure
42 illustrate the model cannot capture correctly when handling
multiple classes in one frame, that the vehicle classes are not
accurately labeled, and that for certain correct classes, low

confidence values are recorded. However, vehicles in Figures
43, 44, 45, and 46 record high confidence values and have
been captured with correct trained classes accordingly.

 Fig. 41. Result 1 for detecting multiple vehicles in one frame.

 Fig. 42. Result 2 for detecting multiple vehicles in one frame.

 Fig. 43. Result 1 for detecting single vehicles in one frame.

 Fig. 44. Result 2 for detecting single vehicles in one frame.

 Fig. 45. Result 3 for detecting single vehicles in one frame.

 34

 Fig. 46. Result 4 for detecting single vehicles in one frame.

These findings emphasize the importance of considering
both the number of detections and the confidence levels when
evaluating the performance of object detection models.
Further analysis and comparison of these models across a
more extensive and diverse dataset could provide additional
insights into their respective strengths and weaknesses in
vehicle detection and classification tasks.

The overall results indicate that the YOLOv8 model
performs well compared to the F-RCNN model. Therefore, we
predict that the setup and training process for the Faster-
RCNN model might be wrong. The possibilities might be
because of overfitting, the hyperparameter tuning used was
unsuitable and needed the adjustment of the parameters
defined, the architecture needed more train data, and the
differences in training parameters for both models. For the
Phase 2 Project, we will -tune the model, try different
parameters, try on a new dataset, do data augmentation, and
generate synthetic data where we are adding another new
feature. The data can be used to adapt to the weather changing
in Malaysia.

B. Future Works

The overall results indicate that the YOLOv8 model
performs well compared to the F-RCNN model. Therefore, we
predict that the setup and training process for F-RCNN model
might be wrong. The possibilities might be because of
overfitting, the hyperparameter tuning used was unsuitable
and needed the adjustment of the parameters defined, the
architecture needed more train data, and the differences in
training parameters for both models. For the Phase 2 Project,
we will fine-tune the model using different parameters, insert
a new dataset if needed, and add new features such as data
augmentation and synthetic data generation where the data can
be used to adapt to the weather changes in Malaysia.

The first feature is data augmentation. Augmented data is
derived from original data with minor adjustments. To
improve the size and diversity of the training set, we use
geometric and color space modifications like flipping,
resizing, cropping, brightness, and contrast [18]. Secondly,
generates synthetic data that is created without applying the
actual dataset. To produce synthetic data, it frequently
employs DNNs (Deep Neural Networks) and GANs
(Generative Adversarial Networks) [18].

While both models are being optimized, we plan to gather
information about Malaysian citizens' experiences with the
current toll system and their feedback and suggestions. We
will collect the data using Google Forms, which includes
several types of questionnaires: structured, unstructured,

open, and closed. We would like to explore and summarize
the users' insights about our project idea.

Moreover, our current output only shows the vehicle class
types and their confidence value for model deployment,
respectively. To improve the effectiveness of the toll system
implementation for both models, we will also indicate the
bounding box with each vehicle's fare. For example (Class 1
RM 5.00). To increase the approach to the current Malaysian
toll system, we will try to contact one of the highway
concessionaries or build–operate–transfer operator companies
in Malaysia, PLUS Expressways Berhad, to confirm how
much in one frame vehicles can be detected and other related
questions regarding the improvements of the system in toll
system in Malaysia.

REFERENCES

[1] Transport Statistics Malaysia 2021. (2021).
https://www.mot.gov.my/en/Statistik%20Tahunan%20Pengangkutan/
Transport%20Statistics%20Malaysia%202021.pdf.

[2] Syed Izmir. (2022). Research on Improvement of Project
Implementation for RFID Toll in Malaysia. Faculty of Built
Environment University of Malaya Kuala Lumpur.
http://studentsrepo.um.edu.my/14121/3/Syed_Izmir.pdf.

[3] Wenbo Lan, Jianwu Dang, Yangping Wang & Song Wang. (2018).
Pedestrian Detection Based on YOLO Network Model. 2018 IEEE
International Conference on Mechatronics and Automation : IEEE
ICMA 2018 : August 5-8, 2018, Changchun, China.

[4] Yin, Y., Li, H. & Fu, W. (2020). Faster-YOLO: An accurate and faster
object detection method. Digital Signal Processing: A Review Journal,
102. https://doi.org/10.1016/j.dsp.2020.102756.R. Nicole, "Title of
paper with only first word capitalized," J. Name Stand. Abbrev., in
press.

[5] Kim, J. A., Sung, J. Y. & Park, S. H. (2020, November 1). Comparison
of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type
Recognition. 2020 IEEE International Conference on Consumer
Electronics - Asia, ICCE-Asia 2020. https://doi.org/10.1109/ICCE-
Asia49877.2020.9277040.

[6] Aleksa Ćorović, Velibor Ilić, Siniša Đurić, Mališa Marijan, and
Bogdan Pavković. (2018). The Real-Time Detection of Traffic
Participants using YOLO Algorithm. 26th Telecommunications forum
TELFOR. https://doi.org/10.1109/TELFOR.2018.8611986.

[7] Diwan, T., Anirudh, G. & Tembhurne, J. V. (2023). Object detection
using YOLO: challenges, architectural successors, datasets and
applications. Multimedia Tools and Applications, 82(6), 9243–9275.
https://doi.org/10.1007/s11042-022-13644-y.

[8] Yuejin Zhang, Guanxiang Yin, Meng Yu, Meng Wang & Yong Hu.
(2022, March). Research on highway vehicle detection based on faster
R-CNN and domain adaptation. ResearchGate, 52(02):1-16.
https://doi.org/10.1007/s10489-021-02552-7.

[9] Wen Li, Haoran Wang, Yuhua Chen, Christos Sakaridis, Dengxin Dai
& Luc Van Gool. (2021, May 11). Scale-Aware Domain Adaptive
Faster R-CNN. Springer, International Journal of Computer Vision
volume 129, pages 2223–2243. https://doi.org/10.1007/s11263-021-
01447-x.

[10] Jiani Xi, Zhihui Wang & Daoerji Fan. (2020). A Solution for Vehicle
Attributes Recognition and Cross-dataset Annotation. 2020 13th
International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI).
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9263546.

[11] Dilek, E. & Dener, M. (2023). Computer Vision Applications in
Intelligent Transportation Systems: A Survey. Sensors, 23(6), 2938.
https://doi.org/10.3390/s23062938.

[12] Usha Mittal, Priyanka Chawla & Rajeev Tiwari. (2023). EnsembleNet:
a hybrid approach for vehicle detection and estimation of traffic density
based on faster R-CNN and YOLO models. Neural Computing and
Applications volume 35, pages 4755–4774.
https://doi.org/10.1007/s00521-022-07940-9.

[13] Encord. (2022, March). YOLOv8 for Object Detection Explained
[Practical Example]. Retrieved from https://medium.com/cord-

 35

tech/yolov8-for-object-detection-explained-practical-example-
23920f77f66a.

[14] Keita, Z. (2022, September). YOLO Object Detection Explained.
Retrieved from https://www.datacamp.com/blog/yolo-object-
detection-explained.

[15] Ren, S., He, K., Girshick, R. & Sun, J. (2015). Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks.
Computer Vision and Pattern Recognition.
http://arxiv.org/abs/1506.01497.

[16] Deval Shah. (2022, March 7). Mean Average Precision (mAP)
Explained: Everything You Need to Know. Retrieved from
https://www.v7labs.com/blog/mean-average-precision.

[17] Jacob Solawetz, F. (2023, January 11). Roboflow. Retrieved from What
is YOLOv8? The Ultimate Guide: https://blog.roboflow.com/whats-
new-in-yolov8/.

[18] Datacamp. (2022, November). A Complete Guide to Data
Augmentation. Retrieved from
https://www.datacamp.com/tutorial/complete-guide-data-
augmentation.

[19] [Murtaza's Workshop - Robotics and AI]. (2023, February 11). Object
Detection 101 Course - Including 4xProjects | Computer Vision
[Video]. Retrieved from
https://www.youtube.com/watch?v=WgPbbWmnXJ8.

