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Preface  
 

Advancement in ICT: Exploring Innovative Solutions (AdICT) Series 1/2024 is an e-book showcases the collective 

achievements of Final Year Project (FYP) in Kulliyyah of Information and Communication Technology (KICT). This 

compilation represents evidence to the technical passion and academic skills of our students before they venture 

into the professional realm. 

FYP is a journey that demands creativity, critical thinking, and perseverance. This book encapsulates the diverse 

range of projects undertaken by our students, each a unique exploration into the vast landscape of Information and 

Communication Technology (ICT). From cutting-edge software applications to groundbreaking research, these 

projects not only demonstrate technical proficiency but also the ability to address real-world challenges. 

In this comprehensive collection, the topics covered span a spectrum from cutting-edge software development, 

cybersecurity, artificial intelligence and multimedia technologies reflecting the breadth and depth of our academic 

program. This offers a curated journey through the diverse landscape of final year ICT projects to the readers while 

appreciating the impact these projects can have on the wider community. 

This e-book carries significant benefits and impact whereby it serves as a valuable knowledge repository, offering a 

diverse audience—from students and educators to industry professionals—a comprehensive view of the latest 

innovations and technological solutions in ICT. Moreover, the book fosters a culture of knowledge sharing and 

collaboration, as each project represents a unique contribution to the broader technological landscape. 

 

“When the human being dies, his deeds end except for three: ongoing charity, beneficial knowledge, or a 

righteous child who prays for him” – Sahih Muslim 
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Abstract— Congestion in toll plazas has prompted the 
exploration of various solutions, from infrastructure 
improvements to advanced technologies. Enhancing toll plaza 
infrastructure, such as constructing additional tollbooths and 
widening lanes while implementing electronic toll collection 
systems, has had some positive impacts. However, these existing 
measures have faced limitations in effectively addressing 
congestion. The use of mixed-mode lanes at the leftmost toll lanes 
still applied manual vehicle classification, which relies on human 
operators, but it has yet to sufficiently overcome congestion, 
given the diverse vehicle types and toll rates. This situation leads 
to human error and affects traffic flow. Although RFID (Radio 
frequency identification) technology has been widely adopted at 
only a few toll lanes, challenges in implementation have led to 
congestion issues due to insufficient infrastructure and reliability 
problems. Therefore, the outcome of this project is to develop the 
best model detector of automated real-time multiclass vehicle 
classification for all lanes in the toll plaza. This model input is 
extracted from a pre-trained 800 images, which consist of 6 
classes of vehicles and their annotated XML file, respectively, for 
one stage detector: Faster Region-Convolutional Neural 
Network (Faster R-CNN), ResNet-50 and two-stage detectors; 
You Only Look Once (YOLO), YOLOv8 Darknet-53. The 
classification model performs well in YOLOv8 architecture with 
the highest mean average precision (MAP-50) of 95.0% and has 
a good performance measurement on loss function compared to 
Faster R-CNN architecture.  

Keywords—Vehicle Classification, Toll System, MLFF, 

RFID system, You Only Look Once, Faster R-CNN, Machine 

Learning. 

I. INTRODUCTION 

A. Current Toll System 

The current toll collection system in Malaysia heavily 
relies on manual processes conducted by human operators to 
set toll rates for each vehicle passing through the leftmost 
lane's booth. This manual approach is susceptible to human 
errors and can lead to congestion at toll booths, resulting in 
inefficient highway traffic flow. Furthermore, an automated 
vehicle classification system must be revised to differentiate 
between various vehicle types accurately, leading to potential 
misclassification and inaccurate toll rates. These issues 
significantly hinder the toll collection system's efficiency, 
accuracy, and overall performance, negatively impacting road 
service providers and users. According to statistical data from 

the Malaysian government, traffic congestion during peak 
hours has been a persistent problem, causing substantial 
economic losses. For instance, in 2021, traffic congestion in 
the Greater Kuala Lumpur area alone resulted in an estimated 
economic loss of over RM 4.3 billion (approx. USD 1 billion) 
due to wasted time and fuel consumption [1]. Additionally, 
manual toll collection processes contribute to increased travel 
times, fuel consumption, and vehicle emissions, adversely 
affecting air quality and exacerbating environmental 
concerns. 

B. Project Overview  

The project aims to develop an automated vehicle 
classification system for toll collection in Malaysia that can 
operate accurately and efficiently in real-time while 
contributing to smoother traffic flow on highways. This 
project proposes the implementation of a computer vision-
based solution using the Region-of-Interest (ROI) method for 
vehicle detection and extraction from video footage obtained 
from toll booths, combined with machine learning techniques 
which are Faster R-CNN and YOLOv8 algorithms for vehicle 
classification. Combining the ROI method and the Faster R-
CNN or YOLO algorithm shows promising potential for 
accurately detecting and classifying vehicles passing through 
toll booths. Upon complete integration, the system can 
substantially enhance toll collection efficiency and precision, 
curtail operational expenses, and elevate the smoothness of 
traffic movement along highways. The project aligns with 
Goal 11 of the Sustainable Development Goals (SDGs), 
Sustainable Cities and Communities. Efficient transportation 
and toll collection systems are vital for sustainable urban 
development, as highlighted in SDG Goal 11. By accurately 
classifying vehicles based on their characteristics, such as 
size, number of axles, and type, the toll collection system can 
incentivize using cleaner and more fuel-efficient vehicles, 
reduce traffic congestion, and improve air quality. Thus, the 
project also contributes to other related SDGs such as Goal 13 
(Climate Action), Goal 3 (Good Health and Well-being), and 
Goal 9 (Industry, Innovation, and Infrastructure) by 
promoting technological innovation and investment in 
infrastructure. Overall, the project intends to achieve an 
advanced and efficient toll system in Malaysia, bringing it in 
line with international standards. 
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C. Project Objectives  

As stated, this project focuses on implementing machine 
learning to solve the problem statements. The main objectives 
are as follows: 

1) Develop an automated image-based vehicle 

classification system for toll collection in Malaysia by 

implementing computer vision techniques, such as the 

Region-of-Interest (ROI) method, to accurately detect and 

extract vehicles from toll booth video footage as well as 

utilizing machine learning algorithms like Faster R-CNN or 

YOLO for efficient, and real-time vehicle classification. 

 

2) Build a robust system that accurately classifies 

various vehicle classes based on their attributes, aiming to 

create an effective toll collection system that minimizes 

human errors in toll rate settings and reduces congestion at 

toll booths. 

3) Align Malaysia's toll system with international 

standards and best practices to enhance the overall user 

experience by implementing a smoother and more efficient 

toll collection process. 

4) Contribute to sustainable urban development and 

the accomplishment of SDG 11 (Sustainable Cities and 

Communities) by incentivizing the use of cleaner and more 

fuel-efficient vehicles through the implementation of an 

automated vehicle classification system, supporting 

sustainable mobility practices. 

D. Significances of Project 

 The significance of this project is that the evolution of 
Malaysia in tolling technology to aim for Multi-Lane free flow 
(MLFF) since 2009 can be done practically by providing one 
of the best models to detect and localize vehicle classes by 
capturing real-time objects with high accuracy and speed 
performance. In addition, the system improves the current 
tolling system by adding new features and variables, such as 
an alert system when unclassed vehicles enter the toll. 
Meanwhile, different latest models of Convolutional Neural 
Networks-based approach, FRCNN and YOLOv8 (version 
2023) performance are provided to compare which model 
performs well, and the ideal results in a detection model will 
perform well as it trains explicitly and validates Malaysia's 
vehicle datasets of different toll classes. Lastly, this project 
contributes to the development of the Machine Learning 
approach in Malaysia. We observed one of the current real 
Malaysia problems and were able to implement it with the 
computational science area that allows the enhancement of 
features in the toll system using an image classification for 
multiple Malaysia vehicle classes. 

This paper is organized as follows: Section 2, Literature 
Reviews, discusses similar and previous papers as well as re-
highlights the concepts of Machine Learning used in this 
paper. Section 3 Methodology presents the overall method 
adopted and implemented in order to execute this project. 
Section 4, Project Development, elaborates on the approaches 
from the beginning of the development process until model 
findings and enhancements for future projects. 

II. LITERATURE REVIEWS 

RFID technology has been widely adopted in toll 
collection systems worldwide, including in Malaysia. RFID 

(Radio Frequency Identification) technology is designed to 
make toll collection more efficient and faster. It allows 
vehicles to pass through toll gates without stopping to make a 
payment manually. Instead, the toll fee is automatically 
deducted from the driver's prepaid RFID account. However, 
there have been reports of congestion at some toll gates in 
Malaysia due to the implementation of RFID technology. One 
of the main reasons for this congestion is the need for proper 
infrastructure and equipment to handle the increased traffic 
flow caused by RFID. Additionally, there have been issues 
with the reliability of the RFID system, such as faulty RFID 
readers and insufficient funds in the drivers' RFID accounts. 
These issues can lead to delays and frustration for drivers, 
further exacerbating traffic congestion. RFID technology is 
designed to read and collect information from RFID tags or 
stickers attached to the vehicle, even when moving at high 
speed. However, certain factors can affect the readability of 
the RFID sticker, such as the distance between the reader and 
the sticker and the angle at which the sticker is positioned. In 
some cases, if the RFID reader is not calibrated correctly or 
positioned, it may not be able to read the RFID sticker when 
the vehicle moves quickly. Hence, it can cause delays and 
inconvenience for drivers, especially during peak hours when 
heavy traffic is heavy. RFID systems depend highly on 
technology and can be vulnerable to disruptions and 
malfunctions. For example, if a vehicle's tag is damaged, lost, 
or stolen, the system may be unable to detect it. In addition, 
the RFID signals can be interfered with by other electronic 
devices or materials, which can cause inaccuracies in data 
collection. Additionally, one of the primary disadvantages of 
RFID technology is the cost of implementing and maintaining 
the system. It includes the cost of purchasing and installing the 
RFID readers, as well as the cost of replacing and upgrading 
the technology as it becomes outdated. Furthermore, RFID 
systems require regular maintenance to ensure they function 
correctly. It can include cleaning and repairing the equipment 
and updating software and firmware to keep the system up to 
date with the latest security protocols and features [2]. 

One of the computer vision techniques is object detection. 
It requires identifying and localizing images or videos by 
tracking the object's location. The procedure initiates by 
directly extracting image characteristics from the unaltered 
image. These features are then systematically relayed through 
successive layers, enabling the accumulation of intricate high-
dimensional insights inherent to the image. This 
accomplishment stands as a significant triumph within the 
realm of computer vision. Efficient vehicle image 
classification is imperative, demanding both rapidity and a 
commendably elevated level of accuracy. This urgency arises 
from the need to discern the vehicle's category while it is 
moving along roadways. Simultaneously, it facilitates the 
identification of numerous classifiable vehicles and road-
related entities within a single scene, allocating accurate labels 
to the bounding boxes encompassing these entities. 
Noteworthy contemporary models for target detection 
encompass R-CNN, SPP-Net, Fast-RCNN, Faster-RCNN, 
SSD, YOLO, and ResNet [3]. You Only Look Once (YOLO) 
is one of the best algorithms to pass the real-time object to a 
fully connected neural network and is recognized as a 
regression problem. YOLO is a one-stage detector approach 
based on deep neural networks without a specific region 
proposal step that uses the whole picture as the network's input 
and goes forward from image pixels to bounding box 
coordinates and class probabilities [4]. A single instance of 
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forward propagation through the network allows this 
algorithm to generate predictions, producing outcomes that 
encompass identified objects, corresponding confidence level 
scores, and bounding box specifications. 

Several studies discuss comparing Faster-RCNN, YOLO, 
and SSD for real-time vehicle type recognition [5]. Some 
works elaborated on the real-time detection of traffic 
participants using the YOLO algorithm [6]. The multitask loss 
function is used to ze and realize single-stage object detection, 
allowing all network layers to be updated in the model training 
without needing disc storage to cache the features [7]. To 
compare Faster-RCNN, YOLO, and SSD, the author trained 
1447 vehicle image datasets named car, mini_van, big_van, 
mini_truck, truck, and compact for each model. YOLO v4 was 
used to improve the performance with a more prominent 
solution. The data's Region of Interest (ROI) was extracted 
from the vehicle's front window to the bumper to keep the 
features. As a result, the accuracy of CNN is relatively high, 
but the speed is significantly slower than other models. 
Despite its faster processing speed compared to YOLO and 
CNN, the SSD model exhibits diminished accuracy due to its 
reliance on the lightweight MobileNet architecture. This 
showed that it sometimes failed to recognize a vehicle, while 
YOLO had a low accuracy but better precise value for the 
number of vehicles that can be detected in each frame of video 
[5]. As a result, the studies indicate that the YOLO approach 
is the best model among the trained object detection models. 

Several previous works have implemented the Faster R-
CNN algorithm for vehicle image classification, 
demonstrating its effectiveness in addressing similar 
challenges to the proposed project. These works provide 
valuable insights into the strengths and weaknesses of 
applying Faster R-CNN in vehicle classification. One recent 
research study by [8] focused on vehicle classification using 
Faster R-CNN and transfer learning techniques. The study 
utilized a large-scale dataset of vehicle images and trained the 
Faster R-CNN model with a pre-trained convolutional neural 
network (CNN). The results showed high accuracy in 
classifying various vehicle types, indicating the effectiveness 
of the Faster R-CNN algorithm in this domain. However, one 
limitation of the study was the reliance on a pre-trained CNN, 
which may affect the model's adaptability to new or unseen 
vehicle classes. Another relevant work by Wen Li  [9] 
explored the application of Faster R-CNN for vehicle 
detection and classification in urban traffic scenarios. The 
study employed a region proposal network (RPN) to generate 
candidate regions and utilized the Faster R-CNN framework 
for classification. The results demonstrated the robustness of 
the approach in accurately detecting and classifying vehicles 
under challenging conditions, such as occlusions and varying 
scales. However, the study acknowledged that the 
computational requirements of Faster R-CNN could be 
demanding, particularly for real-time applications, which may 
limit its practical implementation in resource-constrained 
environments. In a separate research endeavor, Jiani Xi [10] 
investigated using Faster R-CNN for vehicle attribute 
recognition. The study aimed to classify vehicles based on 
color, type, and brand attributes. The Faster R-CNN model 
was trained on a diverse dataset comprising various vehicle 
attributes. The findings highlighted the model's ability to 
accurately recognize vehicle attributes, providing valuable 
information for traffic surveillance and law enforcement 
applications. However, the study acknowledged that 

occlusions and variations in lighting conditions can still pose 
challenges to the accuracy of attribute recognition. 

In conclusion, the reviewed works demonstrate that Faster 
R-CNN remains relevant and effective for vehicle image 
classification tasks. It offers high accuracy in detecting and 
classifying vehicles, even in complex urban traffic scenarios. 
However, limitations such as reliance on pre-trained models, 
computational requirements, and challenges in handling 
occlusions and variations in lighting conditions should be 
considered in implementing Faster R-CNN for real-world 
applications. Further research and development efforts are 
needed to enhance the algorithm's adaptability, efficiency, and 
robustness to ensure its practical viability in automated toll-
collection systems. 

The realm of computer vision has transformed by 
integrating machine learning techniques, ushering in an era of 
practical and precise object detection and classification. These 
techniques have been extensively studied and applied in 
various domains, including toll-collection systems [11]. By 
leveraging machine learning algorithms, toll collection 
systems can accurately classify and differentiate various 
vehicle classes based on their attributes, improving efficiency 
and accuracy in toll collection processes. The reviewed 
literature highlights the effectiveness of object detection 
algorithms such as YOLO (You Only Look Once) and Faster 
R-CNN in the context of toll collection systems. These 
algorithms have been chosen over other models due to their 
unique advantages and proven performance. For instance, 
YOLO stands out in its ability to achieve real-time processing 
through its approach of treating object detection as a 
regression challenge. It directly predicts bounding box 
coordinates and class probabilities, eliminating the need for a 
separate region proposal step. This approach improves speed 
and efficiency, making it highly suitable for real-time vehicle 
classification in toll-collection scenarios. 

On the other hand, Faster R-CNN is a two-stage detector 
known for its accuracy and robustness. It utilizes a region 
proposal network (RPN) to generate candidate regions, which 
are then classified and refined. Despite its computational 
demands, Faster R-CNN demonstrates high accuracy in 
detecting and classifying vehicles, even in complex urban 
traffic scenarios. Its ability to handle occlusions and variations 
in lighting conditions makes it a reliable choice for accurate 
vehicle classification [12]. 

The extensive research and successful application of 
YOLO and Faster R-CNN in automated toll collection 
systems reinforce their effectiveness and establish them as 
preferred choices in the reviewed literature. These algorithms 
offer real-time performance, accuracy, and robustness, 
making them well-suited for the challenges and requirements 
of toll collection systems. By leveraging the capabilities of 
these machine learning algorithms, toll collection systems can 
achieve efficient, accurate, and real-time vehicle 
classification, leading to improved congestion management, 
reduced human errors, and enhanced overall system 
performance. Moreover, the continued relevance of YOLO 
and Faster R-CNN in computer vision and object detection is 
evident through ongoing research and projects utilizing these 
models. Researchers and practitioners continue to explore and 
refine these algorithms, incorporating advancements and 
improvements to address specific challenges in toll collection 
systems and other related domains. The consistent utilization 
of YOLO and Faster R-CNN in recent studies indicates their 
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effectiveness and reliability, reinforcing their position as 
preferred choices for vehicle classification and object 
detection tasks [12]. 

Despite implementing RFID technology in Malaysia's toll 
collection systems, these problems have affected its 
effectiveness in reducing congestion and improving the 
overall toll collection process. Therefore, developing an 
automated image-based vehicle classification system using 
YOLO and Faster R-CNN, such as the one proposed, can 
provide an alternative solution to address these issues and 
ensure accurate toll rates, smoother traffic flow, and reduced 
operational costs. Overall, this system ensures that all lanes 
will be available for all vehicles except motors while 
expecting that the RFID system will be improved in its 
effectiveness; if RFID is not possible, any advanced system 
will suffice. 

 

III. PROJECT SCHEDULES 

 

 

Fig. 1. Phase 1 Gannt Chart. 

 

 

Fig. 2. Phase 1 Milestone. 

 

 

 

Fig. 3. Phase 2 Gannt Chart. 

 

 

Fig. 4. Phase 2 Milestone. 
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IV. METHODOLOGY 

A. Implementation 

 

 

Fig. 5. Flowchart Implementation Machine Learning Approach. 

 

Fig. 6. Algorithms Approaches. 

 

B. Data Collection 

Malaysia vehicle datasets were collected manually from 
various trusted website online platforms such as mytruck, 
WapCar, Flickr, Dreamstime, BusOnlineTicket, redbus, 
caricarz, mytruck, and carousell. We also obtained some 

images from social media such as Facebook and Twitter. 
Triangulation techniques were used to gather images of 
vehicles from multiple sources and collect images from 
various angles. We ensure all the images are in the same 
digital format, jpg. Different image formats will be converted 
using an online image converter before being categorized into 
distinct types of vehicle classes. All saved images with the 
same format are divided into classes accordingly to ensure the 
total number of images for each class is balanced. One 
thousand four hundred vehicle images have been collected and 
uploaded to Google Drive for easy access. 

C. Software, Features, and Packages Required 

The following table shows the functions, features, and 

packages utilized from selected software.  

TABLE I.  SOFTWARE, FEATURES AND PACKAGES UTILIZED 

Software/Features/ 

Packages 

Functions 

OpenCV Library of programming functions mainly for 

real-time computer vision 

ultralytics Ultralytics YOLOV8 for SOTA object 
detection, multi-object tracking, instance 

segmentation, pose estimation and image 

classification. 

Roboflow Software to manage image data, annotate and 
label datasets, apply preprocessing and 

augmentations, convert annotation file 

formats 

LabelImg A graphical image annotation tool and label 

object bounding boxes in images. 

Pycharm An integrated development environment used 
for programming in Python 

Google Colab The cloud-based development environment is 

used for running the Python code. 

Jupyter Notebook Used to split image folders and rescale 

images. 

TensorFlow 2.0 The deep learning framework is used for 

importing, utilizing the pre-trained model, 

training, and inference. Also, using 
TensorFlow Object Detection API. 

Pandas A Python library is used for data manipulation 

and analysis. 

PIL (Python Imaging 
Library) 

A Python library is used for image processing 
and manipulation. 

Matplotlib A plotting library is used for visualizing 

images and results. 

NumPy A Python library is used for numerical 
operations and array manipulation. 

Visual Studio Code Create yaml file for Yolov8 configure files. 

 

D. Develop Algorithm 

In object detection models, a dichotomy exists between 

single-stage and two-stage variants. Single-shot detectors, 

also called one-stage models, are designed to identify objects 

in a single traversal of the input image. These models employ 

a singular neural network to predict object positions and class 

designations simultaneously. In contrast, two-stage object 

detection models follow a bipartite process. The initial phase 

employs a distinct network, known as a Region Proposal 

Network (RPN), to generate a set of potential object 

locations, termed region proposals. Subsequently, the second 

stage engages another network to classify these regional 

proposals and refine their positional accuracy. Consequently, 

this project introduces two distinct models: a one-stage object 

detection model represented by YOLO and a two-stage object 

detection model exemplified by Faster R-CNN. 
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a) YOLOv8 (2023) 

The algorithm used uses a convolutional neural network 
(CNN) approach to analyze an entire picture in a single 
forward pass. YOLO's primary feature is its single-stage 
detection, which is meant to find objects in real-time with 
high accuracy and performance. YOLO processes differ from 
two-stage detection models such as RCNN because it 
processes the entire picture in a single pass, making it quicker 
and more efficient than two-stage detectors that need to 
indicate regions of interest and classify the object's region. 
Regarding network design, new features, and applications, 
Yolov8 is the most recent version of YOLO. Since it does not 
deal with complicated pipelines, YOLO is highly efficient in 
speed, as it has a processing speed of 45 frames per second 
(FPS) [14]. 

This model comes equipped with several different pre-
trained models: instance segmentation, image classification, 
and object identification. The annotation format employed by 
YOLOv8 corresponds to the YOLOv5 PyTorch TXT 
annotation format, which itself is a variation of the Darknet 
annotation format. The process of YOLOv8 is the most recent 
version of the YOLO object detection model, intending to 
improve accuracy and efficiency over prior versions. Key 
improvements encompass an enhanced and finely tuned 
network architecture, a revised design for anchor boxes, and 
a modified loss function tailored to greater accuracy [13]. As 
our project performs custom datasets to specific Malaysia 
vehicles only, YOLOv8 will fine-tune custom datasets to 
boost their accuracy for specific object identification 
applications. 

 

Fig. 7. YOLOv8 layers. 

 
The original YOLO design incorporates as many as 24 

convolutional layers, succeeded by two fully connected 
layers. In contrast, YOLOv8 introduces Darknet-53 as a 
novel backbone network, which substantially enhances both 
speed and accuracy compared to the preceding backbone of 
YOLOv7. DarkNet-53 is a convolutional neural network 
consisting of 53 layers and can classify images across a 
spectrum of 1000 distinct object categories. This model also 
adopts an anchor-free detection methodology, wherein the 
object detection prediction involves determining the object's 
centre rather than referencing an offset from a predefined 
anchor box, as explained by Encord [13]. Previously, anchor 
boxes were predefined rectangles with specific dimensions to 
identify object classes with suitable scales and aspect ratios. 
The innovation in YOLOv8 lies in its elimination of manual 
anchor box specification, a feature that augments flexibility 
and cost-effectiveness. As seen in prior YOLO versions like 
v1 and v2, manual anchor selection often posed challenges 
leading to suboptimal outcomes. 

Furthermore, the network generates several attributes, 
including background, IoU, and offsets, for each gridded box. 
These attributes contribute to the adaptation of anchor boxes. 

While traditional anchor strategies entail numerous 
predefined starting points for bounding box predictions, 
YOLOv8 departs from this approach, resulting in fewer 
predictions per image. This strategic shift optimizes inference 
time without compromising accuracy. 

The operational flow of this algorithm commences with 
the prediction of numerous bounding boxes per grid cell; 
however, solely those bounding boxes exhibiting the highest 
Intersection Over Union (IOU) with the ground truth are 
retained, a procedure commonly referred to as Non-Maxima 
Suppression (NMS). In its initial steps, the YOLO algorithm 
extracts an individual image from the video stream to serve 
as input. What sets YOLO apart is its methodology of 
segmenting images into grid cells. Each image input is 
divided into a grid of dimensions S x S, with every grid cell 
making predictions for three distinct bounding boxes [14]. 
Distinguishing itself further, the algorithm executes a 
singular forward propagation pass through the network to 
formulate predictions and categorize either an entire image or 
an object presented within the image into one of its 
predefined classes or categories. 

After applying non-maximum suppression, the system 
generates identified entities alongside corresponding 
bounding boxes. The non-maximum suppression mechanism 
entails comparing the bounding box with the highest 
probability score and all other bounding boxes, assessing their 
intersection sequentially. Those classes whose Intersection 
over Union (IoU) value exceeds 0.5 are excluded from 
consideration. IoU calculates the overlap region between 
predicted and actual bounding boxes, assigning a quantitative 
score to evaluate the extent of alignment between predicted 
bounding boxes and ground truth. Predicted bounding boxes 
that exhibit substantial overlap with the actual objects are 
awarded a higher score. An intersection score surpassing 0.5 
signifies a robust prediction. YOLO employs a singular 
regression module to define the characteristics of these 
bounding boxes. The final vector representation for each 
bounding box is denoted as Y = [pc, bx, by, bh, bw, c1, c2] in 
the format described [14]. 

 

b) Faster R-CNN ResNet50 

Faster R-CNN stands as a renowned architectural solution 
for object detection. This cutting-edge algorithm, Faster R-
CNN, ingeniously merges the deep convolutional neural 
networks with the two-stage framework for object detection. 
The initial stage involves a region proposal network (RPN) 
that generates a collection of potential object regions. 
Subsequently, these regions enter the second stage, 
encompassing a Fast RCNN network responsible for 
assigning class labels to the regions and enhancing the 
precision of bounding box positioning. These two stages 
collaborate to recognize objects within an image proficiently 
by suggesting numerous prospective regions. These regions 
are then meticulously classified and precisely located using 
the Fast RCNN network. Notably, the critical strength of 
Faster RCNN lies in its end-to-end training approach. This 
strategy empowers the algorithm to learn object detection 
directly from image data without being dependent on 
subjective rules or manually crafted characteristics [15]. The 
proposed model for Faster RCNN, employing ResNet50 for 
the identification and categorization of vehicle objects, can be 
segmented into the subsequent modules: 
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ResNet50 Backbone: Within this component lies the 
ResNet50 network, which is pre-trained and serves as the 
feature extractor. It generates a corresponding feature map as 
output by operating on an image input. In the context of Faster 
RCNN, the ResNet-50 backbone assumes the feature 
extraction network's role, condensing the input image's 
essential attributes. Subsequently, this compact representation 
journeys through the convolutional neural network, 
constituting the backbone. This process entails resizing the 
input image and preserving the aspect ratio by capping the 
longer side at 1000 pixels while adjusting the shorter side 
proportionally. This manipulation leads to the creation of the 
feature, as mentioned earlier, map through the backbone 
network. 

Consequently, these feature maps are harnessed to fuel the 
Fast RCNN network, facilitating tasks like classification and 
fine-tuning bounding box coordinates. Notably, Faster RCNN 
leverages the insights gleaned from extensive picture 
classification endeavors by leveraging a pre-trained ResNet50 
network as its feature extraction foundation. This strategic 
integration significantly bolsters its prowess in object 
detection tasks [15]. 

Furthermore, utilizing ResNet50 as a backbone presents 
an opportunity for transfer learning. This practice permits 
fine-tuning the feature extractor to cater to the specific 
demands of the object detection task, even with a more limited 
dataset. The ResNet architecture brought about a 
breakthrough by introducing the concept of Residual 
Networks, primarily aimed at mitigating the challenge of 
exploding gradients. This predicament is effectively 
addressed through the implementation of a technique referred 
to as a skip connection. Renowned for its adeptness with skip 
connections, the ResNet architecture incorporates these 
shortcut links to combat the issue of gradients vanishing 
within profoundly deep neural networks. The mechanics of 
these skip connections within ResNet involve allowing the 
network to circumvent one or multiple layers, thereby 
facilitating the direct backpropagation of gradients to 
preceding layers, as illustrated in the diagram. This strategic 
approach safeguards the information inherent to the original 
input, thus enhancing the network's capacity to comprehend 
and enhance its performance. The network's learning process 
is enriched and refined by upholding the integrity of the 
original input information [15]. 

 

Fig. 8. FRCNN layers. 

In the absence of employing skip connections, the input 'x' 

undergoes multiplication with the layer's weights, succeeded 

by the addition of a bias term: 

𝐻(𝑥) = 𝑓(𝑤𝑥 + 𝑏)            (1) 

or 

𝐻(𝑥) = 𝑓(𝑥)                      (2) 

With the integration of the skip connection mechanism, the 

layer's output transforms to 

𝐻(𝑥) = 𝑓(𝑥) + 𝑥               (3) 

Like most deep learning architectures, ResNet50 employs 
a categorical cross-entropy loss function. This specific loss 
function is commonly utilized when dealing with multiclass 
classification challenges. Its primary role is to measure the 
disparity between the predicted probability distribution of 
classes and the actual class label. To illustrate, here is an 
equation delineating calculating the categorical cross-entropy 
loss. 

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝ℎ𝑦 =  − 
1

𝑁
∑ 𝑙𝑜𝑔𝑃𝑚𝑜𝑑𝑒𝑙[𝑦𝑖

𝑁
𝑖=1 ∈  𝐶𝑦𝑖

]    (4) 

 

Region Proposal Network (RPN): Plays a pivotal role 
within the Faster RCNN object detection framework. Its 
primary responsibility revolves around formulating a 
collection of region proposals sourced from the candidate 
object regions present in the input image. The central outcome 
of a regional proposal network is the generation of multiple 
proposals, each encapsulating a distinct region. These 
generated proposals subsequently undergo detection via the 
identification network. The Region Proposal Network (RPN) 
encompasses three fundamental components: the anchor 
window, the loss function, and the set of region proposals. To 
execute its operations, the RPN adopts a sliding window 
approach. This technique involves subjecting a compact sub-
network to an exhaustive 3x3 sliding window traversal. 
Consequently, the RPN adeptly utilizes the Intersection over 
Union (IoU) ratios and the ground-truth bounding boxes to 
create an extensive array of anchors, optimizing the proposal 
process. 

The Region Proposal Network (RPN) employs anchor 
boxes, predefined shapes for bounding boxes, to steer the 
process of generating region proposals. Subsequently, the 
outcomes from the network are combined with these anchor 
boxes to yield the ultimate collection of regional proposals. 
The sequence of actions unfolds as outlined below: (i) The 
process of RPN involves sliding a window across the feature 
map for each individual region. (ii) At each location, k (where 
k=9) anchor boxes are employed. These anchors possess 
scales of 128, 256, and 512, along with aspect ratios of 1:1, 
1:2, and 2:1, effectively constituting the foundation for 
generating region proposals. (iii) The CLS layer is responsible 
for generating 2k scores corresponding to k boxes, irrespective 
of whether an object is detected or not. (iv) Conversely, the 
reg layer contributes by producing 4k values that denote the 
center coordinates, width, and height of the k boxes. (v) In 
totality, the count of anchors sums up to WHk, correlating 
with the dimensions of the WH feature map. 

The multitask loss function computes the RPN's total loss. 
The formula for calculation is: 
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1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠𝑖 (𝑝𝑖 , 𝑝𝑖

∗) + 𝐿({𝑝𝑖}, {𝑡𝑖}) = 

𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡1

∗)                             (5) 

Here, let 𝑁𝑐𝑙𝑠 Denote the count of training data within the 
batch, 𝑁𝑟𝑒𝑔  Signify the count of anchors, 𝜆  stands for the 

balancing weight. The notation 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗)  Pertains to the 

logarithmic loss function, characterized as follows: 

 

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗) =  −log [𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖)]        (6) 

 

The regression loss, denoted as 𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗), is evaluated 

through the application of the subsequent Smooth L1 function: 

 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) =  {

0.5 (𝑡𝑖 −  𝑡𝑖
∗)2, |𝑥| < 1

|𝑡𝑖 −  𝑡𝑖
∗| − 0.5,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (7) 

 

Here, 𝑝𝑖  denotes the likelihood assigned to the anchor 
being identified as the intended target, and 𝑝𝑖

∗ is the truth value 
of the prediction outcome: if the anchor is predicted as a 
positive sample, the value of tag 𝑝𝑖

∗ is 1; otherwise, the value 
is 0; 𝑡𝑖 = {𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ}  is the location of the predicted 

detection box; and 𝑡𝑖
∗ is the ground truth coordinate. 

As a result, the RPN network must determine which 
location contains the object ahead of time. Subsequently, the 
detection network incorporates the provided coordinates and 
bounding boxes to execute object class recognition and 
furnish the corresponding object bounding box (Ren et al., 
2015) [15]. 

RoI Pooling Layer: The RoI (Region of Interest) pooling 
mechanism is a pivotal component within Faster RCNN, 
meticulously handling the region proposals that emerge from 
the preliminary RPN phase. Nestled within the Fast RCNN 
network, the RoI pooling layer interfaces with two primary 
inputs: the feature map engendered by the ResNet-50 
backbone and a collection of region proposals. Its core 
functionality revolves around resizing each proposed region 
to a standardized dimension, irrespective of the original size 
or aspect ratio. Subsequently, this layer amalgamates the 
features within each designated region into a concise feature 
portrayal. This strategic maneuver equips the Fast RCNN 
network to engage in object classification and regression, 
emancipating from object dimensions or aspect ratio 
constraints. The essence of the RoI pooling process lies in its 
pivotal role, enabling the Faster RCNN architecture to 
effectively discern and categorize objects possessing varying 
scales and aspect ratios within a given image. Furthermore, 
the RoI pooling layer bestows the Fast RCNN network with a 
consistent input size, streamlining the training and 
optimization process. This attribute facilitates adept handling 
of diverse object sizes within the image, rendering the network 
more manageable in practice while retaining its capacity to 
accommodate dimensional variability [15]. 

Fast RCNN Classifier and Bounding Box Regressor: 
Following the RoI pooling stage, the features extracted from 
the proposed regions are channeled into the classifier and 
bounding box regressor components within the Faster RCNN 

architecture. The fully connected layer classifier undertakes 
the object classification task by making predictions regarding 
the likelihood of each region proposal being associated with 
distinct object classes. In essence, the classifier computes a 
score for each combination of region proposal and class, 
signifying the probability of the presence of an object from 
that specific class within the region. On the other hand, the 
bounding box regressor, also implemented as a fully 
connected layer, specializes in refining bounding box 
positions. It takes the feature representation extracted from the 
region proposals as its input and subsequently generates 
outputs that denote adjustments to the positions of these region 
proposals. These adjustments enhance the proposals' 
alignment with the actual objects depicted in the image. The 
Fast RCNN network is comprised of the classifier and 
bounding box regressor components. This amalgamation 
effectively identifies and categorizes objects within images, 
leveraging a fusion of insights from region proposals, 
classifier scores, and refined bounding box coordinates. 

In this project, we implement Faster R-CNN to replicate a 
specific general detector within this undertaking. Our 
approach entails harnessing object proposals trained through 
an RPN (Region Proposal Network) and the corresponding 
features derived from a ResNet50 CNN architecture. This 
amalgamation furnishes an effective strategy for identifying 
and categorizing various vehicle classes. By harmoniously 
integrating RPN and Fast R-CNN, we consolidate their 
convolutional capabilities by utilizing the contemporary 
neural network framework. The blueprint of our proposed 
methodology encompasses three profound networks: the 
feature network, RPN, and detection network. The Faster R-
CNN methodology adopts a bounding box strategy that 
empowers the operator to define potential regions for 
submission to the RPN. Employing the devised technique, we 
set a CNN model into motion on our vehicle dataset. 
Following a meticulous analysis of the input image, a selective 
search procedure comes into play to pinpoint a region of 
interest (RoI). This delineated RoI is subjected to a refinement 
process, classifying candidates within the nearest raster 
frames. This fine-tuning is done by leveraging the intricate 
model generated through deep learning methodologies [15]. 
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Fig. 9. Region of Interest (ROI) layers. 

 

E. Performance Evaluation 

Several metrics, such as Mean Average Precision (mAP), 
precision, F1 score, and recall, can be used to evaluate the 
performance of a vehicle detection and classification model. 
These metrics provide insights into the model's performance 
and help assess its effectiveness in detecting and classifying 
vehicles accurately [16]. 

 

V. PRECISION 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100             (8) 

Precision quantifies the fraction of accurately anticipated 
positive occurrences (in this case, vehicles) within the entirety 
of instances projected as positive by the model. Specifically 
concerning the realm of vehicle detection, precision serves as 
an indicator of the model's effectiveness in accurately 
recognizing vehicles amidst the identified objects. A 
heightened precision score signifies the model's capability to 
minimize false positives, denoting infrequent 
misclassification of non-vehicle entities as vehicles. 

 

VI. RECALL 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                   (9) 

The concept of recall, alternatively termed sensitivity or 
the true positive rate, quantifies the ratio of accurately 
predicted positive instances (referring to vehicles) relative to 
the total actual positive instances within the dataset. In the 

realm of vehicle detection, recall serves as an indicator of the 
model's efficacy in encompassing all the vehicles existing 
within the images. A substantial recall value implies that the 
model exhibits minimal false negatives, signifying infrequent 
instances where it overlooks or neglects to identify vehicles. 

 

VII. F1-SCORE 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (10) 

 

The F1-score finds its essence in being the harmonic 
average of precision and recall, culminating in a well-rounded 
gauge of the model's efficacy, encompassing both erroneous 
positives and negatives. Within vehicle detection, the F1-
score mirrors the model's proficiency in precisely identifying 
vehicles while mitigating the instances of mistaken positives 
and negatives. Elevating the F1-score signifies an augmented 
equilibrium between precision and recall, increasing accuracy 
in detection and classification endeavors. 

 

VIII. MEAN AVERAGE PRECISION (MAP) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) =  ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) −𝑘=𝑛−1
𝑘=0

𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)] ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)                                       (11) 

𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝐴𝑃) =  
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1          (12) 

mAP is a commonly used metric in object detection tasks. 
It evaluates the overall mean Average Precision (mAP), which 
is a prevalent metric within object detection undertakings. Its 
role encompasses assessing a model's efficacy 
comprehensively, factoring in precision and recall at varying 
confidence thresholds. The mAP computation involves 
arranging the model's output following the assigned 
confidence scores for each detected object. This arrangement 
facilitates the creation of a precision-recall curve, the enclosed 
area of which signifies the mAP value. By encapsulating 
precision and recall dynamics across multiple confidence 
levels, mAP offers an inclusive gauge of the model's 
competence in diligently recognizing objects. 

 

A. Testing Prototypes 

 
We propose to evaluate the performance of the prototype 

real-time moving vehicle toll collecting system using a 
database, Microsoft SQL Server Management Studio, linked 
to the program through ODBC Drivers. The database will 
include the vehicle toll classes, owner's vehicle class detected, 
the toll fare, and the owner's remaining wallet balance. The 
prototypes are as follows : 
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Fig. 10. Situation 1: Toll users of Class 1 that have a sufficient 

credit balance. 

 

 

Fig. 11. Situation 2: Toll user of Class 0 with zero toll fare 

deduction. 

 

Fig. 12. Situation 3: Toll users of Class 4 that have insufficient 

credit balance.  

 

IX. PROJECT DEVELOPMENT 

A. Data Pre-processing 

 

X. IMAGES RESCALING 

 
In this process, a code snippet was implemented to rescale 

a collection of vehicle images stored in a specified folder. This 
process aimed to standardize the images to a specific target 
size while preserving their aspect ratio. In machine learning, 
it is essential to maintain consistency in the input data to 
ensure fair comparisons and reliable model performance 
evaluation. By rescaling all the images in the folder to the 
same target size, any image dimensions or aspect ratio 
variations are standardized, providing a consistent input for 
the machine learning model. The code utilized the OpenCV 
library in Python to perform image manipulation tasks. The 
rescaling procedure involved iterating through each image in 
the folder, loading it using OpenCV, and applying the resizing 
transformation to match the target dimensions. A black canvas 
of the target size was created to ensure the rescaled images 
were centred, and the resized image was pasted onto it with 
the appropriate padding. The original images vary in pixels. In 

this project, a target size of (800, 600) was chosen as it is 
commonly used for some object detection models.  

 

 

Fig. 13. Rescale Image user-defined function 

 

XI. SPLITTING FOLDERS FOR TRAIN, TEST, AND VALIDATION 

DATASET 

 
The dataset is split into train, test, and validation phases 

where in each phase, there are seven classes of image, which 
are Alert, Class 0, Class 1, Class 2, Class 3, Class 4, and Class 
5. The splitting of folders is being done on the rescaled 
images. The split folders library was employed to split the 
input images. The split was performed using a specified ratio 
of 70% for training, 10% for validation, and 20% for testing. 
The process ensured consistent and standardized data division 
for subsequent stages of the project, such as model training, 
validation, and testing. 

 

Fig. 14. Data Splitting Folders. 

 

XII. IMAGES LABELING 

 
The vehicle image dataset acquired was unlabeled, so it 

had to be labeled manually. To annotate the dataset for two 
different object detection models, YOLO and Faster R-CNN, 
the open-source tool called "labelImg" tool was utilized. The 
tool supports generating annotations in two different formats: 
YOLO (TXT file) and Faster R-CNN (XML file). The 
command ! python labelImg/labelImg.py was run to start the 
"labelImg" tool. 

 
Fig. 15. Label image command 
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This opened the graphical user interface (GUI) of 
"labelImg" where images from the dataset could be loaded, 
and annotations could be created and saved as below: 

 

               Fig. 16. Labelimg tool interface. 

 
This process facilitated efficient and accurate labeling of 

the dataset by providing an intuitive graphical interface for 
annotating objects of interest in the images. The vehicle image 
dataset is labeled with their corresponding predefined classes: 
Alert, Class 0, Class 1, Class 2, Class 3, Class 4, or Class 5. 

For YOLO annotation, each image in the dataset was 
loaded into the "labelImg" tool's graphical user interface 
(GUI). Bounding boxes were manually drawn around the 
objects of interest in the image, specifying their class labels. 
The tool then generated a TXT file for each annotated image 
containing the coordinates and class labels of the bounding 
boxes. This format is compatible with the YOLO model's 
training requirements. 

For Faster R-CNN annotation, a similar process was 
followed. The images were loaded into the "labelImg" tool, 
and bounding boxes were created around the objects. Class 
labels were assigned to the bounding boxes. However, instead 
of generating text files, the tool produced XML files following 
the PASCAL VOC format. These XML files contained the 
bounding box coordinates, class labels, and additional 
information required by the Faster R-CNN model. 

By using "labelImg" and its support for both YOLO and 
Faster R-CNN annotation formats, the dataset was effectively 
labeled to cater to the requirements of both models. This 
facilitated seamless training and evaluation processes for each 
model, ensuring accurate and consistent annotations for their 
respective object detection tasks. 

 

 

  Fig. 17. XML annotation. 

 

                    Fig. 18. TXT annotation. 

 

A. Build Model 

XIII. YOLO 

1) Accessing the datasets and importing necessary 
packages in Google Colab 

The Yolo algorithm used an annotation format in the TXT 
file that is extracted from software named Roboflow. This 
software provides a workspace for uploading images and other 
annotation formats that need to be converted into the format 
that Yolo requires [17]. Firstly, we created a workspace for 
random images in each folder, train, test, and validation before 
uploading all the random split images and XML files. The 
software then converts the image format into a text file. This 
software also includes some advanced features to ensure the 
images do not contain null files and duplicate images. Before 
extracting the text file, we set the format as autorotation to 
remove any bias and improve performance during training. 
The images and its text files were kept in Google Drive 
accordingly, located in path (..content/MyDrive/FYP/Yolo) to 
access to Google Collab. 

 

  Fig. 19. Roboflow Vehicle Datasets Workspace. 

 

In Google Collab, we changed the runtime type for the 
hardware accelerator to GPU type T4 to increase the iteration 
speed. The iteration starts by mounting the drive to access the 
content of MyDrive. Yolov8 required ultralytics packages to 
perform multi-image classification and object detection [19]. 
The YOLO function is imported after ultralytics packages 
have successfully been executed to continue the prediction 
and training tasks. 

2) Detect object with yolov8l.pt model 

We first test the yolo model named yolov8l.pt by 
performing predict model to the image named vehicles.jpg. 
The task's objectives are to ensure the Yolo model is located 
in the workspace and can successfully execute to detect any 
object in the frame. As a result, the Yolo model detected 3 
persons, 12 cars, 2 motorcycles, 2 buses, and 4 trucks in this 
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image and saved the detection results as predict3 in the runs 
folder. 

 

                                Fig. 20. Pre-test image for yolov8l.pt model. 

 

Fig. 21. Result of Pre-test image. 

 

3) Create human-readable data serialization language 

A folder named 'data.yaml' was created in Visual Code 
Studio before training the model. This file indicates where the 
train and validation images are located, the total number of 
classes, and the list of predefined classes in a single array. 
YAML is a popular programming language because it is 
designed to be easy to read and understand. 

 

4) Custom Data Training 

All the images are being extracted from 'data. yaml' path 
file with the yolo model with 50 epochs and in train mode. 

 

Fig. 22. Execution of Train mode to data.yaml file.  

XIV. FASTER R-CNN RESNET50 

 
1) Import Libraries 

The code begins by importing the required libraries, 
including os, glob, XML.etree. ElementTree as ET, pandas as 
pd, and tensorflow as tf, to facilitate subsequent steps in the 
project. The version of TensorFlow being used is printed to 
the console, 2.12.0. 

2) Clone the TensorFlow Models Git Repository and 

install the TensorFlow Object Detection API. 

 

                    Fig. 23. Cloning and Installing TensorFlow. 

 The TensorFlow Object Detection API is installed, which 
is essential for implementing the vehicle detection model. 

 

3) Test the Model Builder 

 
The model builder module is responsible for constructing 

the object detection model architecture and configuring its 
components, such as the backbone network, feature extractors, 
and region proposal networks. By performing this step, we can 
ensure that the model builder is correctly implemented and 
that there are no major issues that might hinder the subsequent 
steps of your project, such as training the model on the vehicle 
dataset. 

 

4) Create the CSV Files and the Label Map File 

 

This step involves creating CSV files and a label map file. 

 

a) CSV files 

 

              

                  Fig. 24. Converting XML format to CSV format.  

 

• In object detection tasks, it is expected to use CSV 

(Comma-Separated Values) files to store the 

information about the annotated objects in the images. 

• The xml_to_csv function is responsible for converting 

the XML files containing annotations into CSV format. 

• The function iterates over the XML files in the specified 

train_labels and test_labels directories, extracts relevant 

information such as image filenames, object classes, and 
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bounding box coordinates, and stores them in a 

DataFrame. 

• The resulting DataFrame is then saved as a CSV file 

(train_labels.csv and test_labels.csv) using the to_csv 

function. 

• The CSV files serve as input for the subsequent steps in 

the object detection pipeline, such as model training and 

evaluation. 

 

 
Fig. 25. Generated train_labels.csv. 
 

 
Fig. 26. Generated test_labels.csv. 

 

b)     Label Map File 

 
             Fig. 27. Generate Label Map. 

 

• The label map file is used to map the class names to class 

IDs in the object detection model. 

• The xml_to_csv function retrieves the unique class names 

from the XML annotations and sorts them. 

• Then, the script iterates over the class names and assigns 

a numerical ID to each class. 

• The class names and their corresponding IDs are 

formatted in the Protocol Buffers (protobuf) syntax and 

stored in the pbtxt_content variable. 

• Finally, the pbtxt_content is written to the label map file. 

• The label map file is required during model training and 

inference to map the predicted class IDs to their 

corresponding human-readable class names. 

  
Fig. 28. Label Map Output. 

 

 By creating the CSV files and the label map file, it 
organizes and provides the necessary data and metadata for 
the subsequent steps in the object detection pipeline. The CSV 
files contain the annotations, while the label map file provides 
the mapping between class names and IDs, ensuring proper 
identification and labeling of objects during training and 
inference. 

 

5) Create train.record & test.record Files 

 
In this step, the generate_tfrecord.py script is used to 

create TFRecord files, which are the required data formats for 
training the object detection model. TFRecord is a binary file 
format that efficiently stores large amounts of data. The script 
takes as input the CSV files (train_labels.csv and 
test_labels.csv) generated in the previous step, along with the 
label_map.pbtxt file and the path to the image's directory. It 
then generates TFRecord files for training and testing 
purposes. 

By creating the train.record, and test.record files in the 
TFRecord format, the data is efficiently stored and ready to be 
fed into the object detection model for training and evaluation. 
These files contain the image data, along with their 
corresponding annotations and class labels, in a format that 
TensorFlow can process effectively during the training 
process. 

 

6) Download Pre-trained Model Checkpoint 

 
In this step, a pre-trained model checkpoint is downloaded 

and extracted. The pre-trained model checkpoint serves as a 
starting point for transfer learning, where the already trained 
weights and parameters of the model are used as a foundation 
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for training on a new dataset, enabling faster convergence and 
better performance on a specific task. 

 

7) Edit the Model Pipeline Config File 

 
We obtain the model pipeline configuration file, modify it 

according to the requirements, and save it in the data folder. 
The model pipeline configuration file contains various 
settings and parameters that define the architecture and 
behavior of the object detection model during training. The 
changes that have been made includes: 

• Change num_classes to 7: 

This reflects the number of classes in our vehicle 

classification task. 

• Update paths for test.record, train.record, and labelmap: 

This will update the paths to match the paths of the 

corresponding files we generated in earlier steps. 

• Change fine_tune_checkpoint and 

fine_tune_checkpoint_type: 

This will update the fine_tune_checkpoint parameter 

with the path to the directory where we extracted the 

downloaded checkpoint in a previous step. This should 

be the directory containing the pre-trained model 

checkpoint files. 

Set the fine_tune_checkpoint_type to "detection" to 

indicate that the checkpoint is used for object detection 

tasks. 

• Adjust batch_size and num_steps: 

Modify the batch_size parameter based on the capability 

of our GPU. In this step, we set it to 1 due to limited 

GPU memory. 

Update the num_steps parameter to the desired number 

of training steps we want the object detector to go 

through. In this step, we set it to 25000 for the training. 

• Save the modified model pipeline config file: 

After making the necessary changes, we save the 

modified model pipeline config file. 

• Put the modified config file in the data folder: 

We move and copy the modified model pipeline 

configuration file to the data folder where we store our 

project data. This ensures that the training script can 

access the updated configuration during the training 

process. 

 
By modifying the model pipeline config file, we customize 

the behavior of the object detection model according to your 
specific requirements. The changes we made include adjusting 
the number of classes, updating file paths, specifying the 
checkpoint directory, and setting batch size and training steps. 
These modifications ensure that the model is trained on our 
dataset and tuned to perform vehicle classification with the 
desired settings and parameters. 

 

 

 

 

 

 

8) Load Tensorboard 

 
    Fig. 29. Load Tensorboard. 

 
In this step, it will load TensorBoard, a web-based 

visualization tool provided by TensorFlow, to monitor and 
analyze the training progress of researchers' object detection 
model. TensorBoard allows us to visualize various aspects of 
our model's training, such as loss curves, accuracy metrics, 
and other valuable statistics. It helps us gain insights into the 
performance, identify potential issues, and make informed 
decisions during training. 

 

9) Train the Model 

 
We train our object detection model with the prepared 

vehicle data using the TensorFlow 2 Object Detection API. 
This step involves feeding the dataset to the model and 
iteratively adjusting the model's weights to improve its 
performance. Running this step allows the model to learn from 
the labeled vehicle images and improve its ability to classify 
vehicles accurately. It took about 1 hour to complete the 
training with the help of GPU memory to speed up the process. 

 
10) Evaluate the Model 

 
We then evaluate the performance of our trained object 

detection model using the TensorFlow 2 Object Detection 
API. By running this step, we can evaluate the effectiveness 
of our trained object detection model and assess its 
performance metrics, which can help us understand how well 
it can classify vehicles in unseen data. 

 
11) Export Inference Graph 

 
In this step, we export the trained model as an inference 

graph, which can be used to predict new images or videos. The 
export graph will contain all the necessary information and 
parameters for the trained model. The trained model is 
exported as saved_model.pb. 

 

12) Test the Trained Object Detection Model on New Data 

 
Fig. 30. Model Testing on New Data 
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 In this step, we test the trained object detection model on 
a new image to perform inference and visualize the detected 
objects. The code provided loads the saved model, loads the 
label map, processes an input image, runs the inference, and 
visualizes the detected objects on the image. 

In the figure below, we test the trained object detection 
model on "polis 218.jpg" and the detected vehicle result is 
classified as Class 0 with a confidence score of 86%. 

 

Fig. 31. Result of Detection for "polis 218.jpg". 

 

A. Results and Discussion 

 
In this section, we present and analyze the results of two 

popular object detection models: YOLOv8 and Faster R-
CNN, with ResNet50 as the backbone. These models were 
evaluated on a dataset of vehicle images, aiming to detect 
various classes of vehicles accurately. The primary focus of 
this section is to examine and compare the performance of 
these models based on their evaluation metrics and provide 
insights into their strengths and limitations. 

 

a. YOLOv8 

 

  Fig. 32. Summary of Line Plot Performance Representation 

 

   Fig. 33. F1-Confidence Curve in Each Vehicle Classes. 

TABLE II.  SUMMARY OF YOLOV8 PERFORMANCE RESULTS 

Class Images Insta
nces 

Precisio
n 

Recall mAP
50 

mAP
50-95 

All 241 337 0.874 0.934 0.945 0.877 

Alert 241 43 0.934 0.930 0.946 0.826 

Class 0 241 54 0.906 0.963 0.983 0.929 

Class 1 241 86 0.774 0.814 0.836 0.716 

Class 2 241 47 0.822 0.894 0.915 0.856 

Class 3 241 26 0.971 1.000 0.995 0.934 

Class 4 241 33 0.725 0.958 0.958 0.905 

Class 5 241 48 0.987 0.979 0.982 0.970 

 

The evaluation of the YOLOv8 model revealed promising 
results. It successfully detected a total of 337 instances across 
241 images, resulting in a high average precision (MAP) of 
0.945. The model demonstrated a strong capability to identify 
bounding boxes accurately, as indicated by a precision score 
of 0.874 and a recall score of 0.934. The MAP@0.50-0.95 
value of 0.877 further highlights the model's proficiency in 
handling objects with varying levels of overlap and 
positioning. We also assessed the performance of YOLOv8 
for individual vehicle classes, such as Alert, Class 0, Class 1, 
Class 2, Class 3, Class 4, and Class 5. The results showcased 
varying precision, recall, and average precision levels for each 
class, offering insights into the model's performance across 
different vehicle types. 

YOLOv8 performs exceptionally well in detecting the 
'Alert' class, achieving high precision, recall, and mAP scores. 
The precision of 0.934 indicates that when the model predicts 
this class, it is correct 93.4% of the time. The recall of 0.930 
indicates that the model captures 93.0% of all actual instances 
of 'Alert' in the dataset. The mAP values are also notably high, 
demonstrating the model's effectiveness in recognizing this 
class accurately. 

For 'Class 0,' YOLOv8 exhibits a high precision of 0.906, 
signifying a solid ability to correctly identify instances of this 
class. The recall of 0.963 indicates that it effectively captures 
the majority of actual instances of 'Class 0.' The mAP values 
are also notably high, demonstrating the model's accuracy in 
detecting this class. 

'Class 1' exhibits a lower precision and recall compared to 
the previous classes. The precision of 0.774 suggests that the 
model's predictions for this class may include some false 
positives. The recall of 0.814 indicates that it captures around 
81.4% of actual instances of 'Class 1.' The mAP values, while 
lower, still indicate a reasonable level of detection 
performance for this class. 

YOLOv8 demonstrates a good balance of precision and 
recall for 'Class 2.' The precision of 0.822 indicates that it 
maintains a relatively low rate of false positives. The recall of 
0.894 shows that it captures a significant portion of actual 
instances of 'Class 2.' The mAP values further validate its 
effectiveness in detecting this class. 

YOLOv8 excels in 'Class 3' detection, achieving near-
perfect precision and recall scores. The precision of 0.971 
indicates an extremely low rate of false positives. The recall 
of 1.000 signifies that it captures all instances of 'Class 3' in 
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the dataset. The mAP values reinforce its outstanding 
performance for this class. 

While 'Class 4' exhibits a lower precision of 0.725, 
indicating some false positives, it compensates with a high 
recall of 0.958, capturing the majority of actual instances. The 
mAP values also suggest a good overall performance in 
detecting this class. 

YOLOv8 performs exceptionally well in detecting 'Class 
5,' achieving high precision, recall, and mAP scores. The 
precision of 0.987 indicates a very low rate of false positives, 
and the recall of 0.979 signifies its ability to capture a 
significant portion of actual instances of 'Class 5.' 

On the other hand, YOLOv8 demonstrates strong 
individual class performance across most classes, with 
particularly impressive results for 'Alert' and 'Class 3.' While 
some classes exhibit lower precision, the model generally 
maintains a balanced trade-off between precision and recall, 
resulting in solid mAP scores for most classes. Nevertheless, 
these results collectively underscore YOLOv8's proficiency in 
object detection tasks, offering a robust and balanced 
performance across diverse vehicle classes in our dataset. 

 

 

         Fig. 34. Confusion Matrix in Each Vehicle Classes. 

  

 In the confusion matrix provided for YOLOv8, the true 
positive results for each vehicle class offer valuable insights 
into the model's performance. Notably, the model correctly 
identified 40 instances in the' Alert' class, showcasing its 
ability to effectively detect this class. Similarly, for 'Class 0,' 
YOLOv8 demonstrated precision by correctly identifying 52 
instances. 'Class 1' yielded 67 true positive results, signifying 
the model's capability to accurately detect this class. In 'Class 
2,' the model achieved a true positive count of 42, indicating 
its proficiency in recognizing instances of this category. In the 
'Class 3' category, YOLOv8 correctly identified 26 instances 
as true positives, underscoring its competence in accurately 
detecting this specific class. Furthermore, 'Class 4' 
demonstrated the model's strong detection capabilities with 31 
true positives. Lastly, 'Class 5' yielded an impressive 47 true 
positive results, underlining the model's excellence in 
identifying this class. These true positive outcomes across 
various vehicle classes emphasize YOLOv8's effectiveness in 
correctly detecting and categorizing instances, thereby 
contributing to its overall robust performance in object 
detection tasks. 

 

 

b. Faster R-CNN 

 

Fig. 35. Evaluation Metrics with Mean Average Precision (mAP) values 

 

 

Fig. 36. Average Precision (AP) and Average Recall (AR) values 

 

TABLE III.  SUMMARY OF FASTER R-CNN PERFORMANCE 

RESULTS 

Metrics (area = all, maxDets = 100) Performance 

mAP@.50:.95IoU 0.553335 

mAP@.50IoU 0.749452 

mAP@.75IoU 0.630845 

AP@.50:.95IoU 0.553 

AP@.50IoU 0.749 

AP@.75IoU 0.631 

AR@.50:.95IoU 0.733 

 

As summarised in Table IV, the performance results for 
Faster R-CNN provide insights into the model's effectiveness 
in object detection. The metrics evaluated include mAP (mean 
Average Precision) at various Intersections over Union (IoU) 
thresholds, AP at specific IoU values, and AR (Average 
Recall) at a range of IoU thresholds. 

The evaluation results produced by Faster R-CNN 
ResNet50 demonstrate the model's ability to detect objects 
accurately but with some variations compared to YOLOv8. 
The Faster R-CNN ResNet50 model detected 287 instances 
across 241 images. 

At an IoU range of 0.50 to 0.95, Faster R-CNN achieves 
an mAP of 0.553, indicating its ability to accurately detect and 
classify objects with a wide overlap range with ground truth 
bounding boxes. This metric is crucial for assessing the 
model's overall object detection performance across all 
classes. 

When considering a stricter IoU threshold of 0.75, the 
model maintains a respectable mAP of 0.631. This suggests 
that Faster R-CNN is capable of precise object localization, 
particularly when high overlap between predicted and actual 
bounding boxes is required. 
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The model's performance is further detailed with AP 
values at specific IoU thresholds. At IoU of 0.50, Faster R-
CNN achieves an AP of 0.749, demonstrating its proficiency 
in detecting objects with moderate overlap. This is a valuable 
metric as it reflects the model's performance under common 
detection scenarios where objects may not be perfectly aligned 
with ground truth annotations. 

In addition, the Average Recall (AR) at an IoU range of 
0.50 to 0.95 is reported at 0.733. This indicates the model's 
ability to balance precision and recall across various IoU 
thresholds, ensuring it can effectively capture objects even 
with variations in overlap. 

On the other hand, to make a comprehensive assessment, 
these results should be compared with those of other models, 
such as YOLOv8, to determine the most suitable option for 
specific use cases. In this case, it is important to note that the 
performance of the Faster R-CNN model is relatively lower 
compared to YOLOv8. 

TABLE IV.  OVERALL PERFORMANCE EVALUATION  

Performance 

Evaluation 

Precision Recall F1- score MAP50 

YOLOv8 

DarkNet-53 

1.00 0.97 0.90 0.95 

Faster R-CNN 
ResNet-50 

0.55 0.73 0.63 0.55 

 

The overall performance evaluation of YOLOv8 DarkNet-
53 and Faster R-CNN ResNet-50 reveals key distinctions 
between these object detection models. YOLOv8 DarkNet-53 
stands out with a remarkable precision score of 1.00, 
indicating its exceptional ability to classify and locate objects 
within the given dataset precisely. This precision score 
signifies a low rate of false positives, which is a valuable 
attribute in applications where accuracy is paramount. 
Additionally, YOLOv8 exhibits a strong recall of 0.97, 
implying its proficiency in capturing a significant proportion 
of the actual objects present in the images. This balance 
between precision and recall is further reflected in its F1-score 
of 0.90, signifying robust object detection performance. 
Furthermore, YOLOv8 achieves a MAP50 of 0.95, 
underscoring its excellence in accurately localizing and 
classifying objects with a moderate overlap threshold. 

Conversely, Faster R-CNN ResNet-50 demonstrates a 
lower precision score of 0.55, suggesting a higher likelihood 
of false positives than YOLOv8. While its recall score of 0.73 
indicates its capability to capture a substantial portion of 
actual objects, it does not match the recall performance of 
YOLOv8. This trade-off between precision and recall is 
mirrored in its F1-score of 0.63. Additionally, Faster R-CNN 
achieves a MAP50 of 0.55, indicating that it excels in certain 
detection scenarios but may struggle with higher accuracy 
demands. 

Therefore, YOLOv8 DarkNet-53 exhibits superior 
precision, recall, F1-score, and MAP50 values compared to 
Faster R-CNN ResNet-50, emphasizing its effectiveness in 
precise and comprehensive object detection tasks. However, 
the choice between these models should be based on specific 
application requirements, as Faster R-CNN may still be a 
suitable option in scenarios where precision-recall trade-offs 

are acceptable or computational efficiency is a significant 
concern. 

c. Prediction and Comparative Analysis of Model Results on 
Test Data 

a) YOLOv8 DarkNet-53 

 

           Fig. 37. YOLOv8 result for Image 1.  

 

           Fig. 38. YOLOv8 result for Image 2.  

b)     Faster R-CNN ResNet-50 

 

           Fig. 39. FRCNN results for Image 1.  

 

           Fig. 40. FRCNN results for Image 2.  
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TABLE V.  SUMMARY OF FASTER R-CNN PERFORMANCE 

RESULTS 

Images Detected Vehicles and 
Confidence Values 

Correctly 
Classified 
(Yes/No) 

Image 1 YOLOv8 1. Class 1: 0.94 

2. Alert: 0.86 

3. Alert: 0.40 

Yes 

Yes 

Yes 

Image 2 YOLOv8 1. Class 0: 0.96 Yes 

Image 1 FRCNN 1. Alert: 0.48 Yes 

Image 2 FRCNN 1. Class 0: 0.86 Yes 

 

In detecting and classifying vehicles using YOLO and 
Faster R-CNN ResNet50 models, we observed differences in 
the number of vehicles detected and the confidence levels 
assigned to the classifications. 

Using the YOLO model, Image 1 correctly classified two 
instances of the motor as Class Alert with a confidence level 
of 0.86 and 0.40 for the second. Additionally, it accurately 
classified a car as Class 1 with a high confidence level of 0.94. 
In Image 2, the YOLO model correctly identified a police car 
as Class 0 with a confidence level of 0.96. 

Comparatively, the Faster R-CNN ResNet50 model 
exhibited some variations in its detections. In Image 1, it only 
detected and classified one motor as Class Alert, but with a 
lower confidence level of 0.48. It did not detect the additional 
motor or car in the image. Similarly, in Image 2, the model 
correctly classified the police car as Class 0, but with a 
confidence level of 0.86. 

Both models produced correct classifications for the 
vehicles present in the images. However, the YOLO model 
detected and classified more vehicle instances than the Faster 
R-CNN ResNet50 model. The YOLO model also tended to 
assign higher confidence levels to its classifications, 
indicating a higher degree of certainty in its predictions. 

These observations suggest that the YOLO model may 
have a more robust overall detection capability, capturing a 
greater number of vehicles accurately and with higher 
confidence. On the other hand, the Faster R-CNN ResNet50 
model demonstrated limitations in detecting multiple 
instances and exhibited lower confidence levels in its 
classifications. 

 

c) Findings for the Optimal Model: YOLOv8 with Darknet-
53 

 By using the best pre-trained weight model named 
"best.pt" from YOLOv8 model, we test the capability of the 
model to detect in two different ways. One way uses test 
images with multiple images of vehicles, while the other uses 
images with less than three vehicle classes in each image. The 
text appears in the detected green, orange, and red boxes, it 
shows the information on the type of vehicle toll classes 
versus MAP. For example, in Figure 45, Class 1:0.97 means 
the detected vehicle is from Class 1, and its confidence score 
is 0.97, equal to 97%. As depicted below, Figure 41 and Figure 
42 illustrate the model cannot capture correctly when handling 
multiple classes in one frame, that the vehicle classes are not 
accurately labeled, and that for certain correct classes, low 

confidence values are recorded. However, vehicles in Figures 
43, 44, 45, and 46 record high confidence values and have 
been captured with correct trained classes accordingly.   

     

       Fig. 41. Result 1 for detecting multiple vehicles in one frame. 

               

       Fig. 42. Result 2 for detecting multiple vehicles in one frame. 
 

 

       Fig. 43. Result 1 for detecting single vehicles in one frame. 

 

       Fig. 44. Result 2 for detecting single vehicles in one frame. 

 

       Fig. 45. Result 3 for detecting single vehicles in one frame. 
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       Fig. 46. Result 4 for detecting single vehicles in one frame. 

 

These findings emphasize the importance of considering 
both the number of detections and the confidence levels when 
evaluating the performance of object detection models. 
Further analysis and comparison of these models across a 
more extensive and diverse dataset could provide additional 
insights into their respective strengths and weaknesses in 
vehicle detection and classification tasks. 

The overall results indicate that the YOLOv8 model 
performs well compared to the F-RCNN model. Therefore, we 
predict that the setup and training process for the Faster-
RCNN model might be wrong. The possibilities might be 
because of overfitting, the hyperparameter tuning used was 
unsuitable and needed the adjustment of the parameters 
defined, the architecture needed more train data, and the 
differences in training parameters for both models. For the 
Phase 2 Project, we will -tune the model, try different 
parameters, try on a new dataset, do data augmentation, and 
generate synthetic data where we are adding another new 
feature. The data can be used to adapt to the weather changing 
in Malaysia.  

 

B. Future Works 

The overall results indicate that the YOLOv8 model 
performs well compared to the F-RCNN model. Therefore, we 
predict that the setup and training process for F-RCNN model 
might be wrong. The possibilities might be because of 
overfitting, the hyperparameter tuning used was unsuitable 
and needed the adjustment of the parameters defined, the 
architecture needed more train data, and the differences in 
training parameters for both models. For the Phase 2 Project,  
we will fine-tune the model using different parameters, insert 
a new dataset if needed, and add new features such as data 
augmentation and synthetic data generation where the data can 
be used to adapt to the weather changes in Malaysia.  

The first feature is data augmentation. Augmented data is 
derived from original data with minor adjustments. To 
improve the size and diversity of the training set, we use 
geometric and color space modifications like flipping, 
resizing, cropping, brightness, and contrast [18]. Secondly, 
generates synthetic data that is created without applying the 
actual dataset. To produce synthetic data, it frequently 
employs DNNs (Deep Neural Networks) and GANs 
(Generative Adversarial Networks) [18]. 

While both models are being optimized, we plan to gather 
information about Malaysian citizens' experiences with the 
current toll system and their feedback and suggestions. We 
will collect the data using Google Forms, which includes 
several types of questionnaires: structured, unstructured, 

open, and closed. We would like to explore and summarize 
the users' insights about our project idea. 

Moreover, our current output only shows the vehicle class 
types and their confidence value for model deployment, 
respectively. To improve the effectiveness of the toll system 
implementation for both models, we will also indicate the 
bounding box with each vehicle's fare. For example (Class 1 
RM 5.00). To increase the approach to the current Malaysian 
toll system, we will try to contact one of the highway 
concessionaries or build–operate–transfer operator companies 
in Malaysia, PLUS Expressways Berhad, to confirm how 
much in one frame vehicles can be detected and other related 
questions regarding the improvements of the system in toll 
system in Malaysia. 
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