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Abstract
Long short-term memory (LSTM) has proven effective in modeling sequential data. However, it may encounter challenges in
accurately capturing long-term temporal dependencies. LSTM plays a central role in speech enhancement by effectively
modeling and capturing temporal dependencies in speech signals. This paper introduces a variable-neurons-based LSTM
designed for capturing long-term temporal dependencies by reducing neuron representation in layers with no loss of data. A
skip connection between nonadjacent layers is added to prevent gradient vanishing. An attention mechanism in these
connections highlights important features and spectral components. Our LSTM is inherently causal, making it well-suited for
real-time processing without relying on future information. Training involves utilizing combined acoustic feature sets for
improved performance, and the models estimate two time–frequency masks—the ideal ratio mask (IRM) and the ideal
binary mask (IBM). Comprehensive evaluation using perceptual evaluation of speech quality (PESQ) and short-time
objective intelligibility (STOI) showed that the proposed LSTM architecture demonstrates enhanced speech intelligibility and
perceptual quality. Composite measures further substantiated performance, considering residual noise distortion (Cbak) and
speech distortion (Csig). The proposed model showed a 16.21% improvement in STOI and a 0.69 improvement in PESQ on
the TIMIT database. Similarly, with the LibriSpeech database, the STOI and PESQ showed improvements of 16.41% and
0.71 over noisy mixtures. The proposed LSTM architecture outperforms deep neural networks (DNNs) in different stationary
and nonstationary background noisy conditions. To train an automatic speech recognition (ASR) system on enhanced
speech, the Kaldi toolkit is used for evaluating word error rate (WER). The proposed LSTM at the front-end notably reduced
WERs, achieving a notable 15.13% WER across different noisy backgrounds. © The Author(s), under exclusive licence to
Springer Science+Business Media, LLC, part of Springer Nature 2024.
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