
 

 
 

  

 
 

 
 

                                                    

 

 
1 

 

  

EXPLORING THE BENEFICIAL ENDOPHYTES OF ZINGIBERACEAE 
 

Norsalsabila Mohd Rosli, Md Hoirul Azri Ponari, Tamil Chelvan Meenakshi Sundram, Zarina Zainuddin, Muhamad Fahmi Yunus*  
 

Address(es):  

Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, 

Pahang, Malaysia. 

 

*Corresponding author: : fahmiyunus@iium.edu.my   
 
ABSTRACT 

 
Keywords: Bioactivity, Biohardening, Endophytes, Phytohormone, Phytochemicals, Sustainable agriculture 

 
 

INTRODUCTION 

 

Plants are recognized as metaorganisms that possess a distinct microbiome and 

close symbiotic relationships with associated microorganisms where these systems 
play an important role in regulating an ecosystem's biological cycle while ensuring 

agricultural sustainability (Badri et al., 2009). The important symbiont in the 

plant-microbe interactions is a group of microbes called endophytes. Endophytes 
are the microbial system that is capable of influencing and interacting with host 

plant metabolic processes (Kanani et al., 2020). Endophytes can be defined as an 

endosymbiotic group of organisms which include bacteria, fungi, and viruses that 
colonize the host plant without causing any apparent symptom of diseases (Jha et 

al., 2023; Wen et al., 2023).  

Endophytes have been considered as important plant partners for their major 
contributions in plant growth. They promote plant growth through the production 

of several phytohormones such as auxin, cytokinin, gibberellins and ethylene 

(Taghavi et al., 2009; Maheshwari et al., 2020). Production of indole-3-acetic 
acid (IAA), an auxin helps in promoting immediate responses such as cell 

elongation as well as long-term responses such as cell differentiation (Spaepen et 

al., 2007; Taghavi et al., 2009). Endophytes also have the capability to exhibit 
other properties like production of siderophores and 1-aminocyclopropane-1 

carboxylic acid (ACC) deaminase. Siderophores are iron-chelating substances 

released by certain microbes during low iron levels. Siderophores- producing 
bacteria have drawn more interest during the last two decades due to their 

contribution in plant growth and protection. These microbes are believed to 

enhance iron uptake and inhibit the growth of other phytopathogens by releasing 
antibiotics and limiting the iron availability for pathogens (Ghavami et al., 2017). 

Equally important, ACC deaminase production is one of the mechanisms by 

endophytes to help plants survive under ethylene stress (Maheshwari et al., 2020). 

Endophytes are also capable of solubilizing insoluble phosphate into soluble form 

that enhances the phosphorus uptake by the plants (de Freitas et al., 1997). 

Furthermore, endophytes have been shown to produce secondary metabolites with 
antibacterial and antifungal properties that aid in the inhibition of pathogen growth 

(Gunatilaka, 2006). For instance, endophytic bacteria from Alpinia galanga roots 

synthesize antifungal and antibacterial substances such as kaempferol and 
isocutellarin that are known to have strong activity against pathogens such as 

Bacillus subtilis and Staphylococcus aureus (Taechowisan et al., 2008).  
  

Moreover, Zingiberaceae is one of the well documented families with a lot of 
economic benefits. This family comprises of 53 genera and over 1300 species 

(John Kress et al., 2002). The primary genera of this family are Zingiber (49 spp.), 

Kaempferia (17 spp.), Hedychium (22 spp.), Curcuma (34 spp.), Globba (42 spp.), 
Alpinia (17 spp.), Amomum (16 spp.), Etlingera (12 spp.), and Caulokaempferia 

(14 spp.) (Rachkeeree et al., 2018). These fragrant flowering plants can be found 

throughout tropical Africa, Asia, and the Americas (Pitopang et al., 2019). This 
family has been used traditionally for food and flavorings due to its strong aroma 

especially in Southeast Asia (Verma, 2018; Zhou et al., 2018; Yunus et al., 2021). 

Additionally, Zingiberaceae plants are rich in phytochemicals such as alkaloids, 
phenolic acids, flavonoids, and diarylheptanoids which can be used to produce 

many downstream products like essential oils, medicines, dyes, perfume, and 

aesthetics (Ashokkumar et al., 2020; Yunus et al., 2022).  
However, there is lack of information about the endosymbiotic microbes related to 

the entire Zingiberaceae family. Extensive information on endophytes will 

comprehend the nature of the microbiome with the Zingiberaceae family. 
Therefore, the purpose of this review is to examine the various types of endophytes 

from the Zingiberaceae plants, research on IAA phytohormone production, 

nutritional acquisition, biohardening application, secondary metabolites, and 
bioactivities of these valuable microorganisms. This review seeks to discuss 

enormous potentials of the endophytes and why this group of microorganisms is a 

perfect candidate for commercialization. 
 

ENDOPHYTES INVASION MECHANISMS 

 

Endophytes invade plant hosts by engaging in complex chemical interactions with 

roots and soil microorganisms. The process begins with the root exudation and 

followed by the recognition of certain biochemical molecules in the root exudates 

by endophytes (Rosenblueth & Martínez-Romero, 2006) (Fig 1). Biochemical 

compounds of the plant root exudates contain primary and secondary metabolites, 

including organic acids, amino acids, alcohols, sugars, polyamines, purines, fatty 
acids, phytohormones, flavonoids, terpenoids, and benzoxazinoids. Besides, plants 

exude 11–40% photosynthetically fixed carbon where it creates chemical gradients 

in the rhizosphere. These root exudates act as chemo-attractants for endophytes 
migration from the soil to the root surface (Malfanova et al., 2013; Mengistu, 

2020). Attachment of the endophytes to the root surface occurs in biphasic 
processes. First, primary attachment causes reversible weak adherence of single 

cells to the root surface, assisted by electrostatic and hydrophobic interactions. This 
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species-specific surface adhesins and proteinaceous appendages make the 

attachment stronger (Knights et al., 2021).  The success of primary attachment 

leads to the second phase of attachment where it is characterized by strong and 

permanent bacterial attachment to the root surface. Endophytes penetrate the plant 

root after becoming established on the rhizoplane either through active or passive 

process. The endophytes can passively penetrate the root tissue through lateral root 
emergence and wounds (Hallmann, 2001: Hardoim et al., 2008). For active 

penetration, Böhm et al. (2007) revealed that twitching motility of the bacteria 

influences the movement of endophytes inside the host. Furthermore, endophytes 
penetrate and inhabit the roots by releasing enzymes particularly pectinases and 

cellulases that dissolve the cell walls (Compant et al., 2005). 
  

 
Figure 1 Endophytes invasion mechanisms 

 
ENDOPHYTES AS PLANT GROWTH PROMOTER IN 

ZINGIBERACEAE 
 

Endophytes directly give benefits to the plants by modulating growth related 

hormones and assisting plants in getting nutrients, which can help plants to grow 

better under normal and stressed conditions (Ma et al., 2016). Indirectly, 
endophytic bacteria improve plant’s growth by discouraging phytopathogens using 

mechanisms such as antibiotic and lytic enzyme production, reduces the nutrient 

availability for the pathogens, and activates defense systems in plants (Miliute et 

al., 2015). 

 

Phytohormone production 

 

Plant hormones are classified into five types, namely gibberellins, ethylene, 

abscisic acid, cytokinin and auxin, where ethylene and IAA (a form of auxin) are 
common in plant-microbial interactions (Afzal et al., 2019). Generally, endophytes 

can improve host plants' nutrition uptake and metabolism by releasing growth-

regulating phytohormones. 
Due to its important role in plants, endophytic production of IAA has gained great 

attention from plant scientists (Matsuda et al., 2005). IAA is a significant hormone 

which participates in a variety of physiological activities in plants. These include 
the induction of plant defense mechanisms, control of plant development, and cell- 

signaling (Gravel et al., 2007; Spaepen et al., 2007). IAA also helps instigate the 

formation of lateral and adventitious roots, biosynthesis of metabolites, 

photosynthesis, mediate responses on stimuli, and stress conditions (Glick, 2012). 

Furthermore, IAA also assists in controlling production of plant hormones such as 
ethylene (Woodward & Bartel, 2005; Glick, 2012). Additionally, IAA can boost 

surface area and plant root biomass while increasing lateral root formation in host 

plants (Dias et al., 2008, Taghavi et al., 2009). 
Previous studies have successfully identified IAA-producing bacteria from 

Curcuma longa.  Kumar et al. (2016) reported that a few genera of bacteria 

isolated from C. longa including Bacillus pumilus, Bacillus thuringiensis, Bacillus 
cereus, Clavibacter michiga and Pseudomonas putida, have potential to synthesize 

IAA. Additionally, Vinayarani and Prakash (2018b) stated that Pseudomonas 

aeruginosa, Enterobacter sp. and Acinetobacter sp. isolated from C. longa were 
able to produce IAA. Moreover, Aswathy et al. (2012) postulated that the 

bacterium Paenibacillus sp., isolated from the rhizome of C. longa, has the 

potential to synthesize IAA and has been shown to improve plant growth. 
Several researchers managed to isolate IAA producing bacteria from Zingiber 

officinale. For instance, Jasim et al. (2013) stated that Pseudomonas sp. isolated 

from Z. officinale is an IAA producing bacterium. Another study revealed that 19 
endophytic bacteria were found to have the ability to produce IAA and assist plant 

growth. These bacteria include Agrobacterium larrymoorei, Stenotrophomonas 

maltophilia, Acetobacter pasteurianus, Pantoea ananatis, Serratia nematodiphila, 
P. putida, and Leclercia adecarboxylata (Chen et al., 2014). Zhang et al. (2018) 

revealed that 14 out of 57 endophytic bacteria isolated from Z. officinale rhizome 

were found to be capable of synthesizing IAA. These IAA producing bacteria were 
identified from the genus of Tetrathiobacter, Enterobacter, Stenotrophomonas, 

Pseudomonas, Acinetobacter, Serratia, Agrobacterium, Bacillus, and 

Ochrobactrum.  

Apart from auxin, ethylene is also necessary for controlling plant responses to 

biotic and abiotic stresses. It regulates a variety of physiological and 

developmental processes, including abscission, root initiation, root nodulation, leaf 

senescence, cell elongation, auxin transport and fruit ripening (Sun et al., 2015). 
During biotic and abiotic stresses, high amount of ethylene synthesized by plants 

caused inhibition of root elongation, formation of root hair and development of 

lateral roots. To overcome this issue, endophytic bacteria synthesize an enzyme 
called ACC deaminase which hydrolyze ACC, a precursor for ethylene 

biosynthesis. According to Sun et al. (2009), ACC degrading bacteria will adhere 
to plant roots and cleave the secreted ACC into α-ketobutyrate and ammonia where 

ammonia will be used as a nitrogen source. As a result, ACC hydrolysis can 

decrease stress of the plant while promoting plant growth (Santoyo et al., 2016).  
There have been several reports on plant growth promoting endophytic bacteria 

that boost the ACC deaminase activity (Nikolic et al., 2011). Blaha et al. (2006) 

reported that many members of the genera Enterobacter, Pseudomonas, Ralstonia, 
Burkholderia, Achromobacter, Agrobacterium, Azospirillum and Rhizobium along 

with other various endophytic strains, produce ACC deaminase. A study found that 

some Pseudomonas sp. strains associated with Z. officinale produce ACC 

deaminase, which reduce the ethylene-inducing stresses and promote plant 

development (Jasim et al., 2013). Ethylene-mediated plant growth inhibition 

decreases as ACC and ethylene levels decrease. Hence, endophytic microbes 
promote plant growth by reducing the ethylene-inducing stresses (Glick et al., 

2007; Hardoim et al., 2008). 

 
Nutrient acquisition 

 

Soils frequently lack adequate amounts of the nutrients required for plant growth. 
Interestingly, endophytes can assist their host plants in obtaining higher amounts 

of limiting nutrients such as phosphorus and iron (Glick, 2012). Phosphorus is a 

macronutrient essential for the enzymatic reactions responsible for many plants’ 
physiological processes. Unfortunately, around 75% of phosphorus applied as 

fertilizer, forms complexes with soil and becomes unavailable for the plants 

(Ezawa et al., 2002). According to Nautiyal et al. (2000), endophytic bacteria can 
increase phosphorus availability for plants by solubilizing precipitated phosphates 

through mechanisms such as acidification, chelation, ion exchange, and organic 

acid production. Endophytes increase phosphorus availability in the soil by 
secreting acid phosphatase that can mineralize organic phosphorus (Van Der 

Heijden et al., 2008). The ability to solubilize phosphate is frequently present in 

endophytic bacteria. For example, endophytic bacteria like P. putida, Bacillus 
pumilus and B. cereus, which are found in the roots and rhizosphere of the C. longa, 

stimulate the availability of phosphate to enhance plant growth (Kumar et al., 

2016). Other than that, Anisha et al. (2013) demonstrated that the strain of 
Klebsiella sp., present in the rhizome of C. longa, can improve the growth of the 

plant by converting insoluble phosphate into soluble form. This is in line with the 

research by Bussaban et al. (2001) which claimed that endophytes isolated from 
Amomum siamense assist the absorption of the nutrients from the soil, such as 

phosphorus and other necessary molecules. 

Most organisms require iron as an essential nutrient where many iron-containing 
proteins control important physiological processes such as respiration and 

transpiration (Ma et al., 2016). Iron is commonly found in the insoluble ferric 

(Fe3+) form, which is almost inaccessible to most plants. Interestingly, endophytes 
produce siderophores which bind to insoluble ferric ions (Ma et al., 2011). As a 

result, plants are able to gain iron from these bound siderophores by ligand 

exchange or chelate breakdown at the root level (Rajkumar et al., 2009; Ma et 

al., 2016). For example, endophytic bacterium of P. putida isolated from C. longa 

was able to synthesize siderophore and defend itself against pathogenic 

microorganisms (Kumar et al., 2016). Vinayarani and Prakash (2018b) reported 
that the production of siderophore protects C. longa against rot and leaf blight 

diseases caused by Rhizoctonia solani and Pythium aphanidermatum. 

Furthermore, Jasim et al. (2013) demonstrated that different species of 
Pseudomonas and Stenotrophomonas have the capability to produce siderophore 

in the root of Z. officinale. In short, endophytes have the economic potential to 
develop into more environmentally friendly biofertilizer. 

 

BIOHARDENING 
 

Biohardening, also known as biopriming, is a technique using microbial inoculants 

especially bacteria, either on in vitro plantlets or seedlings to increase plant growth 
(Divya et al., 2022). For the in vitro grown plantlets, the transition from in vitro to 

ex vitro conditions is a vital stage in micropropagation where the high risk of 

mortality happened due to the shock of transitory transplant during the transfer of 
plantlets. Most in vitro plantlets have a problem with stunted growth, easily 

attacked by soil-borne microbes and lack of ability to withstand the natural 

environment (Divya et al., 2022). Biohardening signifies the role of microbial 
inoculants as propagule priming agents for in vitro cocultures and on transplanting 

process (Nowak & Pruski, 2002). The biohardened plants respond more promptly 

and efficiently than non- biohardened plants upon exposure to stress (Conrath et 

al., 2002). This will improve several economically significant horticulture crops' 
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resilience to plant diseases (Sharma & Nowak, 1998; Ait Barka et al., 2002). 

Divya et al. (2022) mentioned that Piriformospora indica, an endophytic fungus 

isolated from root, has been utilized as a potential agent for biohardening in tissue 

culture plantlets. Bajaj et al. (2014) demonstrated that ex vitro co-cultivation of C. 

longa with P. indica resulted in higher yield and enhanced the curcumin and 

volatile oil production. In future, P. indica could be used to bioharden and support 
the growth of the micropropagated plant from other species. This statement is 

supported by a study from Sahay and Varma (1999) where the researchers proved 

that tobacco plantlets grown in tissue culture supplemented with P. indica have 
higher plant biomass, better root growth, and survival rates.  

SECONDARY METABOLITES AND BIOACTIVITIES OF 

ENDOPHYTES IN ZINGIBERACEAE 

 

Endophytes are known for their ability to produce numerous secondary metabolites 

with a broad range activity against pathogenic microorganisms (Al-Shaibani et 

al., 2016). Substance for self-defence produced by the endophytes in the 

competitive environments help to defence itself against biotic and abiotic stresses. 

Some examples of the secondary metabolites and biological activities produced by 

the endophytes found in the Zingiberaceae plants are presented in Table 1.  

Table 1 Secondary metabolites and/or biological activities of endophytes in Zingiberaceae 

Plant organ 
Plant Growth Promoting 

Endophytes 
Secondary metabolites and/or biological activities References 

Alpinia galanga 

roots. 

Streptomyces sp. Tc052 

(bacterium). 

The endophytic bacterium synthesized secondary metabolites that have antifungal 

and antibacterial activities substances such as kaempferol, isocutellarin, 

umbelifirone and cichoriin. 
Kaempferol and isocutellarin showed strong activity against Staphylococcus 

aureus and B. subtilis. Moderately effective towards E. coli and P. aeruginosa. 

Kaempferol, isocutellarin and umbelifirone showed better protection against 
Candida albicans, a pathogenic yeast, while cichoriin showed no activity. 

(Taechowisan et al., 

2008) 

A. galanga roots. 

 

Streptomyces sp. 

(bacterium).  
 

Streptomyces sp. LJK109 showed promising inhibitory effects. 

Compound analysis revealed the presence of 3-methylcarbazole and 1-methoxy-

3-methylcarbazole. 
The growth of phytopathogenic fungi from numbers of species has been tested. 

For both compounds, inhibition of mycelium extensions was proven on 

Sclerotium rolfsii, Verticillium sp, Fusarium oxysporum, Exserohilum sp, 
Drechslera sp, Curvularia sp, Colletotrichum musae, Alternaria porri, and 

Colletotrichum gloeosporioides. 

Compound 3-methylcarbazoles showed antifungal activities through inhibition of 
mycelium extension and conidia germination. This compound can be investigated 

on human pathogenic fungi like C. albicans and Cryptococcus neoformans. 

(Taechowisan et al., 

2012) 

Boesenbergia 
rotunda roots. 

Streptomyces sp. BO-07 

(bacterium). 

Two biphenyl compounds; 3′-hydroxy-5-methoxy-3,4-ethylenedioxybiphenyl 
and 3′-hydroxy-5,5′-dimethoxy-3,4- methylenedioxybiphenyl have been 

extracted. 

Antioxidant activities were shown by these two compounds. Both compounds 

proved to have antibacterial activities against S. aureus, B. cereus and B. subtilis. 

Anticancer activities were proved through investigation on human cervical 

carcinoma cell line, human liver carcinoma cell line, and human hepatoma cell 
line. 

(Taechowisan et al., 

2017) 

Curcuma longa 

leaves. 
Penicillium sp. (fungus). 

Silver nanoparticles (AgNPs) were synthesized through manipulation of the 

fungus, where it can be used as a metal reducing agent. AgNPs, exhibited 
antibacterial activity on P. aeruginosa and Klebsiella pneumoniae. 

(Singh et al., 2013) 

C. longa rhizome. 
Pseudomonas aeruginosa 
Bac- DOB-E19 

(bacterium). 

In vitro antagonistic dual culture test and greenhouse severity analysis were 

conducted. The results showed that the bacteria can be manipulated as a 

biocontrol agent against Pythium aphanidermatum and R. solani, both are 
pathogens that caused rhizome rot and leaf blight. 

(Vinayarani & 

Prakash, 2018b) 

C. longa rhizome. 
Trichoderma harzianum 

TharDOB-31 (fungus). 

Antagonism analysis through antagonistic dual culture and greenhouse severity 

experiment were examined. The fungal showed that it has biocontrol potential 
against P. aphanidermatum and R. solani via inhibition of mycelial growth. 

(Vinayarani & 

Prakash, 2018a) 

Curcuma 
xanthorrhiza leaves. 

Xylaria sp. (fungus). 

Two new secondary metabolites have been identified. Molecular formula of 

compound 1 is C17H16O6 while compound 2 is C23H24O7. Plus, resacetophenone 

also has been detected. 

(Hammerschmidt et 

al., 2015) 

Kaempferia rotunda 

rhizome. 

Aspergillus flavus 

(fungus). 

The fungus secreted many secondary metabolites such as myricetin, kaempferol, 
ellagic acid, syringic acid, ferulic acid, coumarin acid, and caffeic acid. 

Through disk diffusion assay, inhibition of different strains of bacteria; S. aureus, 

E. coli, K. pneumoniae, Bacillus and Enterococcus were reported using fungal 
extract. 

Nematicidal activity test showed that the fungal extract caused lethality to 

Haemonchus contortus. 

(Krishnakumar et al., 

2021) 

Zingiber 

cassumunar 
leaves. 

Arthrinium sp. 

MFLUCC16-1053 
(fungus). 

The fungus synthesized multiple compounds such as γ-curcumene, β-isocomene, 
cembrene, 6E-farnesol, 2Z, sclareol, 3E-cembrene A, laurenan-2-one and β-

cyclocitral. 

The extract of the fungus successfully inhibits the growth of S. aureus and E. coli. 

(Pansanit & 

Pripdeevech, 2018) 

Zingiber griffithii 

rhizome. 

Hypomontagnella 

monticulosa strain Zg15SU 

(fungus). 
 

Extracted compounds were identified as griffithiiene and scalaradial. 
Antibacterial test proved that it has the antibacterial properties against S. aureus, 

E. coli, methicilin-resistant S. aureus, and enteropathogenic E. coli. 

(Lutfia et al., 2021) 

Z. officinale leaves 
Trichoderma harzianum 

(fungus). 

The fungus produced harzianic acid and isoharzianic acid compounds. 

Isoharzianic acid extract analysis showed it has antifungal effects towards 
Ustilago maydis and antibacterial activity against S. aureus. 

(Harwoko et al., 

2021a) 

 

 

Z. officinale 
rhizome. 

 

 

 

Gliocladiopsis sp., 

Fusarium oxysporum and 

unknown fungal sp. 
(GFV1) (fungi). 

Gliocladiopsis sp. fungi secreted ergosta-4, 6, 8(14), 22-tetraen-3-one (ergone) 

compound. It showed maximum inhibition of Pythium myriotylum, a soft rot 
pathogen through dual culture technique. 

GFV1 produced tyrosol compound. Antibacterial effects were shown against S. 

aureus and B. subtilis by F. oxysporum and GFV1. 

(Anisha & 

Radhakrishnan, 2017) 
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Continue Table 1 

Z. officinale roots, 

stems, tubers, and 

leaves. 

Bacillus sp. and genus 

Pseudomonas sp. 

(bacteria). 

Growth analysis on P. myriotylum, a pathogenic oomycete has been inhibited by 

B. cereus, B. methylotrophicus, and B. amyloliquefaciens. The pathogenic agent 

that caused soft rot disease was also inhibited by P. aeruginosa and P. monteilii. 

(Chen et al., 2014) 

Z. officinale (red 
ginger) root, stem 

and shoot.  

Curvularia affinis, 

Fusarium solani, 

Glomerella cingulate 
(fungi). 

Via antagonism assay, C. affinis, F. solani, and G. cingulata proved to inhibit 

colonization of F. oxysporum. 
(Ginting et al., 2013) 

Z. officinale 
rhizome. 

Nocardiopsis sp. 
(actinomycete). 

Phenol, 2,4-bis (1,1-dimethy- lethyl) and trans cinnamic acid were secreted by the 
Nocardiopsis sp. The actinomycete crude extract showed to inhibit the growth of 

P. myriotylum. Well diffusion test showed that the crude extract was efficient to 

inhibit Phytophthora infestans, Colletotrichum acutatum, F. oxysporum, 
Corynespora cassiicola and R. solani. 

(Sabu et al., 2017) 

Z. officinale root. 
Streptomyces aureofaciens 
CMUAc130 (fungus). 

Secondary metabolites were identified as 5,7-dimethoxy-4-p-
methoxylphenylcoumarin and 5,7-dimethoxy-4-phenylcoumarin. Antifungal 

activity through dual cultures assay showed that the fungus inhibit the growth of 
F. oxysporum and Colletotrichum musae. Both purified compounds inhibit F. 

oxysporum and C. musae as shown by paper-disc assay. 

(Taechowisan et al., 

2005) 

Z. officinale root 

Pseudomonas sp., 

Ochrobactrum sp., 
Pseudomonas sp., Serratia 

sp., Ochrobactrum sp. and 

Bacillus sp. (bacteria). 

The bacteria isolated were tested on Zea mays during field experiment. The results 

showed that these bacteria have positive effects on overall physiological 

development and nutrient contents of Z. mays. They can be used as an alternative 
to chemical fertilizer. 

(Zhang et al., 2018) 

Z. officinale rhizome T. harzianum (fungus). 

Multiple metabolites have been extracted from the fungal such as 

pretrichodermamide G, pretrichodermamide A, epicorazine A, and entepicoccin 

G.  Pretrichodermamide A. showed antifungal effects towards Ustilago maydis 
while antibacterial properties were shown against Mycobacterium tuberculosis. 

Extracts of epicorazine A contain antifungal activity against U. maydis and 

showed cytotoxic properties towards the mouse lymphoma cell. 

(Harwoko et al., 

2021b) 

Zingiber zerumbet 
rhizome 

Fusarium solani and 

Fusarium oxysporum 

(fungi). 

F. solani and F. oxysporum have antagonistic activity against Pythium 
myriotylum, a major soil-borne phytopathogen. This result determines the 

capability of Z. zerumbet endophytes as promising resources for active 

compounds and as biocontrol agents for soft rot disease management caused by 
Pythium spp. 

Keerthi et al. (2016) 

Zingiber zerumbet 

rhizome 

F. oxysporum (ZzEF8) 

fungus 

The disc diffusion experiment validated the inhibitory activity of F. 

oxysporum (ZzEF8) against P. myriotylum. 
Keerthi et al. (2022). 

 

CONCLUSION AND FUTURE PERSPECTIVES 

 

Comprehensive research on endophytes in various members of Zingiberaceae 
proposes that endophytes facilitate improving plant’s productivity as well as 

protecting plants against multiple stresses. Endophytes and Zingiberaceae plants 
show a lot of mutualistic symbiosis events such as IAA phytohormone production, 

siderophore production, modulation of ACC deaminase activity and assist in 

phosphate solubilization activity in the soil. For biofertilizer, the endophytes 
isolated from the Zingiberaceae plants have a great potential to be commercialized 

where it has a progressive impact on the environment with less chemical fertilizer 

application. Research findings demonstrate that bioinoculation of micropropagated 
plantlets with endophytes can be used to improve the survival and plants growth 

during the acclimatization process. Equally important, most endophytes from 

Zingiberaceae have the promising potential to be sources of secondary metabolites 

with extensive industrial and medicinal uses. In conclusion, endophytes from 

Zingiberaceae plants have a lot of benefits with a massive economic opportunity 

to be developed and commercialized in the future.  
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