On a convex combination of Lotka-Volterra operators

Farrukh Mukhamedov ${ }^{\text {a,* }}$, Chin Hee Pah ${ }^{\text {b }}$, Azizi Rosli ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
${ }^{\mathrm{b}}$ Department of Computational and Theoretical Sciences, Faculty of Science, IIUM, P.O. Box 141, 25710 Kuantan, Pahang, Malaysia

ARTICLE INFO

MSC:

37N25
46L35
Keywords:
Lotka-Volterra operator
Homeomorphism

Abstract

We consider a convex combination of two classes of Lotka-Volterra operators defined on 2-dimensional simplex. Earlier, the dynamics of a particular case of the considered operators has been investigated. However, its bijective property was not studied. In this paper, we are able to establish that such maps are homeomorphism of the simplex.

1. Introduction

The simplest non-linear stochastic operators, the quadratic stochastic operators (QSO) were introduced and studied by Bernstein in his study of Theory of Heredity [1]. Since then, an extensive study on QSO [2] and later cubic stochastic operators (CSO) [3,4], have been investigated. Their applications in various fields of natural sciences appeared in [5-10]. Mostly in QSO and CSO, a class of Lotka-Volterra (LV) operators have been intensively explored (see also [11]). We notice that Lotka-Volterra models have been reported to being used as tools for applications in ecological system such as harvesting problem [8]. However, it is not our intent to study the dynamics of a discretised Lotka-Volterra model in this paper. Instead, we investigate one of its properties, bijectivity; which will prove the existence of its inverse. Nevertheless, if we have the Lyapunov function of a bijective operator, this will aid in studying the limiting behaviour of its negative trajectory.

We point out that while surjectivity of any LV stochastic operator was proven [12], the bijectivity of the same class of operator was only proven for quadratic case [2]. In general, the bijectivity of LV stochastic operators is not yet established.

In this paper, we are going to establish the bijectivity of a class of LV stochastic operator which is a convex combination of two different classes of LV operator defined on 2-dimensional simplex.

Assume that $E=\{1,2,3\}$. In this paper we consider 2-dimensional simplex is defined by
$S^{2}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{i} \geq 0, \forall i \in E, \sum_{i \in E} x_{i}=1\right\}$.
By $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ we denote the standard basis in \mathbb{R}^{3}. Given $\alpha \subset E$ the set $\Gamma_{\alpha}=\operatorname{conv}\left\{\mathbf{e}_{k}\right\}, k \in \alpha$ represent a face of S^{2}.

A mapping $\mathcal{K}: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}^{3}$ is called stochastic if $\mathcal{K}\left(S^{2}\right) \subset S^{2}$. In this paper, we always consider stochastic operators.

The trajectory (orbit) $\left\{\mathbf{x}^{(n)}\right\}, n=0,1,2, \ldots$ of \mathcal{K} for an initial value $\mathbf{x}^{(0)} \in S^{2}$ is defined by
$\mathbf{x}^{(n+1)}=\mathcal{K}\left(\mathbf{x}^{(n)}\right)=\mathcal{K}^{n+1}\left(\mathbf{x}^{(0)}\right), \quad n=0,1,2, \ldots$
Denote by $\omega_{\mathcal{K}}\left(\mathbf{x}^{(0)}\right)$ the set of limit points of the trajectory $\left\{\mathbf{x}^{(n)}\right\}_{n=0}^{\infty}$.

Definition 1. The operator \mathcal{K} is called regular (or stable) if for any initial point $\mathbf{x} \in S^{2}$, the limit
$\lim _{n \rightarrow \infty} \mathcal{K}^{n}(\mathbf{x})$
exists.

Definition 2. Let \mathcal{K} be a stochastic operator on S^{2} and let A be a maximal measurable subset of S^{2} such that for any $\mathbf{x} \in A$ the limit
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \mathcal{K}^{m}(\mathbf{x})$
does not exist. If $\mu(A)>0$ with the usual Lebesgue measure μ on S^{2}, then \mathcal{K} is said to be non-ergodic; if $\mu(A)=0$, then \mathcal{K} is called ergodic by $\bmod 0$.

Recently, in [13], the dynamics of cubic operator $U_{\theta}=\theta U_{1}+(1-$ $\theta) U_{2}, \theta \in[0,1]$ defined on S^{2} has been investigated. Here
$U_{1}(\mathbf{x})=\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}\left(1+x_{1} x_{2}-x_{3}^{2}\right), \\ x_{2}^{\prime}=x_{2}\left(1+x_{2} x_{3}-x_{1}^{2}\right), \\ x_{3}^{\prime}=x_{3}\left(1+x_{3} x_{1}-x_{2}^{2}\right),\end{array} \quad U_{2}(\mathbf{x})=\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}\left(1+x_{3}^{2}-x_{1} x_{2}\right), \\ x_{2}^{\prime}=x_{2}\left(1+x_{1}^{2}-x_{2} x_{3}\right), \\ x_{3}^{\prime}=x_{3}\left(1+x_{2}^{2}-x_{3} x_{1}\right) .\end{array}\right.\right.$

[^0]It was shown that $\varphi(\mathbf{x})=x_{1} x_{2} x_{3}$ is a Lyapunov function for U_{θ}, which is increasing for $\theta<\frac{1}{2}$ and decreasing for $\theta>\frac{1}{2}$. Mainly, it was shown that U_{θ} has the property of being regular for $\theta<\frac{1}{2}$, or non-ergodic for $\theta>\frac{1}{2}$. The biological interpretation of above model is clear. Consider a population of three species, all species will coexist if $\theta<\frac{1}{2}$. Otherwise if $\theta>\frac{1}{2}$, one of the species will eventually be driven to near extinction.

However, the bijectivity of U_{θ} was not proven. In the present paper, we are going to consider a more general operator than U_{θ} and prove its bijectivity. As a particular case, this will also imply the bijectivity of U_{θ}.

2. Main result

In this section, we investigate the mapping $W_{\theta}: S^{2} \rightarrow S^{2}$ defined by
$W_{\theta}(\mathbf{x})=\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}\left[1+(2 \theta-1)\left(x_{1}^{r} x_{2}-x_{3}^{r+1}\right)\right], \\ x_{2}^{\prime}=x_{2}\left[1+(2 \theta-1)\left(x_{2}^{r} x_{3}-x_{1}^{r+1}\right)\right], \\ x_{3}^{\prime}=x_{3}\left[1+(2 \theta-1)\left(x_{3}^{r} x_{1}-x_{2}^{r+1}\right)\right],\end{array}\right.$
where $r>0$, and parameter $\theta \in[0,1]$. If $\theta=\frac{1}{2}$, then V_{θ} is an identity mapping. If $r=1$, then W_{θ} reduces to U_{θ}. Note that (3) is a convex combination $W_{\theta}=\theta W_{1}+(1-\theta) W_{2}$, where
$W_{1}(\mathbf{x})=\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}\left(1+x_{1}^{r} x_{2}-x_{3}^{r+1}\right), \\ x_{2}^{\prime}=x_{2}\left(1+x_{2}^{r} x_{3}-x_{1}^{r+1}\right), \\ x_{3}^{\prime}=x_{3}\left(1+x_{3}^{r} x_{1}-x_{2}^{r+1}\right),\end{array} \quad W_{2}(\mathbf{x})=\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}\left(1+x_{3}^{r+1}-x_{1}^{r} x_{2}\right), \\ x_{2}^{\prime}=x_{2}\left(1+x_{1}^{r+1}-x_{2}^{r} x_{3}\right), \\ x_{3}^{\prime}=x_{3}\left(1+x_{2}^{r+1}-x_{3}^{r} x_{1}\right) .\end{array}\right.\right.$
In this section, we are going to prove the bijectivity of (3). We will show that the determinant of Jacobian of W_{θ} and $\overline{W_{\theta}}$, the restriction of W_{θ} at each faces is greater than zero for any \mathbf{x} within the interior of respective domains.

In the sequel, we always assume that $\theta \neq \frac{1}{2}$. Then, from (3) it follows that
$J_{W_{\theta}}=(2 \theta-1)\left[\begin{array}{ccc}a_{11} & x_{1}^{r+1} & -(r+1) x_{3}^{r} x_{1} \\ -(r+1) x_{1}^{r} x_{2} & a_{22} & x_{2}^{r+1} \\ x_{3}^{r+1} & -(r+1) x_{2}^{r} x_{3} & a_{33}\end{array}\right]$,
where
$a_{11}=\frac{1}{2 \theta-1}+(r+1) x_{1}^{r} x_{2}-x_{3}^{r+1}$,
$a_{22}=\frac{1}{2 \theta-1}+(r+1) x_{2}^{r} x_{3}-x_{1}^{r+1}$,
$a_{33}=\frac{1}{2 \theta-1}+(r+1) x_{3}^{r} x_{1}-x_{2}^{r+1}$,
and get its determinant
$\left|J_{V_{\theta}}\right|=\lambda\left|\begin{array}{ccc}\frac{a_{11}}{x_{1}} & x_{1}^{r} & -(r+1) x_{3}^{r} \\ -(r+1) x_{1}^{r} & \frac{a_{22}}{x_{2}} & x_{2}^{r} \\ x_{3}^{r} & -(r+1) x_{2}^{r} & \frac{a_{33}}{x_{3}}\end{array}\right|$,
where $\lambda=x_{1} x_{2} x_{3}(2 \theta-1)^{3}$.

Lemma 1. Let $\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$ with $x_{k}>0, k \in E$ and $r>0$, then $(r+1) x_{i}^{r} x_{j}-x_{k}^{r+1} \in(-1,1)$, for any $i \neq j \neq k, i, j, k \in E$.

Proof. One can see that $x_{k} \leq 1-x_{i}-x_{j}$, hence
$(r+1) x_{i}^{r} x_{j}-x_{k}^{r+1}>(r+1) x_{i}^{r} x_{j}-x_{k}>x_{i}+x_{j}+(r+1) x_{i}^{r} x_{j}-1>-1$.
Furthermore, one can show that $(r+1) x_{i}^{r} x_{j}-x_{k}^{r+1}<(r+1) x_{i}^{r}\left(1-x_{i}\right)-x_{k}^{r+1}$. Since $x_{i}^{r}\left(1-x_{i}\right)$ has a maximum of $\left(\frac{r}{r+1}\right)^{r} \frac{1}{r+1}$ at $x_{i}=\frac{r}{r+1}$, we get
$(r+1) x_{i}^{r} x_{j}-x_{k}^{r+1} \leq\left(\frac{r}{r+1}\right)^{r}-x_{k}^{r+1} \leq 1-x_{k}^{r+1}<1$,
hence $(r+1) x_{i}^{r} x_{j}-x_{k}^{r+1} \in(-1,1)$.

Lemma 2. Let $\mathbf{x} \in \operatorname{int} S^{2}$, then $a_{11}, a_{22}, a_{33}>0$ if $\theta>\frac{1}{2}$, and $a_{11}, a_{22}, a_{33}<$ 0 if otherwise.

Proof. Let us consider a_{11}, the rest can be proceeded by the same argument. Now using (5) together with Lemma 1 one can show that
$(2 \theta-1)\left[(r+1) x_{1}^{r} x_{2}-x_{3}^{r+1}\right] \in(-1,1)$
for $\theta \in[0,1]$. Hence,
$a_{11}=\frac{1+(2 \theta-1)\left[(r+1) x_{1}^{r} x_{2}-x_{3}^{r+1}\right]}{(2 \theta-1) x_{1}}$,
which is positive for $\theta>\frac{1}{2}$, and negative if $\theta<\frac{1}{2}$.
Now, we are ready to formulate the main result.
Theorem 1. Let $\theta \in[0,1] \backslash\left\{\frac{1}{2}\right\}$, then the mapping W_{θ} defined by (3) is a homeomorphism of S^{2}.

Proof. Let the mapping $\bar{W}: S^{1} \rightarrow S^{1}$ be the restriction of W_{θ} on each faces, $\Gamma_{\alpha}, \alpha \subset E$. Then the Jacobian under the restriction at each faces is given by
$J_{\bar{W}}=\left[\begin{array}{cc}a_{i i} & a_{i j} \\ -\tau a_{i j} & a_{j j}\end{array}\right], \quad i, j \in \alpha$,
where $\tau>0$. By Lemma 2, we can easily show that determinant $\left|J_{\bar{W}}\right|>0$. Therefore, it is sufficient to show that the mapping W_{θ} is a local homeomorphism at any interior point of S^{2}.

Let $\mathbf{x} \in \operatorname{int} S^{2}$, denoting (6) as $\left|J_{V_{\theta}}\right|=\lambda|A|, A=\left(a_{i j}\right)_{i, j=1}^{3}$; one could show that

$$
\begin{aligned}
|A| & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{33} a_{12} a_{21}-a_{22} a_{13} a_{31} \\
& =a_{11} a_{22} a_{33}+\left[1-(r+1)^{3}\right] a_{12} a_{23} a_{31} \\
& +(r+1)\left(a_{11} a_{23}^{2}+a_{33} a_{12}^{2}+a_{22} a_{31}^{2}\right)
\end{aligned}
$$

Suppose $\theta>\frac{1}{2}$. Since $2 \theta-1 \in[0,1)$ we have
$a_{11}=\frac{1-(2 \theta-1) x_{3}^{r+1}}{(2 \theta-1) x_{1}}+(r+1) x_{1}^{r} \frac{x_{2}}{x_{1}}>(r+1) x_{1}^{r} \frac{x_{2}}{x_{1}}$.
Doing the same for a_{22} and a_{33} we obtain

$$
\begin{aligned}
& |A|> \\
& \quad(r+1)^{3} a_{12} a_{23} a_{31}+\left[1-(r+1)^{3}\right] a_{12} a_{23} a_{31} \\
& \quad \quad+(r+1)\left(a_{11} a_{23}^{2}+a_{33} a_{12}^{2}+a_{22} a_{31}^{2}\right) \\
& \\
& >0
\end{aligned}
$$

Now suppose $\theta<\frac{1}{2}$. By Lemma 2 we have $a_{11}, a_{22}, a_{33}<0$, and it is clear that $|A|<0$. Recall that $\lambda=x_{1} x_{2} x_{3}(2 \theta-1)^{3}$, thus we have the determinant $\left|J_{V_{\theta}}\right|=\lambda|A|>0$ for any $\theta \in[0,1] \backslash\left\{\frac{1}{2}\right\}$. This completes the proof.

The proved Theorem 1 implies the next result.
Corollary 1. For any initial point $\mathbf{x}^{(0)} \in S^{2}$, the negative trajectory
$\mathbf{x}^{(0)}, W_{\theta}^{-1} \mathbf{x}^{(0)}, W_{\theta}^{-2} \mathbf{x}^{(0)}, \ldots$
exists.
Let $r=1$, then W_{θ} is reduced to U_{θ}, and recall that $\varphi(\mathbf{x})=x_{1} x_{2} x_{3}$ is a decreasing Lyapunov function for $U_{\theta}, \theta>\frac{1}{2}$.

Theorem 2. For any initial point $\mathbf{x}^{(0)} \in \operatorname{int} S^{2}$, the negative trajectory of U_{θ} exists, and it always converges to $\mathbf{c}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ if $\theta>\frac{1}{2}$.

Proof. Assume $\mathbf{x}^{(0)} \in \operatorname{int} S^{2}$. Since $\varphi(\mathbf{x})=x_{1} x_{2} x_{3}$ is a decreasing Lyapunov function of U_{θ}, we have
$\ldots \geq \varphi\left(\mathbf{x}^{(-2)}\right) \geq \varphi\left(\mathbf{x}^{(-1)}\right) \geq \varphi\left(\mathbf{x}^{(0)}\right) \geq \varphi\left(\mathbf{x}^{\prime}\right) \geq \varphi\left(\mathbf{x}^{\prime \prime}\right) \geq \cdots$,
i.e. $\lim _{t \rightarrow-\infty} \varphi\left(\mathbf{x}^{(t)}\right)=\max \left\{x_{1} x_{2} x_{3}\right\}=\frac{1}{27}$, which is true only for $x_{1}=$ $x_{2}=x_{3}=\frac{1}{3}$. Hence, the negative trajectory converges to \mathbf{c}.

3. Conclusion

The Bijectivity of the mapping (3) guarantee the existence of its inverse and negative trajectory regardless of its parameter θ. Furthermore, there is no correlation between regularity of (3) and its properties of being a bijection as shown for $r=1$.

Suppose there is an ecological systems which satisfies the LV operator (3), each evolutionary path taken to achieve a state will be unique, and its ancestral distribution could be traced.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors thank the Ministry of Higher Education (MOHE) Fundamental Research Grant Scheme (FRGS), United Arab Emirates under the grant FRGS21-230-0839. Moreover, the first author (F.M.) thanks to the UAEU UPAR, United Arab Emirates Grant No. G00003447 for support.

References

[1] S.N. Bernshtein, Solution of a mathematical problem in the theory of heredity, Soc. Sci. Inf. 15 (4-5) (1976) 797-821.
[2] R. Ganikhodzhaev, F. Mukhamedov, U. Rozikov, Quadratic stochastic operators and processes: Results and open problems, Infin. Dimens. Anal. Quan. Probab. Relat. Top. 14 (2011) 279-335.
[3] U.U. Jamilov, A.Y. Khamraev, M. Ladra, On a Volterra cubic stochastic operator, Bull. Math. Biol. 80 (2) (2018) 319-334.
[4] F. Mukhamedov, C.H. Pah, A. Rosli, On non-ergodic Volterra cubic stochastic operators, Qual. Theory Dyn. Syst. 18 (3) (2019) 1225-1235.
[5] M. Basson, M.J. Fogarty, Harvesting in discrete-time predator-prey systems, Math. Biosci. 141 (1) (1997) 41-74.
[6] A. Dohtani, Occurrence of chaos in higher-dimensional discrete-time systems, SIAM J. Appl. Math. 52 (6) (1992) 1707-1721.
[7] M.E. Fisher, B.S. Goh, Stability in a class of discrete time models of interacting populations, J. Math. Biol. 4 (3) (1977) 265-274.
[8] N.S. Goel, S.C. Maitra, E.W. Montroll, On the volterra and other nonlinear models of interacting populations, Rev. Modern Phys. 43 (2) (1971) 231-276.
[9] J. Hofbauer, V. Hutson, W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol. 25 (5) (1987) 553-570.
[10] Z. Lu, W. Wang, Permanence and global attractivity for Lotka-Volterra difference systems, J. Math. Biol. 39 (3) (1999) 269-282.
[11] M. Saburov, Some examples for stable and historic behavior in replicator equations, Ex. Count. 2 (2022) 100091.
[12] F. Mukhamedov, A.F. Embong, A. Rosli, Orthogonal-preserving and surjective cubic stochastic operators, Ann. Funct. Anal. 8 (4) (2017) 490-501.
[13] U. Jamilov, A. Reinfelds, A family of Volterra cubic stochastic operators, J. Convex Anal. 28 (1) (2021) 19-30.

[^0]: * Corresponding author.

 E-mail addresses: farrukh.m@uaeu.ac.ae (F. Mukhamedov), pahchinhee@iium.edu.my (C.H. Pah), azizi.rosli@live.iium.edu.my (A. Rosli).

