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A B S T R A C T

We consider a convex combination of two classes of Lotka–Volterra operators defined on 2-dimensional
simplex. Earlier, the dynamics of a particular case of the considered operators has been investigated.
However, its bijective property was not studied. In this paper, we are able to establish that such maps are
homeomorphism of the simplex.
1. Introduction

The simplest non-linear stochastic operators, the quadratic stochas-
tic operators (QSO) were introduced and studied by Bernstein in his
study of Theory of Heredity [1]. Since then, an extensive study on
QSO [2] and later cubic stochastic operators (CSO) [3,4], have been
investigated. Their applications in various fields of natural sciences
appeared in [5–10]. Mostly in QSO and CSO, a class of Lotka–Volterra
(LV) operators have been intensively explored (see also [11]). We
notice that Lotka–Volterra models have been reported to being used
as tools for applications in ecological system such as harvesting prob-
lem [8]. However, it is not our intent to study the dynamics of a
discretised Lotka–Volterra model in this paper. Instead, we investigate
one of its properties, bijectivity; which will prove the existence of its
inverse. Nevertheless, if we have the Lyapunov function of a bijective
operator, this will aid in studying the limiting behaviour of its negative
trajectory.

We point out that while surjectivity of any LV stochastic operator
was proven [12], the bijectivity of the same class of operator was only
proven for quadratic case [2]. In general, the bijectivity of LV stochastic
operators is not yet established.

In this paper, we are going to establish the bijectivity of a class of
LV stochastic operator which is a convex combination of two different
classes of LV operator defined on 2-dimensional simplex.

Assume that 𝐸 = {1, 2, 3}. In this paper we consider 2-dimensional
simplex is defined by

𝑆2 =

{

𝐱 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 ∶ 𝑥𝑖 ≥ 0,∀𝑖 ∈ 𝐸,
∑

𝑖∈𝐸
𝑥𝑖 = 1

}

. (1)

By {𝐞1, 𝐞2, 𝐞3} we denote the standard basis in R3. Given 𝛼 ⊂ 𝐸 the set
𝛤𝛼 = 𝑐𝑜𝑛𝑣{𝐞𝑘}, 𝑘 ∈ 𝛼 represent a face of 𝑆2.
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A mapping  ∶ R3
+ → R3

+ is called stochastic if (𝑆2) ⊂ 𝑆2. In this
paper, we always consider stochastic operators.

The trajectory (orbit) {𝐱(𝑛)}, 𝑛 = 0, 1, 2,… of  for an initial value
𝐱(0) ∈ 𝑆2 is defined by

𝐱(𝑛+1) = 
(

𝐱(𝑛)
)

= 𝑛+1(𝐱(0)
)

, 𝑛 = 0, 1, 2,…

Denote by 𝜔
(

𝐱(0)
)

the set of limit points of the trajectory {𝐱(𝑛)}∞𝑛=0.

Definition 1. The operator  is called regular (or stable) if for any
initial point 𝐱 ∈ 𝑆2, the limit

lim
𝑛→∞

𝑛(𝐱)

exists.

Definition 2. Let  be a stochastic operator on 𝑆2 and let 𝐴 be a
maximal measurable subset of 𝑆2 such that for any 𝐱 ∈ 𝐴 the limit

lim
𝑛→∞

1
𝑛

𝑛
∑

𝑚=1
𝑚(𝐱) (2)

does not exist. If 𝜇(𝐴) > 0 with the usual Lebesgue measure 𝜇 on 𝑆2,
then  is said to be non-ergodic; if 𝜇(𝐴) = 0, then  is called ergodic by
mod 0.

Recently, in [13], the dynamics of cubic operator 𝑈𝜃 = 𝜃𝑈1 + (1 −
𝜃)𝑈2, 𝜃 ∈ [0, 1] defined on 𝑆2 has been investigated. Here

𝑈1(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥′1 = 𝑥1(1 + 𝑥1𝑥2 − 𝑥23),
𝑥′2 = 𝑥2(1 + 𝑥2𝑥3 − 𝑥21),
𝑥′3 = 𝑥3(1 + 𝑥3𝑥1 − 𝑥22),

𝑈2(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥′1 = 𝑥1(1 + 𝑥23 − 𝑥1𝑥2),
𝑥′2 = 𝑥2(1 + 𝑥21 − 𝑥2𝑥3),
𝑥′3 = 𝑥3(1 + 𝑥22 − 𝑥3𝑥1).
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It was shown that 𝜑(𝐱) = 𝑥1𝑥2𝑥3 is a Lyapunov function for 𝑈𝜃 , which
is increasing for 𝜃 < 1

2 and decreasing for 𝜃 > 1
2 . Mainly, it was shown

that 𝑈𝜃 has the property of being regular for 𝜃 < 1
2 , or non-ergodic for

𝜃 > 1
2 . The biological interpretation of above model is clear. Consider a

opulation of three species, all species will coexist if 𝜃 < 1
2 . Otherwise

if 𝜃 > 1
2 , one of the species will eventually be driven to near extinction.

However, the bijectivity of 𝑈𝜃 was not proven. In the present paper,
we are going to consider a more general operator than 𝑈𝜃 and prove
its bijectivity. As a particular case, this will also imply the bijectivity
of 𝑈𝜃 .

2. Main result

In this section, we investigate the mapping 𝑊𝜃 ∶ 𝑆2 → 𝑆2 defined
y

𝜃(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥′1 = 𝑥1[1 + (2𝜃 − 1)(𝑥𝑟1𝑥2 − 𝑥𝑟+13 )],
𝑥′2 = 𝑥2[1 + (2𝜃 − 1)(𝑥𝑟2𝑥3 − 𝑥𝑟+11 )],
𝑥′3 = 𝑥3[1 + (2𝜃 − 1)(𝑥𝑟3𝑥1 − 𝑥𝑟+12 )],

(3)

here 𝑟 > 0, and parameter 𝜃 ∈ [0, 1]. If 𝜃 = 1
2 , then 𝑉𝜃 is an identity

mapping. If 𝑟 = 1, then 𝑊𝜃 reduces to 𝑈𝜃 . Note that (3) is a convex
combination 𝑊𝜃 = 𝜃𝑊1 + (1 − 𝜃)𝑊2, where

1(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥′1 = 𝑥1(1 + 𝑥𝑟1𝑥2 − 𝑥𝑟+13 ),

𝑥′2 = 𝑥2(1 + 𝑥𝑟2𝑥3 − 𝑥𝑟+11 ),

𝑥′3 = 𝑥3(1 + 𝑥𝑟3𝑥1 − 𝑥𝑟+12 ),

𝑊2(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑥′1 = 𝑥1(1 + 𝑥𝑟+13 − 𝑥𝑟1𝑥2),

𝑥′2 = 𝑥2(1 + 𝑥𝑟+11 − 𝑥𝑟2𝑥3),

𝑥′3 = 𝑥3(1 + 𝑥𝑟+12 − 𝑥𝑟3𝑥1).

In this section, we are going to prove the bijectivity of (3). We will
show that the determinant of Jacobian of 𝑊𝜃 and 𝑊𝜃 , the restriction
f 𝑊𝜃 at each faces is greater than zero for any 𝐱 within the interior of
espective domains.

In the sequel, we always assume that 𝜃 ≠ 1
2 . Then, from (3) it follows

that

𝐽𝑊𝜃
= (2𝜃 − 1)

⎡

⎢

⎢

⎣

𝑎11 𝑥𝑟+11 −(𝑟 + 1)𝑥𝑟3𝑥1
−(𝑟 + 1)𝑥𝑟1𝑥2 𝑎22 𝑥𝑟+12

𝑥𝑟+13 −(𝑟 + 1)𝑥𝑟2𝑥3 𝑎33

⎤

⎥

⎥

⎦

, (4)

here

11 =
1

2𝜃 − 1
+ (𝑟 + 1)𝑥𝑟1𝑥2 − 𝑥𝑟+13 , (5)

𝑎22 =
1

2𝜃 − 1
+ (𝑟 + 1)𝑥𝑟2𝑥3 − 𝑥𝑟+11 ,

𝑎33 =
1

2𝜃 − 1
+ (𝑟 + 1)𝑥𝑟3𝑥1 − 𝑥𝑟+12 ,

and get its determinant

|𝐽𝑉𝜃 | = 𝜆

|

|

|

|

|

|

|

|

|

|

|

𝑎11
𝑥1

𝑥𝑟1 −(𝑟 + 1)𝑥𝑟3

−(𝑟 + 1)𝑥𝑟1
𝑎22
𝑥2

𝑥𝑟2

𝑥𝑟3 −(𝑟 + 1)𝑥𝑟2
𝑎33
𝑥3

|

|

|

|

|

|

|

|

|

|

|

, (6)

where 𝜆 = 𝑥1𝑥2𝑥3(2𝜃 − 1)3.

Lemma 1. Let (𝑥1, 𝑥2, 𝑥3) ∈ 𝑆2 with 𝑥𝑘 > 0, 𝑘 ∈ 𝐸 and 𝑟 > 0, then
(𝑟 + 1)𝑥𝑟𝑖𝑥𝑗 − 𝑥𝑟+1𝑘 ∈ (−1, 1), for any 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑖, 𝑗, 𝑘 ∈ 𝐸.

Proof. One can see that 𝑥𝑘 ≤ 1 − 𝑥𝑖 − 𝑥𝑗 , hence

(𝑟 + 1)𝑥𝑟𝑖𝑥𝑗 − 𝑥𝑟+1𝑘 > (𝑟 + 1)𝑥𝑟𝑖𝑥𝑗 − 𝑥𝑘 > 𝑥𝑖 + 𝑥𝑗 + (𝑟 + 1)𝑥𝑟𝑖𝑥𝑗 − 1 > −1.

Furthermore, one can show that (𝑟+1)𝑥𝑟𝑖𝑥𝑗−𝑥
𝑟+1
𝑘 < (𝑟+1)𝑥𝑟𝑖 (1−𝑥𝑖)−𝑥

𝑟+1
𝑘 .

Since 𝑥𝑟𝑖 (1 − 𝑥𝑖) has a maximum of
(

𝑟
𝑟+1

)𝑟 1
𝑟+1 at 𝑥𝑖 =

𝑟
𝑟+1 , we get

(𝑟 + 1)𝑥𝑟𝑖𝑥𝑗 − 𝑥𝑟+1𝑘 ≤
( 𝑟
𝑟 + 1

)𝑟
− 𝑥𝑟+1𝑘 ≤ 1 − 𝑥𝑟+1𝑘 < 1, (7)

hence (𝑟 + 1)𝑥𝑟𝑥 − 𝑥𝑟+1 ∈ (−1, 1). □
2

𝑖 𝑗 𝑘
Lemma 2. Let 𝐱 ∈ int𝑆2, then 𝑎11, 𝑎22, 𝑎33 > 0 if 𝜃 > 1
2 , and 𝑎11, 𝑎22, 𝑎33 <

0 if otherwise.

Proof. Let us consider 𝑎11, the rest can be proceeded by the same
argument. Now using (5) together with Lemma 1 one can show that

(2𝜃 − 1)[(𝑟 + 1)𝑥𝑟1𝑥2 − 𝑥𝑟+13 ] ∈ (−1, 1)

for 𝜃 ∈ [0, 1]. Hence,

𝑎11 =
1 + (2𝜃 − 1)[(𝑟 + 1)𝑥𝑟1𝑥2 − 𝑥𝑟+13 ]

(2𝜃 − 1)𝑥1
, (8)

which is positive for 𝜃 > 1
2 , and negative if 𝜃 < 1

2 . □

Now, we are ready to formulate the main result.

Theorem 1. Let 𝜃 ∈ [0, 1] ⧵
{

1
2

}

, then the mapping 𝑊𝜃 defined by (3) is
homeomorphism of 𝑆2.

roof. Let the mapping 𝑊 ∶ 𝑆1 → 𝑆1 be the restriction of 𝑊𝜃 on each
faces, 𝛤𝛼 , 𝛼 ⊂ 𝐸. Then the Jacobian under the restriction at each faces
is given by

𝐽𝑊 =
[

𝑎𝑖𝑖 𝑎𝑖𝑗
−𝜏𝑎𝑖𝑗 𝑎𝑗𝑗

]

, 𝑖, 𝑗 ∈ 𝛼, (9)

where 𝜏 > 0. By Lemma 2, we can easily show that determinant
𝐽𝑊 | > 0. Therefore, it is sufficient to show that the mapping 𝑊𝜃 is

a local homeomorphism at any interior point of 𝑆2.
Let 𝐱 ∈ int𝑆2, denoting (6) as |𝐽𝑉𝜃 | = 𝜆|𝐴|, 𝐴 = (𝑎𝑖𝑗 )3𝑖,𝑗=1; one could

how that

𝐴| = 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32
− 𝑎11𝑎23𝑎32 − 𝑎33𝑎12𝑎21 − 𝑎22𝑎13𝑎31
= 𝑎11𝑎22𝑎33 + [1 − (𝑟 + 1)3]𝑎12𝑎23𝑎31
+ (𝑟 + 1)(𝑎11𝑎223 + 𝑎33𝑎

2
12 + 𝑎22𝑎

2
31).

Suppose 𝜃 > 1
2 . Since 2𝜃 − 1 ∈ [0, 1) we have

𝑎11 =
1 − (2𝜃 − 1)𝑥𝑟+13

(2𝜃 − 1)𝑥1
+ (𝑟 + 1)𝑥𝑟1

𝑥2
𝑥1

> (𝑟 + 1)𝑥𝑟1
𝑥2
𝑥1

. (10)

Doing the same for 𝑎22 and 𝑎33 we obtain

|𝐴| > (𝑟 + 1)3𝑎12𝑎23𝑎31 + [1 − (𝑟 + 1)3]𝑎12𝑎23𝑎31
+ (𝑟 + 1)(𝑎11𝑎223 + 𝑎33𝑎

2
12 + 𝑎22𝑎

2
31)

> 0.

Now suppose 𝜃 < 1
2 . By Lemma 2 we have 𝑎11, 𝑎22, 𝑎33 < 0, and it

is clear that |𝐴| < 0. Recall that 𝜆 = 𝑥1𝑥2𝑥3(2𝜃 − 1)3, thus we have the
determinant |𝐽𝑉𝜃 | = 𝜆|𝐴| > 0 for any 𝜃 ∈ [0, 1] ⧵

{

1
2

}

. This completes
the proof. □

The proved Theorem 1 implies the next result.

Corollary 1. For any initial point 𝐱(0) ∈ 𝑆2, the negative trajectory

𝐱(0),𝑊 −1
𝜃 𝐱(0),𝑊 −2

𝜃 𝐱(0),…

exists.

Let 𝑟 = 1, then 𝑊𝜃 is reduced to 𝑈𝜃 , and recall that 𝜑(𝐱) = 𝑥1𝑥2𝑥3 is
decreasing Lyapunov function for 𝑈𝜃 , 𝜃 > 1

2 .

Theorem 2. For any initial point 𝐱(0) ∈ int𝑆2, the negative trajectory of
𝑈𝜃 exists, and it always converges to 𝐜 =

(

1
3 ,

1
3 ,

1
3

)

if 𝜃 > 1
2 .

Proof. Assume 𝐱(0) ∈ int𝑆2. Since 𝜑(𝐱) = 𝑥1𝑥2𝑥3 is a decreasing
Lyapunov function of 𝑈𝜃 , we have

(−2) (−1) (0) ′ ′′
… ≥ 𝜑(𝐱 ) ≥ 𝜑(𝐱 ) ≥ 𝜑(𝐱 ) ≥ 𝜑(𝐱 ) ≥ 𝜑(𝐱 ) ≥ ⋯ , (11)
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i.e. lim𝑡→−∞ 𝜑(𝐱(𝑡)) = max{𝑥1𝑥2𝑥3} = 1
27 , which is true only for 𝑥1 =

𝑥2 = 𝑥3 =
1
3 . Hence, the negative trajectory converges to 𝐜. □

. Conclusion

The Bijectivity of the mapping (3) guarantee the existence of its
nverse and negative trajectory regardless of its parameter 𝜃. Further-
ore, there is no correlation between regularity of (3) and its properties

f being a bijection as shown for 𝑟 = 1.
Suppose there is an ecological systems which satisfies the LV opera-

or (3), each evolutionary path taken to achieve a state will be unique,
nd its ancestral distribution could be traced.
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