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ABSTRACT Cell culture monitoring necessitates thorough attention for the continuous characterization
of cultivated cells. Machine learning has recently emerged to engage in a process, such as a microscopy
segmentation task; however, the trained data may not be comprehensive for other datasets. Most algorithms
do not encompass a wide range of data attributes and require distinct system workflows. Thus, the main
objective of the research is to propose a segmentation pipeline specifically for fibroblast cell images on
phase contrast microscopy at different magnifications and to achieve reliable predictions during deployment.
The research employs patch-based segmentation for predictions, with U-Net as the baseline architecture.
The proposed segmentation pipeline demonstrated significant performance for the UNet-based network,
achieving an IoU score above 0.7 for multiple magnifications, and provided predictions for cell confluency
value with less than 3% error. The study also found that the proposedmodel could segment the fibroblast cells
in under 10 seconds with the help of OpenVINO and Intel Compute Stick 2 on Raspberry Pi, with its optimal
precision limited to approximately 80% cell confluency which is sufficient for real-world deployment as the
cell culture is typically ready for passaging at the threshold.

INDEX TERMS Cell confluency, deep learning, fibroblast, microscopy segmentation, phase contrast.

I. INTRODUCTION
Skin is the largest organ in the human body and also serves as
a barrier against outside pollutants [1]. It is mostly composed
of the protein collagen, which is produced by fibroblast cells.
When the skin is injured, the wound-healing process stimu-
lates the production of new fibroblasts, which create collagen
to close thewound. Therefore, fibroblast cell culture is critical
for growing wound grafts and helping tissue regeneration in
surgery.

Cells are commonly divided into three categories
which are lymphoblast-like, epithelial-like, and fibroblastic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Zuo .

As previously stated, a skin cell is in the form of fibroblastic.
When compared to other categories, fibroblastic has the most
difficult shape representation, especially when imaging anal-
ysis is required. It is because fibroblasts have irregular shapes
and dimensions over their growth period, whereas others
have significant shapes and regular dimensions. This makes it
more challenging to accurately segment fibroblasts, as their
appearance may vary significantly over time. Additionally,
since cell observation is done in a closed environment, proper
lighting adjustments are needed for optimal utilization.

Cell segmentation is the process of segmenting micro-
scopic image pixels into the binary class where true and false
classes represent cell regions and unoccupied regions, respec-
tively. A well-segmented image can capture biologically
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relevant morphological information such as health and con-
tamination; however, fuzzy boundaries can cause segmen-
tation leaks in which a segmented region expands into
neighboring structures [2]. However, there are still some
occupations that use traditional techniques to segment the
cells, which results in inconsistency, especially when a
wide range of expertise, from biology specialists to interns,
is involved. It is because human eyes are prone to opti-
cal illusions [3], and ineffective and unstable at measuring
something quantitatively. U-Net, a deep learning-based seg-
mentation algorithm, has been shown to perform well on
biomedical images, such as cells, and after years, researchers
identified several limitations of U-Net architecture, which
were then improved with various enhancement mechanisms
and has shown significant performance on their own case
study [4].

Recent research on skin segmentation has largely focused
on the outer areas of the skin, such as skin pores [5], chronic
wounds [6], and lesions or cancer [7], [8], or the outer layer of
the skin, such as epidermal tissue [9] rather than the cellular
structure of the skin. Furthermore, most research on cellular
segmentation has focused on cells that have less significant
shape changes over time, such as blood cells [10], [11], cervi-
cal cells [12], [13], and nucleus [14], and has been conducted
at single magnification level. These cells tend to have circular
shapes and regular dimensions. This has limited the scope of
study to the visible features of the skin rather than the under-
lying cells and cells with more consistent and predictable
shapes, rather than cells that exhibit more complex and varied
shape changes over time. The previous studies differ in that
they introduce new models or approaches to address similar
object segmentation on various image modalities.

The study utilizes phase-contrast microscopy images of
fibroblast skin cells as the test subject and only requires
binary segmentation for its confluency, which refers to the
area that the cells cover within an image. Thus, the study
does not aim to classify the types of cells or characterize
the fibroblast cell for any health conditions or contamina-
tion. Following the scope of this study, the objectives are to
identify a proper implementation of a particular deep learning
enhancement mechanism that can innovate a better model
based on this case study and find a correlation between the
segmentation complexity and the phase contrast microscope’s
image quality with respect to magnification levels.

This paper presents a preliminary work of segmenting dif-
ferent magnification levels of fibroblast cells and providing
precise and consistent confluency value predictions, with a
focus on achieving high performance with low complexity
before deploying themodel to an edge device like a Raspberry
Pi. Despite the development of various complex models by
researchers, this study focuses only on a single, relevant
deep-learning enhancement mechanism to improve the per-
formance of a pre-existing model rather than developing an
entirely new model. We show that our approach has both
advantages and disadvantages in relation to the characteristics
of the datasets.

FIGURE 1. A workflow diagram of the proposed study.

The main contribution of this paper is to demonstrate
the improved performance and minimal complexity of the
modifiedmodel on the new application of segmenting the fea-
tures of fibroblast cell images at different magnification and
confluency levels and to provide guidance on the necessary
precautions to be taken in the segmentation pipeline for future
research in this area. The workflow of this study is shown in
Fig. 1.

II. RELATED WORK
According to the literature review, the majority of biomedical
andmedical research onmulti-scale segmentation has primar-
ily focused on enhancing the model architecture rather than
exploring its applications. Moreover, while researchers claim
to have developedmulti-scale architectures, they weremainly
tested on single-scale object images based on the record.
Below are the kinds of literature that are directly involved
with multi-scale object images.

Reference [15] rethought U-Net architecture for multi-
scale biomedical image segmentation, introducing MultiRes
UNet. Multiple sizes of lesion images are one of the datasets
tested. The researchers increased the number of 3 × 3 filters
of each convolutional block in the successive three layers.
The feature maps of each successive filter are concatenated
and added with the feature maps of a residual connection
from the input along with 1 × 1 filters. They also replaced
the original skip connection of U-Net with a sequence of
four successive 3 × 3 filters, each accompanied by a short
residual connection consisting of 1 × 1 filters. However,
the researchers opted for a lower number of filters in the
added convolutional layers compared to the original U-Net.
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As a result, theMultiResUNet model featured only 7,262,750
parameters.

Reference [16] proposed a U-Net architecture with a modi-
fied receptive field with a feature-fused module and attention
gate mechanism called FF-UNet. The feature-fused module
replaced traditional U-Net convolutions with two branches
of convolution operation of 3 × 3 kernel filter and one
with dilation size 2, where both operations are fused using
element-wise addition. The model resulted in 3.94 million
parameters which are 49% less than the classical U-Net.
The model was experimented on datasets of skin lesions,
colorectal polyps, and nuclei images. The study found that
the FF-UNet model without an attention gate performs better
on most of the open datasets.

In contrast to the previously mentioned studies, the lit-
erature discussed further utilized multi-scale images which
are merely based on different image resolutions. While it
is worth discussing these findings, it should be noted that
the multi-scale images in the study exhibited a lack of
feature variations in their internal structure. However, the
conceptual framework employed in this research holds sig-
nificant potential, even if the implementation falls short in
terms of capturing diverse features at various scales. Ref-
erence [17] proposed PMED-Net that consists of six small
encoder-decoder networks (six levels) where each network
generates coarse predictions and they are upsampled with
stride 2, concatenated with different scale input images and
used as input for next level network. Each instance of the
proposed network has only three stages with a much fewer
number of feature maps as 16, 32, and 64. Overall, the
proposed architecture comprises 1,465,974 parameters for its
six-pyramid level training.

References [18] and [19] introduced a scale-aware trans-
former that allows the system to learn local and global
representations from digital whole slide histopathological
images of skin tissue images at multiple scales in an end-
to-end fashion. Their proposed model has three main steps,
including learning patch embeddings using MobileNetv2 for
varying input scales, learning contextualized patch embed-
dings for each input scale using transformers, and learn-
ing scale-aware embeddings of concatenated multiple input
scales using transformers. In essence, the model initially
requires separate training paths for specific input scales and
subsequently combines the outputs of each path to generate a
unified scale-aware model.

Through the literature review, two concerns have emerged.
Firstly, the degree difference of feature variations of diverse
biomedical objects. Secondly, the feasibility of the developed
model for a modular deployment. Thus, it is crucial for
another research to delve into the feasibility of the multi-scale
model on different complex objects and devices.

III. RESEARCH METHODOLOGY
A. DATA ACQUISITION AND ANNOTATION
This study utilized two datasets on fibroblast cell growth,
comprising a total of 400 images with a dimension of

FIGURE 2. A collection of fibroblast cell datasets based on their shape
differences.

FIGURE 3. Dataset B with three different magnification levels.

2048 × 1536 pixels. These images were obtained using
phase-contrast microscopy from the Institute for Medical
Research (IMR) Malaysia and the Institute of Medical Sci-
ence Technology of Universiti Kuala Lumpur. In the exper-
iments, the fibroblast cells were allowed to grow and reach
maximum confluency for up to 7 days, based on the initial
number of cells placed in the petri dish. The datasets show
significant differences in terms of their features, particularly
the shape of the cells, as they grow. Specifically, cells in
dataset A have spherical shapes while cells in dataset B have
elongated shapes, as shown in Fig. 2. Additionally, dataset
A only includes images from the initial culture day, while
dataset B includes images from the following days. This
researchwill focus on dataset B, which consists of 300 images
and is the most accurate representation of cell growth from
day 1 forward. Meanwhile, dataset A is only suitable for
counting the number of cells, not for measuring their growth.

EVOSTM XL Core Imaging System was used to capture
cell images. It is commonly utilized for cell or tissue culture
using phase contrast method. Based on the zoom capability of
the microscope, Dataset B is divided into three subsets based
on the image magnifications: x4, x10, and x20, with approx-
imately 100 images in each subset. Their distinct features
can be seen in Fig. 3. Brightness, contrast, and saturation are
three manipulated variables that the microscope can adjust.
To define the experiment’s standard procedure, their values
are set to be constant for all magnification levels. Therefore,
both contrast and saturation are set to 50, which is the default
value of the microscope and brightness is set between 35 to
60 depending on the magnification levels. As a result, images
appear darker at higher magnification levels. The implemen-
tation setup is chosen because our subsequent study aims to
deploy the model to an edge device that can be easily used
by individuals with little experience. Next, images are chosen
from dataset B and split for training-validation set and test set
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to 80% and 20%, respectively. The training-validation set is
then randomly divided into 70% and 30%, respectively.

B. IMPLEMENTATION STRATEGIES ON SPECIFIC DATASET
CONDITIONS
Model performance and complexity can be influenced by the
conditions of the dataset. In this study, we consider deep
learning approaches to address these challenges. Our dataset
consists of images where the background and cell color are
quite similar, making it difficult for traditional computer
vision and unsupervised machine-learning methods to accu-
rately segment the cells. While deep learning methods are
better at segmenting a wide range of objects, they can still be
challenged by low imaging quality, high-resolution images,
and a lack of images. To address these issues, we believe that
the problems can be solved before training by applying color
correction and image patching techniques as needed.

1) COLOR CORRECTION FOR LOW IMAGING QUALITY
Common issues with biomedical images are that they have
low contrast and high noise [20]. Contrast Limited Adap-
tive Histogram Equalization (CLAHE) is chosen to correct
the image color. Compared to standard histogram equaliza-
tion, it often requires experiment-specific parameter tuning.
CLAHE is applied per tile to improve the visibility level of
objects in foggy images by stretching the histogram, limit-
ing the contrast, and performing bilinear interpolation at the
edges to match the next tiles. First, the images are converted
to LAB space, where the L channel contains luminosity or
intensity information, and the A and B channels contain color
information. The channels will be separated, and the filter
will be applied only to the L channel, with the channels being
merged back in for the original image.

2) IMAGE PATCHING FOR HIGH-RESOLUTION IMAGES
Each image has a resolution size of 2048×1536 pixels based
on data collection. For training, the images are deemed too
large to be handled by the computational power available at
the time. To avoid heavy loss of model training, the images
will be patched into a number of smaller input sizes, each of
which can still represent the object features; thus, the study
proposed that the images be patched into 256 × 256 pixel
images in which each original image yields 48 image patches.
Based on the experiment, it was found that using patch sizes
below 256 pixels could negatively impact the representative
features of the patches. This method reduces the computa-
tional power needed for training and indirectly expands the
number of images available for the training and validation
sets [21].
To avoid an imbalanced dataset, we filtered several

non-representative patches that had either too many back-
ground pixels or too many cell pixels, and an average of
688 patches of eachmagnification level were available for the
training-validation process in total. Ideally, each patch should
have an equivalent number of cell and background pixels

so that the model can learn significant feature differences.
This step is critical because, as previously stated, data for
the training-validation process is divided at random and the
training set may contain fewer complex images than the vali-
dation set for particular epochs, affecting training robustness
and performance.

C. BASELINE AND NETWORK ARCHITECTURE
U-Net CNN is used as the baseline for comparison because
it previously demonstrated satisfactory performance for
biomedical images with low training images, which is rel-
evant to our study. As mentioned earlier, some images from
the subset of 100 images were excluded from the training data
because they lacked sufficient feature information. It also has
simpler architecture, which makes it relatively less complex
to deploy [22] and allows for more refinement possibilities
to ensure compatibility with data conditions, compared to
other existing cell segmentation models, based on the liter-
ature review. Therefore, any modification of a model will
be done on the standard U-Net. However, a reduced version
of U-Net is preferred because it has fewer parameters with
1,940,817 weights and is proven to perform more or less than
standard U-Net with 26,590,833 trainable parameters. Thus,
this becomes the first step to reducing the model complexity
of trainable parameters while maintaining its performance.
In this experiment, U-Net starts with 16 filters of convolution
layer and the filters are doubled for each layer at the encoding
stage and are halved at the decoding stage.

D. COMPUTER HARDWARE AND TRAINING SETTINGS
The Anaconda Python distribution is recommended to
accommodate the program and libraries on Windows 10 due
to its ease of package movement and deployment. Each
model is implemented and trained on an NVIDIA GeForce
RTX 3060 GPU with 12 GB VRAM using the TensorFlow
GPU v2.8.0/ Keras framework. Adam optimizer is used, with
a learning rate of 1e-3. A hybrid loss of focal loss and
dice loss is used as the metrics to control and evaluate the
model performance during training and overcome the effects
of imbalanced datasets where the cells only occupy a small
region in most images [23]. All models are trained for a
maximum of 50 epochs with a batch size of 24 training
samples, with checkpoints used after each epoch to save only
the best model with the best validation loss as the stopping
criteria.

For deployment hardware, Raspberry Pi with ARMv7 Pro-
cessor rev 3 CPU is utilized alongside Intel Neural Compute
Stick (NCS2) as a vision processing unit.

E. EVALUATION CRITERIA
In this study, Intersection over Union (IoU), also known as
the Jaccard index, is currently used as the main evaluation
indicator to select the best result. F-score components, preci-
sion and recall, are also considered as the alternative metric
to identify segmentation errors, such as under-segmentation
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TABLE 1. Confusion matrix elements.

and over-segmentation, on test data predictions. The selected
metrics are derived from four elements of a confusion matrix
which are true positive, false positive, true positive, and false
negative. In this study context, the terms are described in
Table 1.

Thus, the considerable metrics are computed based on the
confusion matrix elements as (1)-(4). IoU focuses on indi-
cating the quality of localization of cell predictions. While
F-score provides the harmonic mean of precision and recall,
both focus on over-segmentation and under-segmentation
errors of cell predictions, respectively.

IoU =
TP

TP + FP + FN
=

labels ∩ predictions
labels ∪ predictions

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Fscore =
2 · Precision · Recall
Precision + Recall

(4)

IV. RESULTS AND DISCUSSION
A. MODEL DEVELOPMENT PLAN
The model development is focused on x4 and x20 magnifi-
cations because they have significant differences in terms of
feature and image settings for segmentation. This notion also
expedites the laborious annotation process. Referring to the
available dataset, this study aims to develop a segmentation
process that can adapt all magnifications of fibroblast cell
growth using a relevant deep learning enhancement mecha-
nism on U-Net architecture.

Thus, the implementation of multi-scale convolution
blocks on U-Net is chosen to extract features at multiple
scales or resolutions from microscopy images. This helps the
model capture both low-level and high-level information for
the segmentation task. The multi-scale mechanism has been
long introduced by the Inception network and several works
have applied the mechanism on U-Net [24], [25]. Based on
the review, the architecture is developed by replacing the
U-Net convolutional blocks with different concurrent kernel
sizes. Then, the feature map of convolutional paths is con-
catenated to be an output for the following layers. However,
the selection of concurrent kernel sizes seems to be varying
in different experiments. In this case study, we proposed a

TABLE 2. IoU comparisons of different kernel sizes on U-Net.

FIGURE 4. The modification of the baseline U-Net convolution block into
a multi-scale version.

different strategy from previous work to identify the best
combinations for a multi-scale model, and trials are done to
investigate their potential to what extent.

Rather than randomly combining multi-scale blocks,
Table 2 shows that the trials are carried out by replacing
the original kernel size 3 × 3 of U-Net convolutional layers
with 5 × 5, 7 × 7, and 9 × 9, and their performance is
recorded separately. The best of the allocated kernel sizes will
be selected and paired in the final model. For training, three
configurations of datasets are prepared: x4 only, x20 only,
and a combination of both datasets. Each configuration was
subjected to ten trials. Based on the table, models with kernel
sizes 3 × 3 and 5 × 5 provide significant performance with
higher IoU values and lower deviation for both datasets.

A dropout layer is placed between the first and second
convolution layers of the convolution path to improve the
generalization of the model. The output of both kernel sizes
is then concatenated to be an input for the subsequent layer.
However, the concatenation dramatically increases the depth
dimension of the input to the subsequent layers as well as
results in considerably more parameters and higher complex-
ity. In order to reduce the depth, each concatenated feature
map will be followed by a 1 × 1 convolution layer. The
multi-scale model with and without the 1 × 1 convolution
layer produces 7,063,937 and 9,238,705 trainable param-
eters, respectively. In terms of training time, the former
takes approximately 1 minute less than the latter to train for
50 epochs. As a result, this initiative prevents larger space use
and lesser time complexity. The illustration of the multi-scale
block and the final model design are shown in Fig. 4 and
Fig. 5.

B. SEGMENTATION PIPELINE PERFORMANCE
In Fig. 6, the mean training graphs of the train and validation
IoU score of (A) the standard U-Net and (B) its multi-scale
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FIGURE 5. The proposed model for different magnification levels of fibroblast cell segmentation.

TABLE 3. Model complexity comparisons.

are displayed, and the shaded region represents the deviation
of five trials. The bar graph below the training graphs shows
the overfitting scenarios of the models across the epochs as
the score differences are calculated by subtracting mean train
IoU with mean validation IoU where the increasing posi-
tive and negative values indicate overfitting and underfitting,
respectively. It can be observed that the multi-scale model is
able to significantly reduce the degree of overfitting of the
baseline U-Net, especially on x10 and x20 datasets. It can
also be concluded that the higher the magnification levels,
the harder the model is to learn and converge.

As mentioned earlier, although there are existing mod-
els, such as Mask RCNN and DeepLabV3+, that have

demonstrated superior performance in cell segmentation
tasks like U-Net, their resource-intensive nature makes them
unsuitable for training using the specified settings and for
deployment on edge devices, making them irrelevant to be in
comparisons, as they are not easily optimizable for training or
deployment. Thus, we have evaluated the performance of two
common lightweight architectures for mobile implementa-
tions, MobileNet and EfficientNet [26], in comparison to the
proposed multi-scale U-Net model for our cell segmentation.
Both models were primarily designed for image classifica-
tion tasks. Therefore, a decoder architecture, comprising of
a sequence of upsampling or transposed convolution layers,
is added to perform the segmentation tasks where the mod-
ifications are highlighted in Table 3, including the complex
aspects of the models. It is worth noting that the aspects
presented are merely the minimum requirements necessary or
initial precautions for running the models. In reality, training
deep learning models involves several overheads, such as
the amount of data and data complexity, that can signifi-
cantly impact the memory requirements and overall cost. For
deployment, the inferencing time is rather concerning com-
pared to the training time. Regardless of the model perfor-
mance, while both, the multi-scale U-Net and EfficientNet,
have competitive results in terms of parameter and feature
memory, the multi-scale U-Net has an advantage when it
comes to inferencing time. Despite the fact that the multi-
scale U-Net requires more training time than EfficientNet, its
lower inferencing time makes it better suited for deployment
purposes. On the other hand, while EfficientNet may have
lower training time, it requires more inferencing time, which
could be a hindrance.

Their performance results are presented in Table 4, which
clearly demonstrates that the proposed multi-scale U-Net
model outperformed other models in terms of IoU score.
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FIGURE 6. Graphs of the proposed model training performance on different datasets.

TABLE 4. IoU comparisons of different models.

It is observed that the performance improvement of the
multi-scale model was particularly prominent on x10 and
x20 cell images. This is likely due to the fact that the cell
images significantly exhibit varying structural dimensions
across their morphologies, which the refinement approach,
multi-scale convolution path, was able to effectively leverage.
On the other hand, cells in x4 mostly possess consistent
dimensions of individual cells, which may attribute why
the performance improvement was less pronounced for this
image set. Overall, the results clearly highlight the effective-
ness of our proposed multi-scale U-Net model in accurately
segmenting cell images, particularly with inconsistent struc-
tural dimensions.

Other metrics that are also taken into account are precision
and recall, indicating the degree of under-segmentation and
over-segmentation errors of the models. Fig. 7 shows the
visual representation of patch segmentation on the test dataset
including their precision and recall. The observations made
from the figure reveal that the models have distinct combi-
nations of IoU, precision, and recall scores, which implies

FIGURE 7. Precision and recall of patch segmentation for the models.

that each model has its own strengths and weaknesses in seg-
menting the objects of interest. The observations made from
the figure revealed that themodels have distinct combinations
of IoU, precision, and recall scores, which implies that each
model has its own strengths and weaknesses in segmenting
the objects of interest. Based on the visual, red and blue
pixels represent under-segmentation and over-segmentation
errors, respectively. Overall, the multi-scale model outper-
forms all othermodels, with an average precision of 78.71 and
an average recall of 85.16 across all datasets. Based on
the two metric scores, the multi-scale model is expected to
have more over-segmentation errors than under-segmentation
errors when segmenting the cells.
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FIGURE 8. Patch-based segmentation procedures.

FIGURE 9. Comparisons between segmentation with and without smooth
blending.

C. SEGMENTATION FOR DEPLOYMENT ANALYSIS
The original images are 2048 × 1536 pixels in size, and the
model is trained using the selected patch size during training.
The images for segmentation should have similar dimensions
as the images used during training. Thus, for predictions, it is
also appropriate to employ patch-based segmentation instead
of resizing the images for model compatibility, which the
approach can jeopardize the discriminative features of the
cells. The original images will be patched first, and cells
will be segmented by patches. After each segmented patch
is completed, the patches are unpatched to obtain the original
images with true class labels as shown in Fig. 8. Essentially,
the predictions will return the probability of each pixel. In this
experiment, pixels with values of 0.5 and above are consid-
ered a true class and vice versa.

However, when the patches are directly stitched, the seg-
mented images have edge effects that cause discontinuity
between the next tiles when they are combined, especially
when the tiles have high cell confluency or fuzzy regions
as illustrated in Fig. 9. The effects are clearly visible when
the segmentation results are plotted in binary. To address the
issue, overlapping patches were used during the prediction
phase, and then the blending method was applied to merge
the overlapping regions into an intensity mask using element-
wise addition. The image is patched into segments of 256 pix-
els in dimension, with a stride of 128 pixels between each
segment. As a result, the overlapped segmentation is more
visually pleasing compared to the direct stitching. Certainly,

FIGURE 10. Confluency segmentation of large images at different
magnification levels using the proposed models.

as the overlapping patches were employed, the number of
patches per image to be segmented also increased from
48 patches to 165 patches, making the segmentation time
approximately 3 times longer than the average segmentation
of 4 seconds per image, as shown in Table 5, to 12 seconds.

Fig. 10 displays examples of confluency segmentation at
different magnification levels, utilizing the smooth blending
segmentation approach with the multi-scale model. As pre-
viously hypothesized, the predicted confluency values tend
to be higher than the ground truth values due to the model’s
lower precision than recall. Nevertheless, the average relative
difference between the predicted and ground truth confluency
values is only ±2.94%, which can be considered negligible,
when deployed.

Table 5 compares the average segmentation or inference
time of the baseline U-Net and the multi-scale mechanism
on both a personal computer and a Raspberry Pi with a
specific processing unit. One of the significant findings is
that the OpenVINO framework is more efficient in reducing
the inference time compared to the Keras framework on both
platforms. However, using the Neural Compute Stick (NCS2)
only results in improved inference time on the Raspberry Pi as
an edge device, not on the personal computer, which already
has higher computational capabilities. Briefly, the multi-scale
model has a segmentation time that is approximately twice as
long as the baseline U-Net, but it also has a significant relative
performance, especially on x20 cell images which is above
10%, as depicted in Table 4.

D. DISCUSSION AND FUTURE WORKS
As stated earlier, this research serves as a preliminary work
aimed at integrating the segmentation model into an auto-
mated cell growth monitoring system, which could poten-
tially involve various components such as image analysis
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FIGURE 11. Large image segmentation of different confluency levels.

tools, remote monitoring, and sample handling. Therefore,
it is imperative to consider the practical implementation of
the segmentation model in real-world scenarios.

One important consideration is the adaptability of the seg-
mentation model to variations over time. In addition to the
lighting settings previously mentioned, sharpness is another
variable that cannot be digitally adjusted. One finding from
this study is that the higher the confluency in a petri dish, the
harder it is to sharpen the microscope image. It is believed
because the more cells there are in the specific area, the more
complex and cluttered the image becomes, making it more
difficult to distinguish the features of the individual cells as
the light passing through the sample may be scattered or
diffracted, resulting in a blurred or hazy image, as depicted
in Fig. 11. The scenario mostly occurs when the confluency
nears 80%, and the cells are not evenly distributed across
the petri dish. Therefore, as the confluency increases, it is
necessary to adjust the sharpness of the microscope. This
issue must be considered if fully automated cell growth
monitoring is to be developed as the confluency increases
over time. Thus, in future, it may be beneficial to collect
and train on images with cluttered or crowded cells. Another
approach could be to develop a feedback system based on
reinforcement learning to detect changes in image quality
over time so that corrective actions can be executed such as
adjusting the sharpness level or performing relevant image
processing.

The second consideration is a streamlined workflow for
the end users. At present, the segmentation model is trained
specifically on individual datasets. As a result, three mod-
els were created in this study, each representing a different
magnification level but with the same CNN architecture.
To streamline the workflow, instead of users having to man-
ually select the appropriate model, one potential approach is
to develop a cell image classification system that automati-
cally identifies the corresponding cell image and selects the
appropriate model. Another alternative is to develop a new
adaptable model for the merged dataset. Transfer learning
was utilized to test the multi-scale model on the merged
dataset, aiming to ensure all datasets were trained equally
in each batch. Unfortunately, the outcomes showed varying
model behavior, particularly between x4 and x20 images,

TABLE 5. Segmentation time comparisons of U-Net and its Multi-Scale.

where both contain cells with distinct features in terms
of dimension and inner structure, with x20 images having
larger dimensions and more intricate inner structures than x4
images.

V. CONCLUSION
A multi-scale mechanism was applied on the baseline U-Net
to adapt various magnification levels and inconsistent object
structural dimensions. The results demonstrated improved
performance in terms of IoU, precision and recall, espe-
cially on the x20 cell image set. The models were compared
to common models for mobile deployment, MobileNet and
EfficientNet, where both have been outperformed despite
the reduced version of U-Net having simpler architecture.
Generally, biomedical images have high resolution, thus,
patch-based segmentation was employed and overlapping
patches were implemented to reduce the edge effects of
neighboring patches. The segmentation pipeline successfully
met the needs of end-users by providing reliable predictions
of confluency values at varying magnification levels with less
than 3% error compared to the ground truth values.

While the segmentation pipeline was successful, the per-
formance of the pipeline was limited at higher confluency
levels, which may affect the segmentation of crowded cells
towards the end of the lag phase of cell growth. However, this
limitation seems trivial during the deployment of the auto-
mated cell growth monitoring system since the cell culture is
usually passaged when it reaches 80% confluency where the
scenario commonly appears.

Based on this study, it can be concluded that future work
should focus on higher magnification and confluency levels
for more critical analysis. In terms of deployment hardware,
the use of the OpenVINO framework and Intel Movidius
Neural Compute Stick (NCS2) definitely improved the infer-
encing time of Raspberry Pi as an edge device. Therefore,
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further research on its capabilities and limitations upon vari-
ous deep learning mechanisms will be beneficial.
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