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Abstract Sea turtles, ancient marine reptiles that have survived for over 210 million years, now face
unprecedented threats from human activities and climate change. This study employs mathematical
modeling to predict and understand sea turtle nesting pattems at Chagar Hutang Turtle Sanctuary,
Redang Island, Malaysia. We analyzed historical nesting data from 1993 to 2022 using three
continuous time models: exponential growth, logistic growth, and Gompertz growth. These models
were fitted to the data using Maple Software, followed by rigorous error analysis. The Gompertz model
emerged as the best fit, with sum of error of 20.7, significantly outperforming the logistic (28.5) and
exponential (1227.2) models. This suggests that sea turtle population growth in the area follows a
sigmoidal pattern with asymmetric growth rates. The model predicts a continued increase in new
mother sea turtles up to 2030, but with a decreasing growth rate, indicating the population may be
approaching carrying capacity. These findings provide valuable insights for conservation planning,
highlighting the need for adaptive management strategies and expanded protection efforts. Our study
underscores the efficacy of mathematical modeling in predicting sea turtle population dynamics and
informs evidence-based conservation strategies for these iconic marine species.

Keywords: Mother sea turtle, mathematical modelling, exponential, logistic, Gompertz model.

Introduction

Sea turtles are ancient marine reptiles that have survived for millions of years, playing a crucial role in
maintaining the health of marine ecosystems. However, in recent decades, their populations have been
increasingly threatened by human activities and environmental changes. Among the key nesting sites in
Malaysia, Chagar Hutang Sanctuary on Redang Island Island hosts approximately one-fifth (1/5) of the
total sea turtle nesting in Terengganu state, which records the highest nhumber of nesting turtles in
Peninsular Malaysia, is one of the most important habitats for the green turtle Chelonia mydas. This
sanctuary is a critical conservation area, as it supports a significant number of nesting turtles and has
been a focus of long-term research and protection efforts [1].
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Understanding the nesting patterns of mother sea turtles in Chagar Hutang is essential for effective
conservation planning. Nesting patterns can be influenced by environmental factors such as beach
erosion, climate change, and ocean currents, as well as human-induced threats like poaching and habitat
disturbance. While Chagar Hutang is a protected area, external factors such as rising sand temperatures,
marine pollution, and coastal development can still impact nesting success. For instance, increasing
temperatures due to climate change can lead to skewed hatchling sex ratios, ultimately affecting future
population stability. Furthermore, marine debris and ghost nets pose additional risks to nesting turtles
and hatchlings, reducing survival rates [2].

Figure 1 shows the long-term monitoring data indicate fluctuations in the number of nesting mother sea
turtles at Chagar Hutang. Between 1993 and 2022, the population has shown varying trends, with some
years experiencing a decline in nesting numbers. Factors such as natural population cycles,
environmental stressors, and predation may contribute to these fluctuations. While conservation efforts

have led to improvements in nesting numbers in recent years, there are concems that future challenges,
including climate change and habitat loss, may hinder population growth.
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Figure 1. Number of mother sea turtles recorded at Chagar Hutang Turtle Sanctuary

To address these concerns, mathematical modelling provides a valuable tool for predicting sea turtle
nesting trends and assessing population sustainability. This study employs three continuous-time
models: exponential, logistic, and Gompertz growth models in order to analyze nesting patterns in
Chagar Hutang Sanctuary. By fitting these models to historical nesting data, we aim to identify the best
approach for predicting future trends and informing conservation strategies. Our research is motivated
by [3] in which they implemented all these three models to investigate the pattern of tumor growth in
human body. The findings will contribute to the development of adaptive management plans, ensuring
the long-term survival of sea turtles in this vital habitat.

Methodology

Data Collection

This study was conducted at the Chagar Hutang Turtle Sanctuary (CHTS), Redang Island, focusing on
sea turtle nesting behaviour. Table 1 shows the historical data spanning from 1993 to 2022, documenting
the number of mother sea turtles observed on Chagar Hutang beach. The sample size was determined
based on the number of nests, with matemal age differentiation achieved by categorizing mothers into
old and new based on tagging on their left and right flippers.
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Table 1. Historical Records of Mother Sea Turtle Observations (1993-2022)

Year Actual Number of Mother Sea Turtle
1993 140
1994 63
1995 111
1996 61
1997 64
1998 55
1999 68
2000 26
2001 47
2002 36
2003 21
2004 60
2005 20
2006 38
2007 38
2009 59
2010 114
2011 97
2012 99
2013 172
2014 126
2015 130
2016 318
2017 162
2018 154
2019 314
2020 274
2021 119
2022 193

Mathematical Models

Three continuous time models were selected for this study: the exponential growth model, the logistic
growth model, and the Gompertz growth model. These models were chosen based on their prevalence
in ecological studies and their potential to capture different aspects of population growth dynamics. All

the models considered here are in forms of ordinary differential equations (ODEs) and mainly referred
to [4].

The exponential growth model, which describes a situation where the growth rate of a population is
proportional to its current size, has been used in the early stages of population growth studies. In fact,
exponential growth is usually used to study bacterial growth, due to its rapid changes with respect to
time (see for examples in [5-7]). The exponential growth model is represented by the following ordinary
differential equation (ODE),

aN

an (1)
ar =rN,

where N representing the quantity at time t, t as the time variable, and r as the growth rate. The solution
for this model is given as:

N(t) = Noe™, (2)

where N, denotes the initial population.
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The logistic growth model, characterized by its S-shaped curve, has been extensively applied in
population dynamics and epidemiology. For instance, [8] used a stochastic simulation model based on
the logistic equation to predict the long-term viability of loggerhead sea turtle populations in the
Mediterranean. Their study highlighted the model's utility in assessing the impact of conservation
measures on population trends. The logistic model is typically represented by the following ODE:

where K denotes the carrying capacity of the environment. The solution for this model is given as:
K (4)

1+ (J\% ~1)et

N(t) =

Similar to logistic model in (2), N, denotes the initial population.

The Gompertz model, known for its sigmoidal shape, has found applications in various biological
contexts. In a study [9], a variation of the Gompertz model was used to describe the growth dynamics of
green sea turtles in the Hawaiian Archipelago. Their research demonstrated the model's effectiveness
in capturing the growth patterns of sea turtles over time. The Gompertz Growth Model is a sigmoid
function often used to describe growth processes. The model is typically represented by the following
ODE,

% =rNln (%) ()

The expression In (%) modulates the growth rate, causing it to slow down as N approaches K. The
solution for this model is given as,

N(t) = Ke™¢ . (6)

In this study, we will use the solutions (2), (4) and (6) of the three models to fit with the time series data
for mother sea turtle population and later the best model will be used for prediction.

Parameterization for Growth Rate

The analysis was conducted in Rstudio using the following libraries such as readx! for data import,
deSolve for solving ordinary differential equations, tidyverse and punr for data manipulation, and
ggplot2 for visualization.

library(readxl)

library(deSolve)

library(tidyverse)
library(purrr)
library(ggplot2)

Then a parameter grid was generated to cover growth rates from 0.1 to 10.0 in increments of 0.001,
with a constant carrying capacity (K) of 100. This carrying capacity value is chosen by taking the
average of all the number of mother sea turtles in Table 1. The code for generating the grid is as follows:

r <- seq( -
K <- 100

param_grid <- expand.grid(r
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All the simulations were conducted using three different growth models, with the corresponding
equations:

GompertzMod <- (Time, State, Pars) {
with{as.list(c(5tate, Pars)), {
dN <- r * N * log(k / N)
eturn{list(c{dN})))

LogisticMod <- (Time, State, Pars) {
with{as.list(c(5tate, Pars)), {
dN <-r *N* (1 -N/K)

ro{list(c{dN)))
3}
b

ExponentialMod <- (Time, State, Pars) {
with{as.list(c(5tate, Pars)), {
dN <- r * N
eturn(list(c(dN)))

Error analysis was performed by comparing predicted populations against actual data to identify optimal
parameter values, implemented through the (calculate_errors) function. The results of the simulations
provided forecasts of the sea turtle population from 1993 to 2022, allowing for an assessment of trends
and potential conservation strategies.

Predicted_Turtle <- map(l:nrow(param_grid),
~ simulate(param_grid$r[.x],

param_grid$K[.x])) %>%

Filter( (x) nrow(x) == 36, .)

To choose the best model for prediction, the error analysis is performed to compare actual data with
predicted model data. This absolute error analysis is widely used by many researchers including by
Dahri et al. [10]. The three models will be compared in term of error percentage and the best fitted model
is chosen based on the smallest error given by the model. The formula of error is given as follows:

. _ |Actual Value — Estimated Value (7)
ror=| Actual Value ’

Results and Discussion

Simulation Results for the Three Models

This section compares three population growth models, which are exponential growth, logistic growth,
and Gompertz model to analyze the nesting patterns of new mother sea turtles. The initial value used is
based on the initial data of number of mother sea turtles in the year of 1993. in Table 1 which is 140.
The values of parameters used are: r =0.18 and K = 100. The results of our analysis revealed
significant differences in the predictive power of these models. Table 2 presents a comparison between
the actual number of new mother sea turtles observed each year and the predictions made by each of
the three models. This table provides a year-by-year breakdown, allowing for a detailed comparison of
model performance. Notably, the Gompertz model's predictions appear to track the actual data more
closely than the other models, especially in later years.
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Table 2. Simulation results for all the three models

Year Exponential Growth Logistic Growth Gompertz Growth
1993 140.0 140.0 36.8
1994 167.6 131.3 43.4
1995 200.7 124.9 49.8
1996 240.2 120.0 55.8
1997 287.6 116.2 61.5
1998 344.3 113.1 66.6
1999 412.3 110.7 71.2
2000 493.6 108.8 75.3
2001 590.9 107.3 78.9
2002 707.4 106.0 82.0
2003 847.0 105.0 84.8
2004 1014.0 104.1 87.1
2005 1214.0 103.4 89.1
2006 1453.4 102.8 90.8
2007 1740.0 102.4 92.3
2009 2083.2 102.0 93.5
2010 2494.0 101.6 94.5
2011 2985.9 101.4 95.4
2012 3574.7 101.1 96.2
2013 4279.7 100.9 96.8
2014 5123.8 100.8 97.3
2015 6134.2 100.7 97.7
2016 7344.0 100.5 98.1
2017 8792.4 100.5 98.4
2018 10526.4 100.4 98.7
2019 10526.4 100.3 98.9
2020 15087.8 100.3 99.1
2021 18063.4 100.2 99.2
2022 21625.8 100.2 99.4

Model Performance Comparison

To quantify the performance of each model, we conducted an error analysis by calculating the sum of
errors, obtained by comparing the predicted data with actual data (as shown in Table 1). The results are
presented in Table 3.

Table 3. Error Analysis for each model

Model Sum of Error
Exponential 1227.19945
Logistic 28.50142
Gompertz 20.72965
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Table 3 summarizes the total error for each model, calculated using the formula described in the
methodology. This table provides a simple, quantitative comparison of model performance. The
Gompertz model's substantially lower error (20.7) compared to the exponential (1227.2) and logistic
(28.5) models, which numerically confirms that Gompertz model's is the best-fitted model for this dataset.
These results clearly indicate that the Gompertz model significantly outperformed the other two models
in predicting new mother sea turtle nesting patterns.

Model Performance and Ecological Implications

In this section, we show the comparison between the three models with actual data graphically. All the
graphs are plotted using Microsoft Excel. Figure 2 compares the exponential growth model with actual
data on the number of mother sea turtles from 1993 to 2022. The actual data, represented by a dotted
line, shows relatively stable numbers with minor fluctuations, generally staying under 100. In contrast,
the exponential growth model, shown as a dashed-dotted line, predicts a steep and continuous increase,
especially after 2010, resulting in a very high number of mother sea turtles by 2022. This model does
not align with the actual data, suggesting an unrealistic and overly optimistic increase.

Meanwhile, Figure 3 compares the logistic growth model with actual data. The actual data, again
represented by a dotted line, shows considerable fluctuations over time, with peaks and troughs,
indicating variability in the population. The logistic growth model, shown as a dashed line, assumes a
carrying capacity K = 100 and shows a slight decline initially before stabilizing around this capacity.
However, the actual data does not align well with this model either, as the numbers exceed the carrying
capacity and show higher fluctuations.
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Figure 2. Exponential model fitted on actual data points
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Figure 3. Logistic model fitted on actual data points
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Moving on to Figure 4, the chart compares the actual number of mother sea turtles with the number
predicted by the Gompertz model from 1993 to 2022. The actual data, represented by a dotted line,
shows significant fluctuations over the years, with some periods displaying much higher numbers of
mother sea turtles, such as between 2010 and 2015 and again around 2020. This variability is marked
by several peaks and troughs. In contrast, the Gompertz model, depicted by the solid line, predicts a
smoother, more consistent trend. Initially, the model forecasts a gradual increase in the number of mother
sea turtles from 1993 to around 2005, followed by a plateau where the numbers stabilize with little to no
increase until 2022.

When comparing the two, it is evident that the actual data exhibits much more variability than the
predicted data from the Gompertz model. The model accurately captures the initial increasing trend from
1993 to about 2005 but fails to predict the subsequent fluctuations and peaks observed in the actual
data. Specifically, the model's prediction of stabilization post-2005 does not align with the actual data,
which continues to show significant year-to-year variation, and it underestimates the number of mother
sea turtles during peak years, such as around 2015 and 2020.

In comparison, both exponential and logistic models fail to accurately predict the actual population trends
of mother sea turtles. The exponential growth model assumes unlimited resources and no constraints,
leading to unrealistic predictions. The logistic growth model considers a carrying capacity, which is more
realistic, but the chosen capacity does not match the actual population dynamics. When comparing the
two models with Gompertz model, this suggests that Gomperiz gives a closer prediction even though it
does not accurately predict the large fluctuations seen in the actual data.

Comparison Betwesn Gompertz Model vs Bed Data
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Figure 4. Gompertz model fitted on actual data points

Moreover, the Gompertz model's characteristic with asymmetric growth rates aligns well with the
biological realities of sea turtle populations:

1. Initial Slow Growth Phase: This phase, evident in the early years of Figure 4, likely represents
the time required for sea turtles to reach sexual maturity, typically 20-30 years for most species.
The slow initial growth in the model may also reflect the challenges faced by young adults in
their first nesting attempts. Factors such as inexperience in nest site selection, vulnerability to
predators, and sensitivity to environmental disturbances could contribute to this slow start.

2. Rapid Growth Phase: The period of accelerated growth in the model, visible in the middle years
of Figure 4, could indicate successful conservation efforts taking effect. This might include
increased protection of nesting beaches, reduced bycatch in fisheries, or improvements in
ocean ecosystem health. It's also possible that this phase represents a period of particularly
favourable environmental conditions, such as optimal sea temperatures or abundant food
resources.

3. Decelerating Growth Phase: As the model predicts a slowing growth rate in later years, shown
in the flattening curve of Figure 4, this suggests the population may be approaching the carrying
capacity of the Chagar Hutang nesting area. This deceleration could be due to density-
dependent factors such as competition for optimal nesting sites or food resources.
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Future Predictions and Implications for Conservation

Figure 5 extends the Gompertz model's predictions to 2030. The x-axis shows the years from 1993 to
2030, with the period from 2023 to 2030 being the future prediction. The y-axis represents the number
of new mother sea turtles. The graph likely shows the actual data up to 2022 and then continues with
the model's predictions up to 2030. This figure illustrates the expected continued growth but at a
decreasing rate, as evidenced by the flattening of the curve towards 2030. This projection has important
implications for conservation efforts:

1. Adaptive Management: As the population approaches carrying capacity, management
strategies may need to shift from focusing solely on population growth to maintaining population
stability and genetic diversity.

2. Habitat Protection and Expansion: The predicted growth underscores the need not only to
protect current nesting beaches but also to identify and conserve potential new nesting sites
that could support the expanding population.

3. Climate Change Preparedness: With the model predicting population trends up to 2030, it's
crucial to consider the potential impacts of climate change. Rising sea levels and increasing
temperatures could affect the availability and quality of nesting habitats.

4. Integrated Ecosystem Management: The success of sea turtle conservation is intrinsically
linked to the health of marine ecosystems. Management plans should adopt a holistic approach,
considering factors like fisheries management, marine protected areas, and pollution control.

Sea Turtle Population Forecast (Gompertz Model)
400+
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Population Size 200+
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Figure 5. Gompertz model predictions extended to 2030

Parameterization of the Growth Rate (r)

A critical aspect of the modeling process involves exploring a wide range of growth rates (r), spanning
from 0.1 to 10.0 with increments of 0.001, while maintaining the carrying capacity (K) constant at 100.
This extensive parameter grid facilitates a thorough exploration of how varying growth rates influence
population dynamics under a fixed environmental constraint (K). The use of the (expand.grid) function
efficiently generates all possible combinations of these parameters, setting the stage for robust
simulations and ensuring a comprehensive examination of potential growth scenarios (Figure 6).

The parametric grid, which includes 9,901 combinations of growth rates and a fixed carrying capacity,
allows for a detailed simulation of the sea turtle population dynamics. This approach provides valuable
insights into how variations in the growth rate influence the predicted population over time. By examining
such a wide range of possible growth rates, the model can capture different possible growth scenarios
and predict how the population might evolve under varying conditions.
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) param_grid 9901 obs. of 2 variables
“r K
1 0.100 100
2 0.101 100
3 0.102 100
4 0.103 100
< 0.104 100
6 0.105 100
7 0.106 100
8 0.107 100
9 0.108 100
10 0.109 100
11 0.110 100
12 0.111 100
13 0.112 100
14 0.113 100
15 0.114 100

Showing 1 to 15 of 9,901 entries, 2 total columns

Figure 6. Parametric grid with 9,901 combinations of growth rate (r) values from 0.1 to 10.0, while
maintaining the carrying capacity (K) constant at 100. This grid allows for a comprehensive exploration
of the population dynamics

For each parameter combination in the grid, simulations are conducted by initializing the sea turtle
population at 140 individuals and projecting population changes from 1993 to 2022. This is achieved
using the ordinary differential equation (ODE) solver from the deSolve package, specifically the Isoda
method, which is capable of handling potential stiffness in the equations with a maximum of 5000 steps.
The use of this solver ensures the robustness of the simulations, allowing the model to accommodate a
wide range of growth scenarios. The simulation results are then organized into a tidy format, facilitating
subsequent analysis and visualization.

Simulations across all 9,901 parameter combinations (r and K) are aggregated into a unified dataset,
ensuring that only simulations spanning the full 30-year period are retained. This filtering step is crucial
to maintain consistency when comparing the predicted population data with the actual observed data
from 1993 to 2022. The alignment of predicted data with the real timeframe ensures that the analysis
remains focused and relevant to the study period.

The sea turtle population predictions were generated for each combination of growth rate and carrying
capacity. The predictions align closely with the observed data, showcasing the model’'s accuracy in
capturing population trends over the years. This demonstrates the ability to adapt to various growth
scenarios and fine-tune the parameters to optimize prediction accuracy (Figure 7). The parametric grid
thus provides a robust approach, ensuring that the model explores a wide spectrum of potential growth
trajectories and predicts population dynamics effectively.
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O Predicted_Turtle Large 1ist (9901 elements, 18.9 MB)

© Predicted_Turtle Large 1ist (2901 elements, 18.9 ME)
§ : tibble [30 x 31 (53: thl_df/thl/data.frame)
..% vear: num [1:30] 1993 1994 1995 1996 1997 ...
..% type: chr [1:30] "population” "population” "population” "population”
..§ size: num [1:30] 140 136 132 128 125 ...
§ - tibble [30 x 3] (53: th1_df/th1/data. frame)
..% vear: num [1:30] 1993 1994 1995 1996 1997 ...

..5 type: chr [1:30] “"population” "population” “population™ “population”
..% size: num [1:30] 140 136 132 128 125 ...

§ @ tibble [30 =% 3] (53: tbl_df/thl/data.frame)

..§ vear: num [1:30] 1993 1994 1995 1996 1997 ...

..% type: chr [1:30] "population” "population” "population” "population”

_.% size: num [1:30] 140 136 132 128 125 ...

§ : tibble [30 x 31 (53: thl_df/thl/data.frame)
..% Year: num [1:30] 1993 1994 1995 1996 1997 ...
_.% type: chr [1:30] "population™ "population” “"population” "population’
..§ size: num [1:30] 140 135 131 128 125 ...

% : tibble [30 x 3] (53: tbl_df/th1/data.frame)
_.% vear: num [1:30] 1993 1994 1995 1996 1997 ...
..§ type: chr [1:30] “"population” "population” “population” “population’
..% size: num [1:30] 140 135 131 128 125 ...

€ : tibble [30 x 3] (53: tbl_df/tbl/data.frame)
..§ vear: num [1:30] 1993 1994 1995 1996 1997 ...
..% type: chr [1:30] "population” "population” "population” "population’
_.% size: num [1:30] 140 135 131 128 125 ...

§ : tibble [30 = 31 (s3: thl_df/thl/data.frame)
..% Year: num [1:30] 1993 1994 1995 1996 1997 ...
..% type: chr [1:30] "population™ "population” "population”
..% size: num [1:30] 140 135 131 128 125 ...

§ : tibble [30 x 3] (53: thl_df/thl/data.frame)

_.% vear: num [1:30] 1993 1994 1995 1996 1997 ...

..§5 type: chr [1:30] "population” "population” “population” “population” ...
..§ size: num [1:30] 140 135 131 128 125 ...

§ : tibble [30 x 3] (53: thl_df/tb1/data. frame)

..§ vear: num [1:30] 1993 1994 1995 1996 1997 ...

"population”

Figure 7. Predicted sea turtle population based on the parametric grid. The figure illustrates how different
growth rates influence the predicted population, showing alignment with real-world data

A crucial part of the analysis was the error assessment between the predicted population and the actual
population data. By comparing the model output with real data, it was possible to evaluate the
performance of each parameter set, leading to the identification of parameter values that minimized
prediction error. Figure 8 illustrates the error analysis across different parameter sets, showing the
deviation between the predicted and actual population values. The error analysis highlights the model's
strong predictive power when the appropriate parameters are selected.

@ EA_Turtle Large Tist (9901 elements, 12.4 MB)
§ :List of 8
..5 sumoferror :onum 32.8
.. % RMSE © num 85.2
.. 5 MSE :onum 7258
..§ MAE :onum 67.6
.. 8 MAPE : num 109
..5 ChisguareTest: num 2729
..§ p_value :onum 0
..% Pearson tonum -0.402
§ :List of 8
..5 sumoferror :onum 32.7
.. % RMSE : num 85.2
.. 8 MSE T onum 7254
.. 8 MAE tonum B7.5
.. 8 MAPE : num 109
..% ChisSguareTest: num 2723
..% p_value : num 0
..% Pearson tonum -0.4
3 :List of 8
..5 sumoferror :onum 32.7
..§ RMSE : onum 85.1
.. 5 M5E T num 7249
.. 5 MAE ©onum B7.5
.. 5 MAPE :onum 109
..5 ChisguareTest: num 2716
..% p_value : num 0
..% Pearson :onum -0.397
3 :List of B8
..§ sumoferror : num 32.7
.. 5 RMSE © num 85.1
.. 5 M5E onum 7245

Figure 8. Error analysis of predicted sea turtle population compared to real data across varying
parameter values
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To further enhance our understanding of model performance, we conducted a summary of the error
analysis from the 9,901 simulations. Figure 9 presents a concise overview of the minimum and maximum
values for each error metric calculated during the analysis. This summary allows us to identify which
parameters yielded the best predictions by providing a clear visual representation of the range of errors

associated with different parameter combinations.

“ Metric Value

1 Maximum SUMERROR 32.73608014
2 Minimum SUMERROR 27.09278076
3 Maximum RMSE 85.19425460
4 Minimum RMSE 80.21702094
5 Maximum MSE 7258.06101748
6 Minimum MSE 6434.77044816
7 Maximum MAE 67.55231820
8 Minimum MAE 58.76671783
9 Maximum MAPE 109.286932380
10 Minimum MAPE 90.30926918
11 Maximum ChiSquareTest 2729.49813898
12 Minimum ChiSquareTest 1999.35274028
13 Maximum Chi-Sguare p-value 0.00000000
14 Minimum Chi-Square p-value 0.00000000
15 Maximum Pearson 0.07554496
16 Minimun Pearson -0.40187013

Figure 9. Summary of error analysis for the 9,901 simulations. The figure shows the minimum and
maximum values for key error metrics, aiding in the identification of the most accurate parameter sets
for predicting sea turtle populations

Through this parametric approach, it is evident that small variations in the growth rate r significantly
affect the population predictions, while the carrying capacity K remains relatively stable in the model.
This suggests that future conservation efforts should focus on understanding the factors that influence
the growth rate, as they are likely to have the greatest impact on the sea turtle population dynamics.

Conclusions

In conclusion, we have successfully compared three mathematical models for the mother sea turtles’
data for year 1993 to 2022. This study demonstrates that the Gompertz growth model showed the best
model in predicting new mother sea turtle nesting behaviour at Chagar Hutang Turtle Sanctuary. The
model has least error as compared to exponential and logistic growth models suggests that sea turtle
population growth in this area follows a pattern of initial slow growth, followed by rapid increase, and
then a gradual slowing as it approaches carrying capacity.

The parameterization process, involving a comprehensive exploration of growth rates (r) and carrying
capacities (K), was essential for optimizing the model's predictions. By systematically evaluating 9,901
parameter combinations, the study was able to identify the most effective growth scenarios for this
population. This extensive parameter grid not only enhanced the robustness of the model but also
provided crucial insights into how varying growth rates influence population dynamics.

These findings provide valuable insights for conservation planning and management of sea turtle
populations. The predicted continued growth, albeit at a decreasing rate, suggests that current
conservation efforts may be effective but may need to be adapted to accommodate a larger nesting
population in the future. However, the limitations of the model, including its inability to capture short-term
fluctuations and the still significant error rate, highlight the need for continued research and more
complex modelling approaches. Future studies should aim to incorporate additional environmental and
anthropogenic factors to improve predictive accuracy.
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By integrating this model-based approach with ongoing ecological research and conservation efforts, we
can develop more effective strategies for protecting sea turtle populations in the face of ongoing
environmental changes and human pressures. This study contributes to the growing body of research
using mathematical modelling in ecology and conservation biology, demonstrating its potential in
informing evidence-based conservation strategies for these endangered marine species.
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