Web of Science[™]

Search

\varTheta Nur Ezzati M Taib 🗸

MENU

Evaluation of the surface roughness and dimensional accuracy of low-cost 3D-printed parts made of PLA-aluminum

Results for EVALUATION OF ... > Evaluation of the surface roughness and dimensional accuracy of low-cost ...

Ву	Sukindar, NA; Yasir, ASHM; Ariffin, MKAM		
Source	HELIYON Volume: 10 Issue: 4 DOI: 10.1016/j.heliyon.2024.e25508		
Article Number	e25508		
Published	FEB 29 2024		
Early Access	FEB 2024		
Document Type	Article		
Abstract	Fused deposition modeling (FDM) is currently used in several fields, such as architecture, manufacturing, and medical applications. FDM was initially developed to produce and create prototypes, but the expense appears excessive for producing final products. Nevertheless, in this day and age, engineers have developed a low-cost 3D printer. One of the major issues with lowcost 3D printers is the low dimensional accuracy and high tolerances of the printed products. Herein, different printing parameters, i.e., layer thickness, printing speed, and raster angle, need to be investigated to enhance the surface roughness of the parts produced using FDM. Thus, the present study focuses on investigating the performance of the surface finish produced by FDM by manipulating different parameters such as layer thickness, printing speed, and raster angle. Taguchi's method, based on the L9 array for experimental design, was employed to elucidate the response variables. The sample model was developed following ISO standards, utilizing polylactic acid (PLA)-aluminum as the filament material. The analysis of variance results indicated that the layer thickness and raster angle significantly affect the surface roughness of the printed parts, with statistical P-values of 0.016 and 0.039, respectively. This enables an easy selection of the optimal printing parameters to achieve the desired surface roughness. The dimensional accuracy of		

	the fabricated part was also evaluated. Thirteen dimensions of the part features			
	were analyzed, and the results showed that the FDM machine exhibited good			
	accuracy for most of the shapes, with a deviation below 5%.			
Accession Number	WOS:001188662500001			
PubMed ID	38384568			
elSSN	2405-8440			
	- See fewer data fields			

Citation Network

In Web of Science Core Collection

- 2 Citations
- 49 Cited References

How does this document's citation performance compare to peers?

← Open comparison metrics panel

Data is from InCites Benchmarking & Analytics

This record is from:

Web of Science Core Collection

• Science Citation Index Expanded (SCI-EXPANDED)

Suggest a correction

If you would like to improve the quality of the data in this record, please Suggest a correction

f

© 2024	Data	Copyright	Manage cookie	Follow
Clarivate	Correction	Notice	preferences	Us
Training	Privacy	Cookie		4
Portal	Statement	Policy		
Product	Newsletter	Terms of		
Support		Use		