
IFAC PapersOnLine 56-2 (2023) 2067–2072

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.1106

10.1016/j.ifacol.2023.10.1106 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Patient-Ventilator Interaction using Autoencoder derived Magnitude of 
Asynchrony Breathing 

Nien Loong Loo*, Yeong Shiong Chiew*, Christopher Yew Shuen Ang*, Chee Pin Tan*,  

Mohd Basri Mat Nor** 

*School of Engineering, Monash University Malaysia, Selangor, Malaysia (e-mail: 
chiew.yeong.shiong@monash.edu) 

**Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia (e-mail: 
m.basri@iium.edu.my) 

Abstract: The occurrence of asynchronous breathing (AB) is prevalent during mechanical ventilation (MV) 
treatment. Despite studies being carried out to elucidate the impact of AB on MV patients, the asynchrony 
index (𝐴𝐴𝐴𝐴), a metric to describe the patient-ventilator interaction, may not be sufficient to quantify the 
severity of each AB fully in MV patients. This research investigates the feasibility of using a machine 
learning-derived metric, the ventilator interaction index (𝑉𝑉𝐴𝐴), to describe a patient’s interaction with a 
mechanical ventilator. VI is derived using the magnitude of a breath’s asynchrony to measure how well a 
patient is interacting with the ventilator. 1,188 hours of hourly 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 for 13 MV patients were computed 
using a convolution neural network and an autoencoder. Pearson’s correlation analysis between patients’ 
𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 versus their levels of partial pressure oxygen (PaO2) and partial pressure of carbon dioxide 
(PaCO2) was carried out. In this patient cohort, the patients’ median 𝐴𝐴𝐴𝐴 is 38.4% [Interquartile range (IQR): 
25.9-48.8], and the median 𝑉𝑉𝐴𝐴 is 86.0% [IQR: 76.5-91.7]. Results show that high AI does not necessarily 
predispose to low 𝑉𝑉𝐴𝐴. This difference suggests that every AB poses a different magnitude of asynchrony 
that may affect patient’s PaO2 and PaCO2. Quantifying hourly 𝑉𝑉𝐴𝐴 along with 𝐴𝐴𝐴𝐴 during MV could be 
beneficial in explicating the aetiology of AB. 
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1. INTRODUCTION 

Asynchronous breathing (AB) is a spontaneous event during 
mechanical ventilation (MV) treatment. AB often occurs when 
there is a mismatch between ventilatory support with the 
patient’s demand (Moorhead et al., 2013, Mellott et al., 2014). 
Different phenotypes of AB can be caused by patient-related 
factors such as excessive patient respiratory effort or 
inadequate MV settings (de Haro et al., 2019). Frequent 
occurrence of AB may predispose patients to adverse 
outcomes (Epstein, 2011, Blanch et al., 2015). However, the 
implementation of monitoring tools to automatically classify 
and quantify AB is still limited. This limitation obscures the 
elucidation of the aetiology and the impact of AB on patient 
outcomes (Georgopoulos et al., 2006, Dres et al., 2016). 
Therefore, multiple efforts using machine learning algorithms 
or models have been proposed for automated AB detection 
(Loo et al., 2018, Chatburn and Mireles-Cabodevila, 2020, 
Gutierrez, 2020, Zhang et al., 2020, Rehm et al., 2020).  

The asynchrony index (𝐴𝐴𝐴𝐴) is a metric commonly applied in a 
clinical setting to assess patient-ventilator interaction (PVI) by 
determining the frequency of AB occurrence within a 
breathing period (de Wit et al., 2009b). While the relationship 
between 𝐴𝐴𝐴𝐴 and patient outcomes has been investigated (Thille 
et al., 2006, de Wit et al., 2009b, de Wit et al., 2009a, Blanch 
et al., 2015, Rué et al., 2017), the actual impact of AB on a 
patient’s condition remains uncertain. For example, Blanch et 

al. and Martos-Benítez et al. found that severe AB occurrence 
(𝐴𝐴𝐴𝐴 > 10%) is associated with high mortality and lower 
PaO2/FiO2 ratio (Blanch et al., 2015, Martos-Benítez et al., 
2020). However, a study by Rolland et al. found that severe 
AB occurrence is not associated with adverse outcomes 
(Rolland-Debord et al., 2017). Such contradiction may suggest 
that counting 𝐴𝐴𝐴𝐴 alone may not be able to fully reflect the 
actual impact of AB. 

We hypothesise that the magnitude of patient effort induced in 
AB might play a deterministic role in affecting the patient’s 
outcome. Chiew et al. proposed the idea of measuring the 
magnitude of patient effort induced in AB by reconstructing it 
to a presumably normal breathing cycle  (Chiew et al., 2018b). 
This enables the magnitude of AB quantification by computing 
the differences between an AB versus a presumably normal 
breathing cycle (Kannangara et al., 2016, Chiew et al., 2018b, 
Arunachalam et al., 2020, Damanhuri et al., 2016, Loo et al., 
2021, Ang et al., 2022).  

In this study, we investigate the feasibility of a metric, a 
ventilator interaction index (VI) derived using a machine 
learning autoencoder with a focus placed on inspiratory 
airflow and triggering-based asynchrony. VI describes a 
patient’s ‘receptivity’ to ventilatory support by measuring the 
asynchrony ‘element’ in each AB. The VI aims to quantify how 
well a patient interacts with the ventilator with consideration 
of the severity of AB during MV treatment. A study comparing 
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index (𝐴𝐴𝐴𝐴), a metric to describe the patient-ventilator interaction, may not be sufficient to quantify the 
severity of each AB fully in MV patients. This research investigates the feasibility of using a machine 
learning-derived metric, the ventilator interaction index (𝑉𝑉𝐴𝐴), to describe a patient’s interaction with a 
mechanical ventilator. VI is derived using the magnitude of a breath’s asynchrony to measure how well a 
patient is interacting with the ventilator. 1,188 hours of hourly 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 for 13 MV patients were computed 
using a convolution neural network and an autoencoder. Pearson’s correlation analysis between patients’ 
𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 versus their levels of partial pressure oxygen (PaO2) and partial pressure of carbon dioxide 
(PaCO2) was carried out. In this patient cohort, the patients’ median 𝐴𝐴𝐴𝐴 is 38.4% [Interquartile range (IQR): 
25.9-48.8], and the median 𝑉𝑉𝐴𝐴 is 86.0% [IQR: 76.5-91.7]. Results show that high AI does not necessarily 
predispose to low 𝑉𝑉𝐴𝐴. This difference suggests that every AB poses a different magnitude of asynchrony 
that may affect patient’s PaO2 and PaCO2. Quantifying hourly 𝑉𝑉𝐴𝐴 along with 𝐴𝐴𝐴𝐴 during MV could be 
beneficial in explicating the aetiology of AB. 
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1. INTRODUCTION 

Asynchronous breathing (AB) is a spontaneous event during 
mechanical ventilation (MV) treatment. AB often occurs when 
there is a mismatch between ventilatory support with the 
patient’s demand (Moorhead et al., 2013, Mellott et al., 2014). 
Different phenotypes of AB can be caused by patient-related 
factors such as excessive patient respiratory effort or 
inadequate MV settings (de Haro et al., 2019). Frequent 
occurrence of AB may predispose patients to adverse 
outcomes (Epstein, 2011, Blanch et al., 2015). However, the 
implementation of monitoring tools to automatically classify 
and quantify AB is still limited. This limitation obscures the 
elucidation of the aetiology and the impact of AB on patient 
outcomes (Georgopoulos et al., 2006, Dres et al., 2016). 
Therefore, multiple efforts using machine learning algorithms 
or models have been proposed for automated AB detection 
(Loo et al., 2018, Chatburn and Mireles-Cabodevila, 2020, 
Gutierrez, 2020, Zhang et al., 2020, Rehm et al., 2020).  

The asynchrony index (𝐴𝐴𝐴𝐴) is a metric commonly applied in a 
clinical setting to assess patient-ventilator interaction (PVI) by 
determining the frequency of AB occurrence within a 
breathing period (de Wit et al., 2009b). While the relationship 
between 𝐴𝐴𝐴𝐴 and patient outcomes has been investigated (Thille 
et al., 2006, de Wit et al., 2009b, de Wit et al., 2009a, Blanch 
et al., 2015, Rué et al., 2017), the actual impact of AB on a 
patient’s condition remains uncertain. For example, Blanch et 

al. and Martos-Benítez et al. found that severe AB occurrence 
(𝐴𝐴𝐴𝐴 > 10%) is associated with high mortality and lower 
PaO2/FiO2 ratio (Blanch et al., 2015, Martos-Benítez et al., 
2020). However, a study by Rolland et al. found that severe 
AB occurrence is not associated with adverse outcomes 
(Rolland-Debord et al., 2017). Such contradiction may suggest 
that counting 𝐴𝐴𝐴𝐴 alone may not be able to fully reflect the 
actual impact of AB. 

We hypothesise that the magnitude of patient effort induced in 
AB might play a deterministic role in affecting the patient’s 
outcome. Chiew et al. proposed the idea of measuring the 
magnitude of patient effort induced in AB by reconstructing it 
to a presumably normal breathing cycle  (Chiew et al., 2018b). 
This enables the magnitude of AB quantification by computing 
the differences between an AB versus a presumably normal 
breathing cycle (Kannangara et al., 2016, Chiew et al., 2018b, 
Arunachalam et al., 2020, Damanhuri et al., 2016, Loo et al., 
2021, Ang et al., 2022).  

In this study, we investigate the feasibility of a metric, a 
ventilator interaction index (VI) derived using a machine 
learning autoencoder with a focus placed on inspiratory 
airflow and triggering-based asynchrony. VI describes a 
patient’s ‘receptivity’ to ventilatory support by measuring the 
asynchrony ‘element’ in each AB. The VI aims to quantify how 
well a patient interacts with the ventilator with consideration 
of the severity of AB during MV treatment. A study comparing 
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Asynchronous breathing (AB) is a spontaneous event during 
mechanical ventilation (MV) treatment. AB often occurs when 
there is a mismatch between ventilatory support with the 
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factors such as excessive patient respiratory effort or 
inadequate MV settings (de Haro et al., 2019). Frequent 
occurrence of AB may predispose patients to adverse 
outcomes (Epstein, 2011, Blanch et al., 2015). However, the 
implementation of monitoring tools to automatically classify 
and quantify AB is still limited. This limitation obscures the 
elucidation of the aetiology and the impact of AB on patient 
outcomes (Georgopoulos et al., 2006, Dres et al., 2016). 
Therefore, multiple efforts using machine learning algorithms 
or models have been proposed for automated AB detection 
(Loo et al., 2018, Chatburn and Mireles-Cabodevila, 2020, 
Gutierrez, 2020, Zhang et al., 2020, Rehm et al., 2020).  

The asynchrony index (𝐴𝐴𝐴𝐴) is a metric commonly applied in a 
clinical setting to assess patient-ventilator interaction (PVI) by 
determining the frequency of AB occurrence within a 
breathing period (de Wit et al., 2009b). While the relationship 
between 𝐴𝐴𝐴𝐴 and patient outcomes has been investigated (Thille 
et al., 2006, de Wit et al., 2009b, de Wit et al., 2009a, Blanch 
et al., 2015, Rué et al., 2017), the actual impact of AB on a 
patient’s condition remains uncertain. For example, Blanch et 

al. and Martos-Benítez et al. found that severe AB occurrence 
(𝐴𝐴𝐴𝐴 > 10%) is associated with high mortality and lower 
PaO2/FiO2 ratio (Blanch et al., 2015, Martos-Benítez et al., 
2020). However, a study by Rolland et al. found that severe 
AB occurrence is not associated with adverse outcomes 
(Rolland-Debord et al., 2017). Such contradiction may suggest 
that counting 𝐴𝐴𝐴𝐴 alone may not be able to fully reflect the 
actual impact of AB. 

We hypothesise that the magnitude of patient effort induced in 
AB might play a deterministic role in affecting the patient’s 
outcome. Chiew et al. proposed the idea of measuring the 
magnitude of patient effort induced in AB by reconstructing it 
to a presumably normal breathing cycle  (Chiew et al., 2018b). 
This enables the magnitude of AB quantification by computing 
the differences between an AB versus a presumably normal 
breathing cycle (Kannangara et al., 2016, Chiew et al., 2018b, 
Arunachalam et al., 2020, Damanhuri et al., 2016, Loo et al., 
2021, Ang et al., 2022).  

In this study, we investigate the feasibility of a metric, a 
ventilator interaction index (VI) derived using a machine 
learning autoencoder with a focus placed on inspiratory 
airflow and triggering-based asynchrony. VI describes a 
patient’s ‘receptivity’ to ventilatory support by measuring the 
asynchrony ‘element’ in each AB. The VI aims to quantify how 
well a patient interacts with the ventilator with consideration 
of the severity of AB during MV treatment. A study comparing 
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the relationship between the 𝐴𝐴𝐼𝐼 and VI metrics with the 
patient’s arterial partial pressure oxygen (PaO2) and carbon 
dioxide (PaCO2) level is also carried out. 

2. METHODS 

2.1 Patients 

13 mechanically ventilated respiratory failure patients from an 
observational trial were included in this study (Chiew et al., 
2018a). The patients were ventilated using Puritan Bennet 980 
ventilators, with synchronous intermittent mandatory 
ventilation (SIMV) volume-controlled (VC) mode. The 
ventilator waveform data were collected using the CURE data 
acquisition system (Szlavecz et al., 2014, Davidson et al., 
2014). The patient's information, such as sex, age, APACHE 
II score, SOFA score and arterial blood gases (PaO2 and 
PaCO2) were collected. Informed consent was obtained from 
family members of patients. The study was approved by the 
International Islamic University Malaysia, Research Ethics 
Committee (IREC) with the approval number IREC666.  

2.2 Asynchronous and Ventilator-Interaction Index (VI) 

This work analyses inspiratory airflow asynchrony which is 
characterised by strong patient inspiratory effort due to 
insufficient inspiratory airflow provided by the ventilator and 
also triggering-based AB (de Haro et al., 2019, Loo et al., 
2021). Triggering-based AB are classified into: early, reverse, 
and late triggering, all described by negative inflections on the 
airway pressure waveform due to patient inspiratory effort.  
The asynchrony index (𝐴𝐴𝐼𝐼) is computed using a deep learning 
(DL) algorithm (convolutional neural network) (Loo et al., 
2018). The patient’s hourly 𝐴𝐴𝐼𝐼 is computed using (1): 

𝐴𝐴𝐼𝐼 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑜𝑜𝑁𝑁𝑁𝑁
𝑇𝑇𝑜𝑜𝑇𝑇𝑎𝑎𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑁𝑁 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑜𝑜𝑁𝑁𝑁𝑁 × 100%   (1) 

The AI effectively describes the prevalence of asynchronous 
events as a percentage of the total breaths in an hour. The 
magnitude of an AB is obtained using a convolutional 
autoencoder (CAE) proposed by Loo et al. (Loo et al., 2021). 
The method of computing the magnitude of asynchrony, Masyn 
is shown in Fig. 1. The calculation is shown in (2) (Chiew et 
al., 2018b): 

𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖 = |𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|
𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅

× 100%  (2) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁𝑐𝑐  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑖𝑖 are the area under the curve of the 
reconstructed and original AB airway pressure wavform 
respectively. The area difference between 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁𝑐𝑐  and 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑖𝑖as shown in Fig. 1a (shaded black area) defined as 
Masyn. A larger shaded area or higher 𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖 indicates more 
‘severe’ asynchrony.  

The proposed ventilator-interaction index (𝑉𝑉𝐼𝐼) is a metric 
aimed at measuring how well a patient interacts with the 
ventilator with consideration of AB ‘severity’ during MV. A 
higher 𝑉𝑉𝐼𝐼 indicates better PVI and less asynchrony. From (2), 
the hourly 𝑉𝑉𝐼𝐼 can be calculated using (3) as the average 
percentage of how well a patient interacts with the ventilator. 

𝑉𝑉𝐼𝐼 =  ∑(100%−𝑀𝑀𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴)
𝑇𝑇𝑜𝑜𝑇𝑇𝑎𝑎𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑁𝑁 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 𝐻𝐻𝑜𝑜𝑁𝑁𝑁𝑁  (3) 

The calculation of Masyn and subsequently VI requires for 
AUCRec to be determined. However, given an asynchronous 
patient breath, it would not be possible to know the true 
“asynchrony-free” breath. Thus, DL models trained with 
sufficient data can reconstruct these “asynchrony-free” breaths 
for the calculation of Masyn in an automated process.  

Pearson’s correlation test was carried out between AI and VI to 
determine the relationship between these two metrics. As AB 
can disrupt the normal breathing process and lead to 
haemodynamic disturbances, therefore it is possible that large 
asynchrony magnitudes and prevalence (described by Masyn 
and VI respectively) may affect the balance of arterial blood 
gases. Therefore, Pearson’s correlation test was also 
performed between 𝐴𝐴𝐼𝐼, 𝑉𝑉𝐼𝐼 with PaO2 and PaCO2 to determine 
if either 𝐴𝐴𝐼𝐼 or 𝑉𝑉𝐼𝐼 can directly reflect the patient’s condition 
during MV. All statistical analyses in this study were 
performed using MATLAB 2017b (Natick, MA).  

3. RESULTS 

Fig. 1 depicts an example of computing Masyn. Fig. 2 (a)-(c) 
shows 5 consecutive breathing cycles experienced in a patient 
sample. The shaded black region indicates the magnitude of 
the breathing cycle encapsulated by the reconstructed airway 
profile. Fig. 2 (a)-(c) shows that different AB may impose 
dissimilar magnitudes of AB. Fig. 2 (d)-(f) shows three patient 
samples (Patient P1, P10 and P13) experiencing different AB 
magnitudes.  

 

Fig 1. An example of how to compute the Masyn for a breath. 
The area under the curve between the reconstructed AB-free 
and AB (shaded black) waveform is the magnitude of AB. 

Table 1 summarises the patient’s demographics, and Table 2 
shows the patient’s 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼. 11 of 13 patients were 
mechanically ventilated due to pneumonia. The MV patients’ 
median [interquartile range (IQR)] 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼 are 38.4% [25.9–
48.8] and 86.0% [76.5–91.7] respectively. The range of 𝐴𝐴𝐼𝐼 is 
wider compared to the 𝑉𝑉𝐼𝐼 range. Fig. 3 shows a scatter plot of 
𝑉𝑉𝐼𝐼 versus 𝐴𝐴𝐼𝐼 for this patient cohort. A Pearson’s coefficient of 
correlation 𝑅𝑅 = -0.34 was found between 𝑉𝑉𝐼𝐼 and 𝐴𝐴𝐼𝐼, indicating 
a weak negative relationship between these two metrics. The 
result is expected as 𝑉𝑉𝐼𝐼 is opposed to 𝐴𝐴𝐼𝐼, as a measure of how 
well a patient interacts with the ventilator. Table 3 shows the 
correlation coefficient, 𝑅𝑅 of 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼 when tested against 
PaO2 and PaCO2. A positive correlation (R>0) between 𝑉𝑉𝐼𝐼 and 
PaO2 together with a negative correlation (R<0) PaCO2 may 
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suggest a good PVI which leads to improved patient 
oxygenation and carbon dioxide expulsion.  

As shown in Table 3, a total of 6 patients (Patients P4-7, P11 
and P12) exhibited this aforementioned trend, whereas only

 
Fig 2. (a)-(c) shows 5 consecutive breathing cycles, where (a), (b) and (c) are the airway pressure, flow and volume waveforms 
respectively. AB and normal breathing cycles are shaded red and green respectively. Figures (d), (e) and (f) shows samples of 
patients’ 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 for 5 breathing cycles in three different patients (P1, P10 and P13). The 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 are values throughout the 
treatment duration. (a) Patient P1 had 𝐴𝐴𝐴𝐴 of 50% with average 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of 14.78% and 𝑉𝑉𝐴𝐴 of 85.23%. P1 achieved a median 𝐴𝐴𝐴𝐴 of 
29.4% and median 𝑉𝑉𝐴𝐴 of 76.0% throughout the treatment. (b) Patient P13 experienced 𝐴𝐴𝐴𝐴 of 50% with average 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of 46.26% 
and 𝑉𝑉𝐴𝐴 of 53.73. Although P13 attained the lowest 𝐴𝐴𝐴𝐴 among the three patients with only 1.9%, P13 also experienced the lowest 
𝑉𝑉𝐴𝐴 with 73.7% during treatment. (c) Patient P10 experienced 𝐴𝐴𝐴𝐴 of 90% with average 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of only 3.45% and 𝑉𝑉𝐴𝐴 of 96.66%. 
Overall, P10 achieved a median 𝐴𝐴𝐴𝐴 of 34.0% with 92.5% 𝑉𝑉𝐴𝐴 throughout the treatment. 

Table 1: Summary of Patients’ Demographic 
Patient No. Age Sex Clinical Diagnosis APACHE II SOFA Initial P/F Ratio MV Mode 
P1 43 F Thyroid Carcinoma 6 1 150 SIMV 
P2 54 M Pneumonia 21 6 202 SIMV 
P3 64 M HAP 22 16 238 SIMV 
P4 63 F Klebsiella Sepsis 25 10 146 SIMV 
P5 64 F Pneumonia 14 4 117 SIMV 
P6 48 M CAP 18 6 128 SIMV 
P7 53 M HAP 10 7 133 SIMV 
P8 34 F Pneumonia 15 4 155 SIMV 
P9 43 M Acute Pancreatitis 14 1 157 SIMV 
P10 61 F Right Lobar Pneumonia 14 10 92 SIMV 
P11 48 M CAP 31 11 350 SIMV 
P12 66 M HAP 16 9 119 SIMV 
P13 53 M HAP 4 3 246 SIMV 

 
Table 2: Summary of Patient 𝑨𝑨𝑨𝑨 and 𝑽𝑽𝑨𝑨 

Patient No. MV Hours No. of BC PaO2 (mmHg) PaCO2 (mmHg) 𝑨𝑨𝑨𝑨 (%) 𝑽𝑽𝑨𝑨 (%) 
P1 168 270,580 89.4 [81.2-93.6] 38.4 [32.9-41.0] 29.4 [3.6-42.9] 76.0 [70.0-81.0] 
P2 59 61,785 95.7 [81.5-153.5] 43.2 [40.4-46.1] 64.5 [25.0-93.8] 88.5 [78.1-98.7] 
P3 20 21,286 133.0 [130.8-142.8] 31.3 [30.0-34.1] 26.1 [19.3-53.3] 91.4 [83.8-94.5] 
P4 139 152,464 175.0 [141.5-186.3] 38.8 [31.0-41.6] 38.4 [24.6-49.8] 89.5 [84.6-97.1] 
P5 34 38,865 92.2 [79.7-126.0] 32.0 [31.4-34.3] 45.8 [40.8-58.4] 76.6 [63.3-85.9] 
P6 35 36,566 95.8 [87.9-109.0] 44.9 [42.3-45.4] 74.2 [58.4-87.6] 75.4 [74.6-77.4] 
P7 49 38,908 107.0 [103.0-130.8] 47.1 [45.9-48.3] 25.3 [4.5-44.4] 92.7 [87.3-99.4] 
P8 112 120,172 86.7 [73.3-95.1] 37.9 [36.7-40.7] 41.4 [5.4-60.6] 86.0 [82.5-93.4] 
P9 42 52,960 117.0 [103.0-130.8] 36.4 [34.2-37.3] 40.3 [9.0-56.5] 83.7 [71.0-87.6] 
P10 64 62,145 65.9 [61.4-79.5] 63.1 [58.6-85.7] 34.0 [6-65.9] 92.5 [78.2-97.4] 
P11 303 368,689 76.8 [66.5-110.0] 34.4 [26.2-38.8] 57.7 [45.3-68.0] 82.1 [52.7-93.0] 
P12 114 149,158 82.1 [76.2-91.0] 46.2 [46.2-49.1] 14.2 [1.0-36.8] 97.0 [94.4-98.6] 
P13 49 56,227 89.1 [80.5-132.5] 39.6 [37.7-41.2] 1.9 [0.9-3.3] 73.7 [68.2-83.6] 
   95.7 [85.6-109.5] 38.8 [35.9-45.2] 38.4 [25.9-48.8] 86.0 [76.5-91.7] 

*APACHE II – Acute Physiology and Chronic Health Evaluation II; BC – Breathing Cycle; BiPAP – Bilevel Positive Airway Pressure; CAP – Community-
Acquired Pneumonia; HAP – Hospital Acquired Pneumonia; IQR – Interquartile Range; SIMV – Synchronized Intermittent-Mandatory Ventilation; SOFA – 
Sequential Organ Failure Assessment; SPONT – Spontaneous Breathing; SVC – Superior Vena Cava 

the relationship between the 𝐴𝐴𝐼𝐼 and VI metrics with the 
patient’s arterial partial pressure oxygen (PaO2) and carbon 
dioxide (PaCO2) level is also carried out. 

2. METHODS 

2.1 Patients 

13 mechanically ventilated respiratory failure patients from an 
observational trial were included in this study (Chiew et al., 
2018a). The patients were ventilated using Puritan Bennet 980 
ventilators, with synchronous intermittent mandatory 
ventilation (SIMV) volume-controlled (VC) mode. The 
ventilator waveform data were collected using the CURE data 
acquisition system (Szlavecz et al., 2014, Davidson et al., 
2014). The patient's information, such as sex, age, APACHE 
II score, SOFA score and arterial blood gases (PaO2 and 
PaCO2) were collected. Informed consent was obtained from 
family members of patients. The study was approved by the 
International Islamic University Malaysia, Research Ethics 
Committee (IREC) with the approval number IREC666.  

2.2 Asynchronous and Ventilator-Interaction Index (VI) 

This work analyses inspiratory airflow asynchrony which is 
characterised by strong patient inspiratory effort due to 
insufficient inspiratory airflow provided by the ventilator and 
also triggering-based AB (de Haro et al., 2019, Loo et al., 
2021). Triggering-based AB are classified into: early, reverse, 
and late triggering, all described by negative inflections on the 
airway pressure waveform due to patient inspiratory effort.  
The asynchrony index (𝐴𝐴𝐼𝐼) is computed using a deep learning 
(DL) algorithm (convolutional neural network) (Loo et al., 
2018). The patient’s hourly 𝐴𝐴𝐼𝐼 is computed using (1): 

𝐴𝐴𝐼𝐼 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑜𝑜𝑁𝑁𝑁𝑁
𝑇𝑇𝑜𝑜𝑇𝑇𝑎𝑎𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑁𝑁 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑜𝑜𝑁𝑁𝑁𝑁 × 100%   (1) 

The AI effectively describes the prevalence of asynchronous 
events as a percentage of the total breaths in an hour. The 
magnitude of an AB is obtained using a convolutional 
autoencoder (CAE) proposed by Loo et al. (Loo et al., 2021). 
The method of computing the magnitude of asynchrony, Masyn 
is shown in Fig. 1. The calculation is shown in (2) (Chiew et 
al., 2018b): 

𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖 = |𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|
𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅

× 100%  (2) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁𝑐𝑐  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑖𝑖 are the area under the curve of the 
reconstructed and original AB airway pressure wavform 
respectively. The area difference between 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑁𝑁𝑐𝑐  and 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑖𝑖as shown in Fig. 1a (shaded black area) defined as 
Masyn. A larger shaded area or higher 𝑀𝑀𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖 indicates more 
‘severe’ asynchrony.  

The proposed ventilator-interaction index (𝑉𝑉𝐼𝐼) is a metric 
aimed at measuring how well a patient interacts with the 
ventilator with consideration of AB ‘severity’ during MV. A 
higher 𝑉𝑉𝐼𝐼 indicates better PVI and less asynchrony. From (2), 
the hourly 𝑉𝑉𝐼𝐼 can be calculated using (3) as the average 
percentage of how well a patient interacts with the ventilator. 

𝑉𝑉𝐼𝐼 =  ∑(100%−𝑀𝑀𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴)
𝑇𝑇𝑜𝑜𝑇𝑇𝑎𝑎𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑁𝑁 𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 𝐻𝐻𝑜𝑜𝑁𝑁𝑁𝑁  (3) 

The calculation of Masyn and subsequently VI requires for 
AUCRec to be determined. However, given an asynchronous 
patient breath, it would not be possible to know the true 
“asynchrony-free” breath. Thus, DL models trained with 
sufficient data can reconstruct these “asynchrony-free” breaths 
for the calculation of Masyn in an automated process.  

Pearson’s correlation test was carried out between AI and VI to 
determine the relationship between these two metrics. As AB 
can disrupt the normal breathing process and lead to 
haemodynamic disturbances, therefore it is possible that large 
asynchrony magnitudes and prevalence (described by Masyn 
and VI respectively) may affect the balance of arterial blood 
gases. Therefore, Pearson’s correlation test was also 
performed between 𝐴𝐴𝐼𝐼, 𝑉𝑉𝐼𝐼 with PaO2 and PaCO2 to determine 
if either 𝐴𝐴𝐼𝐼 or 𝑉𝑉𝐼𝐼 can directly reflect the patient’s condition 
during MV. All statistical analyses in this study were 
performed using MATLAB 2017b (Natick, MA).  

3. RESULTS 

Fig. 1 depicts an example of computing Masyn. Fig. 2 (a)-(c) 
shows 5 consecutive breathing cycles experienced in a patient 
sample. The shaded black region indicates the magnitude of 
the breathing cycle encapsulated by the reconstructed airway 
profile. Fig. 2 (a)-(c) shows that different AB may impose 
dissimilar magnitudes of AB. Fig. 2 (d)-(f) shows three patient 
samples (Patient P1, P10 and P13) experiencing different AB 
magnitudes.  

 

Fig 1. An example of how to compute the Masyn for a breath. 
The area under the curve between the reconstructed AB-free 
and AB (shaded black) waveform is the magnitude of AB. 

Table 1 summarises the patient’s demographics, and Table 2 
shows the patient’s 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼. 11 of 13 patients were 
mechanically ventilated due to pneumonia. The MV patients’ 
median [interquartile range (IQR)] 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼 are 38.4% [25.9–
48.8] and 86.0% [76.5–91.7] respectively. The range of 𝐴𝐴𝐼𝐼 is 
wider compared to the 𝑉𝑉𝐼𝐼 range. Fig. 3 shows a scatter plot of 
𝑉𝑉𝐼𝐼 versus 𝐴𝐴𝐼𝐼 for this patient cohort. A Pearson’s coefficient of 
correlation 𝑅𝑅 = -0.34 was found between 𝑉𝑉𝐼𝐼 and 𝐴𝐴𝐼𝐼, indicating 
a weak negative relationship between these two metrics. The 
result is expected as 𝑉𝑉𝐼𝐼 is opposed to 𝐴𝐴𝐼𝐼, as a measure of how 
well a patient interacts with the ventilator. Table 3 shows the 
correlation coefficient, 𝑅𝑅 of 𝐴𝐴𝐼𝐼 and 𝑉𝑉𝐼𝐼 when tested against 
PaO2 and PaCO2. A positive correlation (R>0) between 𝑉𝑉𝐼𝐼 and 
PaO2 together with a negative correlation (R<0) PaCO2 may 
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Fig 3. Patients’ 𝑉𝑉𝑉𝑉 versus 𝐴𝐴𝑉𝑉 scatter plot. 

As shown in Table 3, a total of 6 patients (Patients P4-7, P11 
and P12) exhibited this aforementioned trend, whereas only 
one patient (Patient P1) showed the opposite trend. The rest of 
the patients manifested a mixed coefficient of correlation in 𝑉𝑉𝑉𝑉 
versus PaO2 and 𝑉𝑉𝑉𝑉 versus PaCO2. Fig. 4 depicts the trend of 
𝑉𝑉𝑉𝑉 and 𝐴𝐴𝑉𝑉 metrics versus all 13 patients’ PaO2 and PaCO2. The 
result shows that, in general, 𝐴𝐴𝑉𝑉 indicated a negative trend. As 
𝐴𝐴𝑉𝑉 increases, the PaCO2 decreases and vice versa with 𝐴𝐴𝑉𝑉 
versus PaO2. However, 𝑉𝑉𝑉𝑉 showed a positive trend when 
assessing both PaCO2 and PaO2. 

4. DISCUSSION 

A CAE model trained with 400,000 unique AB-NB (normal 
breath) pairs is used to quantify the Masyn (Loo et al., 2021). 
The CAE model receives an AB waveform as an input (Fig. 1 
black line) and reconstructs/ predicts the AB-free pressure 
waveform (Fig. 1 red line), subsequently determining Masyn 
(Fig. 1 shaded area). 

We found that AB occurrence is prevalent among this patient 
cohort with a median 𝐴𝐴𝑉𝑉 of 38.4% [IQR: 25.9-48.8], consistent 
with literature-reported values where 𝐴𝐴𝑉𝑉 > 10% in several 
patients (Vignaux et al., 2009, Mellott et al., 2014, Rolland-
Debord et al., 2017). However, the proposed 𝑉𝑉𝑉𝑉 is also high, 
with a median of 86.0% [IQR: 76.5-91.7]. In one instance, an 
𝐴𝐴𝑉𝑉 of > 90.0% within an hour was observed, but the 𝑉𝑉𝑉𝑉 is 
equally high at 98.2%. This high 𝐴𝐴𝑉𝑉 could indicate that patient 
AB was common, but Masyn was low most of the time. In other 
words, the patient’s resistance to ventilator support is minimal, 
possibly due to the mismatch between the MV supply and 
patient demand. However, the Masyn is insufficient to deform 
the patient’s airway waveform, a marker of asynchrony 
incidence (Yoshida et al., 2018, Baedorf Kassis et al., 2021).  

A Pearson’s coefficient of correlation 𝑅𝑅 = -0.34 was observed 
between 𝑉𝑉𝑉𝑉 and 𝐴𝐴𝑉𝑉, suggesting that as 𝐴𝐴𝑉𝑉 increases, the 𝑉𝑉𝑉𝑉 
decreases. However, not all high hourly 𝐴𝐴𝑉𝑉 lead to lower 𝑉𝑉𝑉𝑉 
because 𝑉𝑉𝑉𝑉 also accounts for breath-specific Masyn. This is 
illustrated in Fig. 2(f), where patient P10 experienced frequent 
occurrence of AB, but Masyn was minimal at 3.45%; whereas 
Patient P2 experienced a less prevalent AB but exhibited an 
average 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of 46.26%. This result shows that measuring 𝐴𝐴𝑉𝑉 
alone may be insufficient to access PVI, and it is important to 
quantify the ‘severity’ of each asynchrony. 

A high 𝑉𝑉𝑉𝑉 suggests that patients are receptive to ventilatory 
support, with lesser occurrences of ‘severe’ AB, however it 
does not truly reflect the patient’s condition in several cases. 
Confounding factors such as patient condition, level of MV 
support, MV settings and sedation may influence the quality 
of MV treatment (Blackwood et al., 2006, Guo et al., 2018, 
Aragón et al., 2019). We speculate that high 𝑉𝑉𝑉𝑉 indicates good 
PVI and should predispose the patient to high PaO2 and low 
PaCO2 during treatment, but Fig. 4 shows otherwise. 
However, it is important to note that PaO2 and PaCO2 
measurements are intermittent and based on clinical decision 
or need (Table 3), and thus may not indicate real-time patient 

Table 3 Pearson’s Correlation Coefficient when testing AI 
or VI with PaO2 or PaCO2 

Patient 
No. 

No. of  
ABG 
Data 

𝑽𝑽𝑽𝑽 𝑨𝑨𝑽𝑽 
PaO2 PaCO2 PaO2 PaCO2 
𝑹𝑹-value 𝑹𝑹-value 𝑹𝑹-value 𝑹𝑹-value 

P1+ 13 -0.48 0.18 0.44 -0.17 
P2 4 -0.56 -0.05 0.64 0.24 
P3 3 0.41 0.91 -0.50 -0.85 
P4* 15 0.17 -0.57 -0.25 0.57 
P5* 4 0.84 -0.25 0.90 0.27 
P6* 4 0.65 -1.0 -0.11 -0.36 
P7* 7 0.32 -0.52 -0.49 0.32 
P8 19 0.16 0.24 0.04 0.23 
P9 7 -0.37 -0.04 0.57 0.08 
P10 10 0.45 0.56 -0.43 -0.48 
P11* 28 0.51 -0.24 0.46 -0.47 
P12* 14 0.30 -0.20 -0.47 0.06 
P13 4 -0.28 -0.82 0.87 0.96 
Median 7 0.30 -0.20 0.04 0.08 

IQR [4–14] [-0.30–
0.47] 

[-0.53–
0.20] 

[-0.44–
0.59] 

[-0.39–
0.28] 

Patients with * indicate attaining a positive 𝑉𝑉𝑉𝑉 correlation with PaO2 but a 
negative correlation with PaCO2. Patients with + indicate attaining a negative 
𝑉𝑉𝑉𝑉 correlation with PaO2 but a positive correlation with PaCO2 
 

 
 
Fig 4. Scatter plots of combined patient’s 𝐴𝐴𝑉𝑉 (red solid dot) 
and 𝑉𝑉𝑉𝑉 (blue circle) versus PaCO2 (a) and PaO2 (b). In Fig (a) 
VI shows a positive correlation whereas AI shows a negative 
correlation. In Fig (b), VI shows a greater correlation of RVI = 
0.27 (line with steeper gradient) as compared to AI.  
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responses towards AB. The sporadic measurement frequency 
of PaO2 and PaCO2 may also lead to statistically underpowered 
results. Hence, further studies are necessary to elucidate the 
prevalence of 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴 towards patients’ PaO2 and PaCO2.  

One of the limitations in this study is that 𝑉𝑉𝐴𝐴 is currently 
limited to reconstructing airway pressure asynchronies 
observed in a VC ventilation mode. The calculation of 𝑉𝑉𝐴𝐴 can 
be extended to include airway flow asynchrony during any 
form of pressure support or controlled ventilation. One 
potential method is to calculate Masyn via the difference 
between a missed tidal volume to their supposed tidal volume, 
as proposed by Kannangara et al. and Ang et al. (Kannangara 
et al., 2016, Ang et al., 2022). Besides that, the DL algorithm 
used is trained with limited and unspecified types of AB data, 
potentially affecting AB detection and AI calculation 
performance particularly when presented with cases of AB not 
within the training dataset (Loo et al., 2018). Furthermore, the 
CAE model is also limited to the reconstruction of pressure 
waveforms exhibiting flow starvation or triggering-based AB. 
Future work warrants the diversification of AB phenotypes 
within the training dataset while extending application to other 
MV modes or respiratory waveforms.  

Finally, a lack of additional clinical data such as sedation 
levels which might cause AB occurrence may affect the quality 
of this study (de Wit et al., 2009b). Further studies are required 
to relate a 𝑉𝑉𝐴𝐴 metric towards assessing the quality of PVI. For 
example, an observational trial with continuous breath-by-
breath airway pressure and flow data of MV patients (Ng et al., 
2021, Ng et al., 2022) for quantification of 𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐴𝐴, together 
with an hourly collection of arterial blood gas PaO2 and PaCO2 
can be carried out for better correlation studies. 

5.  CONCLUSION 

In this study, the automated calculation of 𝐴𝐴𝐴𝐴 using machine 
learning methods has shown the potential to provide additional 
insight into a patient’s response to MV treatment that is 
previously unavailable. In addition, the feasibility of 𝑉𝑉𝐴𝐴 for 
PVI has been carried out. 𝑉𝑉𝐴𝐴 can potentially be used alongside 
𝐴𝐴𝐴𝐴 to quantify the severity of each asynchronous breathing on 
top of the frequency of AB occurrence. It could be beneficial 
in understanding the quality of patient-ventilator interaction in 
the quest to better manage MV treatment. 
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Fig 3. Patients’ 𝑉𝑉𝑉𝑉 versus 𝐴𝐴𝑉𝑉 scatter plot. 

As shown in Table 3, a total of 6 patients (Patients P4-7, P11 
and P12) exhibited this aforementioned trend, whereas only 
one patient (Patient P1) showed the opposite trend. The rest of 
the patients manifested a mixed coefficient of correlation in 𝑉𝑉𝑉𝑉 
versus PaO2 and 𝑉𝑉𝑉𝑉 versus PaCO2. Fig. 4 depicts the trend of 
𝑉𝑉𝑉𝑉 and 𝐴𝐴𝑉𝑉 metrics versus all 13 patients’ PaO2 and PaCO2. The 
result shows that, in general, 𝐴𝐴𝑉𝑉 indicated a negative trend. As 
𝐴𝐴𝑉𝑉 increases, the PaCO2 decreases and vice versa with 𝐴𝐴𝑉𝑉 
versus PaO2. However, 𝑉𝑉𝑉𝑉 showed a positive trend when 
assessing both PaCO2 and PaO2. 

4. DISCUSSION 

A CAE model trained with 400,000 unique AB-NB (normal 
breath) pairs is used to quantify the Masyn (Loo et al., 2021). 
The CAE model receives an AB waveform as an input (Fig. 1 
black line) and reconstructs/ predicts the AB-free pressure 
waveform (Fig. 1 red line), subsequently determining Masyn 
(Fig. 1 shaded area). 

We found that AB occurrence is prevalent among this patient 
cohort with a median 𝐴𝐴𝑉𝑉 of 38.4% [IQR: 25.9-48.8], consistent 
with literature-reported values where 𝐴𝐴𝑉𝑉 > 10% in several 
patients (Vignaux et al., 2009, Mellott et al., 2014, Rolland-
Debord et al., 2017). However, the proposed 𝑉𝑉𝑉𝑉 is also high, 
with a median of 86.0% [IQR: 76.5-91.7]. In one instance, an 
𝐴𝐴𝑉𝑉 of > 90.0% within an hour was observed, but the 𝑉𝑉𝑉𝑉 is 
equally high at 98.2%. This high 𝐴𝐴𝑉𝑉 could indicate that patient 
AB was common, but Masyn was low most of the time. In other 
words, the patient’s resistance to ventilator support is minimal, 
possibly due to the mismatch between the MV supply and 
patient demand. However, the Masyn is insufficient to deform 
the patient’s airway waveform, a marker of asynchrony 
incidence (Yoshida et al., 2018, Baedorf Kassis et al., 2021).  

A Pearson’s coefficient of correlation 𝑅𝑅 = -0.34 was observed 
between 𝑉𝑉𝑉𝑉 and 𝐴𝐴𝑉𝑉, suggesting that as 𝐴𝐴𝑉𝑉 increases, the 𝑉𝑉𝑉𝑉 
decreases. However, not all high hourly 𝐴𝐴𝑉𝑉 lead to lower 𝑉𝑉𝑉𝑉 
because 𝑉𝑉𝑉𝑉 also accounts for breath-specific Masyn. This is 
illustrated in Fig. 2(f), where patient P10 experienced frequent 
occurrence of AB, but Masyn was minimal at 3.45%; whereas 
Patient P2 experienced a less prevalent AB but exhibited an 
average 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of 46.26%. This result shows that measuring 𝐴𝐴𝑉𝑉 
alone may be insufficient to access PVI, and it is important to 
quantify the ‘severity’ of each asynchrony. 

A high 𝑉𝑉𝑉𝑉 suggests that patients are receptive to ventilatory 
support, with lesser occurrences of ‘severe’ AB, however it 
does not truly reflect the patient’s condition in several cases. 
Confounding factors such as patient condition, level of MV 
support, MV settings and sedation may influence the quality 
of MV treatment (Blackwood et al., 2006, Guo et al., 2018, 
Aragón et al., 2019). We speculate that high 𝑉𝑉𝑉𝑉 indicates good 
PVI and should predispose the patient to high PaO2 and low 
PaCO2 during treatment, but Fig. 4 shows otherwise. 
However, it is important to note that PaO2 and PaCO2 
measurements are intermittent and based on clinical decision 
or need (Table 3), and thus may not indicate real-time patient 

Table 3 Pearson’s Correlation Coefficient when testing AI 
or VI with PaO2 or PaCO2 

Patient 
No. 

No. of  
ABG 
Data 

𝑽𝑽𝑽𝑽 𝑨𝑨𝑽𝑽 
PaO2 PaCO2 PaO2 PaCO2 
𝑹𝑹-value 𝑹𝑹-value 𝑹𝑹-value 𝑹𝑹-value 

P1+ 13 -0.48 0.18 0.44 -0.17 
P2 4 -0.56 -0.05 0.64 0.24 
P3 3 0.41 0.91 -0.50 -0.85 
P4* 15 0.17 -0.57 -0.25 0.57 
P5* 4 0.84 -0.25 0.90 0.27 
P6* 4 0.65 -1.0 -0.11 -0.36 
P7* 7 0.32 -0.52 -0.49 0.32 
P8 19 0.16 0.24 0.04 0.23 
P9 7 -0.37 -0.04 0.57 0.08 
P10 10 0.45 0.56 -0.43 -0.48 
P11* 28 0.51 -0.24 0.46 -0.47 
P12* 14 0.30 -0.20 -0.47 0.06 
P13 4 -0.28 -0.82 0.87 0.96 
Median 7 0.30 -0.20 0.04 0.08 

IQR [4–14] [-0.30–
0.47] 

[-0.53–
0.20] 

[-0.44–
0.59] 

[-0.39–
0.28] 

Patients with * indicate attaining a positive 𝑉𝑉𝑉𝑉 correlation with PaO2 but a 
negative correlation with PaCO2. Patients with + indicate attaining a negative 
𝑉𝑉𝑉𝑉 correlation with PaO2 but a positive correlation with PaCO2 
 

 
 
Fig 4. Scatter plots of combined patient’s 𝐴𝐴𝑉𝑉 (red solid dot) 
and 𝑉𝑉𝑉𝑉 (blue circle) versus PaCO2 (a) and PaO2 (b). In Fig (a) 
VI shows a positive correlation whereas AI shows a negative 
correlation. In Fig (b), VI shows a greater correlation of RVI = 
0.27 (line with steeper gradient) as compared to AI.  
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