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Abstract—Solar energy, a cornerstone of renewable energy, 

for optimal grid integration and management, requires precise 

forecasting. Photovoltaic (PV) forecasting must be accurate to 

ensure energy stability and maximize resource utilization. This 

study compares Multi-Layer Perceptron (MLP) and 

Convolutional Neural Network-Long Short-Term Memory 

(CNN-LSTM) models for forecasting solar power generation. 

Both models were trained with 13 features using an open-source 

dataset from 10 PV sites in Hebei Province, China, spanning 300 

days (2018-07-01 to 2019-06-13). The CNN-LSTM was 

configured with 50 epochs and particular hyperparameters. 

CNN-LSTM demonstrated superior performance, with Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and Root 

Mean Squared Error (RMSE) values of 0.088, 0.051, and 0.227 

versus MLP's 0.260, 0.156, and 0.395. The findings demonstrate 

CNN-LSTM's potential for enhancing solar power forecasting 

and facilitating the management of renewable energy sources. 

Keywords—Solar power forecasting, Multi-Layer Perceptron, 

Convolutional Neural Network, Long Short-Term Memory, 

Photovoltaic dataset, renewable energy management. 

I. INTRODUCTION 

Renewable energy, including solar, wind, hydro, and 
geothermal sources, has gained worldwide attention due to its 
sustainability and capacity to reduce greenhouse gas 
emissions. As the world grapples with the adverse effects of 
climate change and the depletion of fossil fuels, the transition 
to renewable energy has become an economic and social 
necessity and an environmental one. According to the 
International Renewable Energy Agency (IRENA), renewable 
energy capacity has consistently risen over the past decade, 
with global renewable generation capacity amounting to 2,537 
GW by the end of 2019 [1]. This expansion represents a 
collective shift toward a more sustainable energy future. 

In particular, solar energy has emerged as one of the 
leading renewable energy sources. Forecasting solar power 
generation has become integral to managing and operating 
renewable energy sources [2, 3]. Accurate forecasting is 
difficult due to the unpredictability of solar energy, which is 
affected by weather conditions and geographical location. As 
the global energy demand rises due to population growth and 
economic development, incorporating renewable energy 
sources such as solar power becomes essential [4, 5]. This 
transition depends on photovoltaic (PV) technology, which 
converts solar energy into electrical energy. 

However, the intermittent nature of solar energy 
challenges the electrical grid's stability [6]. Variability in solar 

power generation can result in fluctuations in the power 
supply, making grid management difficult. Energy storage 
and grid infrastructure developments are being investigated to 
overcome the previous problem. Despite these challenges, the 
benefits of solar energy, including its potential to reduce 
carbon emissions, decrease energy costs, and promote energy 
independence, make it a cornerstone in the global transition to 
renewable energy. 

Machine Learning (ML) and Deep Learning (DL) 
techniques have emerged as potent tools for addressing the 
difficulties of solar power forecasting. Their ability to process 
vast amounts of data and identify complex patterns has made 
them especially effective at predicting solar power outputs. 
Specifically, Multi-Layer Perceptron (MLP) and 
Convolutional Neural Network - Long Short-Term Memory 
(CNN-LSTM) models have led these developments. MLP, a 
type of artificial neural network, has proven especially 
effective at capturing the nonlinear relationships between 
input variables in solar power forecasting [2, 3]. 

Recent studies have evaluated the ability of deep learning 
techniques, particularly the Long Short Term Memory 
(LSTM) algorithm, to forecast solar power data. Such 
techniques have demonstrated promising results in predicting 
the generated power of photovoltaic power plants, providing 
reliable data for future operations that are more efficient [6]. 
PLCNet is a parallel structure that combines LSTM and 
convolutional neural networks (CNN). This hybrid model has 
demonstrated superior accuracy in forecasting short-term 
load, making it a strong candidate for solar power prediction 
tasks [7]. 

In addition, recent research has highlighted the 
significance of long-term forecasting for renewable energy 
sources. Long-term forecasts are essential for strategic 
planning and infrastructure development, whereas short-term 
forecasts aid in immediate grid management. Numerous 
models, including statistical, machine learning, and deep 
learning, have been evaluated for their accuracy in forecasting 
long-term solar power generation. Ensemble models like 
Random Forest have shown significant promise, 
outperforming other models in specific scenarios [8]. 

While the MLP and CNN-LSTM models have 
individually demonstrated their efficacy in solar power 
generation forecasting, the existing literature lacks a side-by-
side, rigorous comparison of their capabilities. This 
knowledge gap hinders the ability of stakeholders, including 
energy providers and policymakers, to determine the optimal 
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model for particular forecasting scenarios. Considering the 
potential ramifications of this deficiency on the strategic 
integration and management of solar power in the energy grid, 
there is an immediate need to address it. This paper attempts 
to fill this void by conducting a systematic and exhaustive 
evaluation of both MLP and CNN-LSTM models in the 
context of solar power generation forecasting. Using a 
rigorous research methodology that includes data collection, 
model training, and performance evaluation, the primary 
objective is to identify the most accurate and reliable model. 
The main contribution of this study is to compare and analyze 
the performance of a deep learning-based model with 
traditional techniques to find the most accurate for solar power 
forecasting. The findings of this study are intended to provide 
insights that can aid in the management and exploitation of 
solar energy resources. 

II. FORECASTING ALGORITHMS 

Due to their capacity to model complex nonlinear 
relationships, forecasting algorithms, particularly neural 
network-based models, have risen in popularity for predicting 
solar power outputs. This section delves deeper into the 
complexities of the Multi-Layer Perceptron (MLP), the 
Convolutional Neural Network (CNN), the Long Short-Term 
Memory (LSTM), and the CNN-LSTM hybrid. 

A. Multi-Layer Perceptron (MLP) 

MLP, a classical feedforward artificial neural network, is 
structured with multiple layers of nodes arranged in a directed 
graph, with each layer being fully connected to the subsequent 
one. The network begins with an input layer where data is 
introduced and prepared for subsequent processing. This layer 
is followed by one or more hidden layers that transform the 
input data using weights and biases, the number and structure 
of which can be adjusted based on the task's complexity. The 
process culminates in the output layer, which delivers the final 
prediction or classification result. Mathematically, the output 
of a neuron in an MLP can be formulated as in Eq. (1). 

 � = ��∑ ����� + 
� (1) 

where � is the output, �� represents input features, ��  denotes 
weights, 
 is the bias term, and � is the activation function, 
commonly sigmoid, tanh, or ReLU. 

B. Convolutional Neural Network (CNN) 

CNNs, which are designed to process grid-like data such 
as images, consist of convolutional layers that autonomously 
and adaptively determine spatial hierarchies from the input. 
These networks begin with a convolutional layer that employs 
a convolution operation to extract features from data. 
Subsequently, a pooling layer reduces the spatial dimensions, 
ensuring the preservation of essential data. The process 
culminates in a layer that expresses the ultimate prediction or 
classification outcome. The convolution operation is 
mathematically represented as: 

 �� ∗ ���� = � ������ − �����
��  (2) 

C. Long Short-Term Memory (LSTM 

A sophisticated variant of the Recurrent Neural Network 
(RNN) architecture, LSTM is meticulously designed to 
identify and capture the long-term dependencies inherent in 
sequential data. Integral to its design is the incorporation of 

gates that precisely control the flow of data. The Forget Gate 
identifies and determines which portions of the cell state data 
are to be discarded, as shown in Eq. (3). The Input Gate 
updates the state of the cell by incorporating new information, 
as shown in Eq. (4). Applying transformations, the Cell State 
function, as shown in Eq. (5), recalibrates the state. The 
Output Gate produces the output based on the updated cell 
state and the input data, as described in Eq. (6). 

 �� = ���� ⋅ �ℎ���, ��   + 
�! (3) 

 "� = ���� ⋅ �ℎ���, �� + 
�� (4) 

 #�$ = tanh��) ⋅ �ℎ���, �� + 
)� (5) 

 *� = ���+ ⋅ �ℎ���, �� + 
+� (6) 

D. CNN-LSTM 

The CNN-LSTM hybrid model represents a fusion of the 
distinctive strengths inherent in the Convolutional Neural 
Network (CNN) and the Long Short-Term Memory (LSTM) 
architectures. Within this combined framework, CNN layers 
are adept at processing input data to extract spatial features, 
resulting in detailed feature maps meticulously. These maps, 
rich in spatial information, are subsequently channeled into 
the LSTM layers, which specialize in capturing and modeling 
the temporal dependencies in the data. This seamless 
integration of spatial feature recognition by the CNN and the 
temporal sequence modeling prowess of the LSTM 
culminates in a model that stands out in its efficacy. Such a 
synergistic approach positions the CNN-LSTM model as a 
potent tool for intricate tasks, notably in domains like solar 
power forecasting, where spatial and temporal nuances are 
paramount. 

  

Fig. 1. CNN-LSTM Proposed Architectures 

The architecture of deep learning depicted in Figure 1 has 
been meticulously designed for the complex task of solar 
power forecasting. The model embarks on its predictive 
journey with the assistance of the PVODataset's extensive data 
repository, which contains historical solar power metrics. This 
dataset, comprised of unprocessed input features, is the 
foundation, paving the way for subsequent layers to engage in 
intricate processing. 

This journey begins with the Conv1D layer, which applies 
one-dimensional convolution operations to the data and deftly 
extracts short-term, regional patterns. The MaxPool 1D layer 
then downsamples the feature maps produced by the 
convolutional layer as these patterns emerge. Selecting the 
most prominent value from a set in the feature map reduces 
the data's dimensionality and highlights its most notable 
characteristics. This selection ensures computational 
efficiency and limits the possibility of overfitting. 

The architecture employs two LSTM layers to delve 
deeper into the temporal realm. The first architecture, LSTM1, 
processes the refined feature maps and weaves temporal 
narratives together. Its successor, LSTM2, refines these 
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narratives further and provides a more nuanced understanding 
of time-anchored dependencies. After this iterative 
exploration, the Flatten layer transforms the LSTM output 
matrix from two dimensions to a streamlined one-dimensional 
vector, preparing it for the subsequent Dense layer. This fully 
connected layer serves as the penultimate processing stage, 
leading to the final output layer, which, due to its regression-
oriented nature, produces a continuous value representative of 
the anticipated solar power generation. 

III. PVODATASET 

The PVODataset is an open-source dataset that 
investigates features before moving on to actual datasets [9, 
10]. The PVOD dataset is a comprehensive collection of solar 
power data organized in a user-friendly comma-separated 
values (CSV) format. This dataset encompasses a metadata 
file that provides essential information about ten photovoltaic 
(PV) sites, including technical specifications of PV panels and 
site locations. These details are necessary for those who wish 
to convert irradiance into PV energy. Additionally, 
station*.csv files contain detailed meteorological data and 
measurements taken on-site. The dataset's temporal resolution 
is commensurate with the PV power output, ensuring no 
challenging resolution adjustments are necessary for data 
integration. With 271,968 records, PVOD provides data with 
a temporal resolution of 15 minutes, corresponding to the local 
measurement data from the PV sites. 

The data in PVOD are derived from version 3.9.1 of the 
Advanced Research Weather Research and Forecasting 
(ARW) model. This model is initialized with forecasts from 
the European Centre for Medium-Range Weather Forecasting 
(ECMWF), widely regarded as one of the most accurate global 
NWPs in operation today. The extracted NWP variables are 
pertinent to PV power modeling and forecasting, and they 
include global horizontal irradiance, direct normal irradiance, 
and various 10-meter measurements such as temperature, 
humidity, and wind speed. Seven variables, including GHI, 
diffuse horizontal irradiance, and PV output, are provided by 
the local measurement data, which mirrors the output of the 
NWP. All PV sites in the dataset are located in Hebei 
Province, China, and span more than 300 days from 1 July 
2018 to 13 June 2019. This duration may appear short, but the 
data's resolution makes it suitable for various studies. The 
timestamp is formatted for easy comprehension, and the 
dataset is continually updated.  

IV. RESULTS AND DISCUSSION 

This section discussed the experimental setup, dataset 
preprocessing, model training, and performance evaluation. 

A. Experimental Setup 

Deep learning algorithms necessitate robust computational 
resources for efficient training, mainly when dealing with 
massive datasets. The memory-intensive nature of these 
algorithms necessitates high-performance hardware to store 
the vast quantities of training data required by the models. In 
this study, we utilized the computational prowess of NVIDIA 
GPUs, renowned for accelerating the deep learning model 
training process. We utilized the NVIDIA GeForce RTX 
4080, a cutting-edge GPU renowned for its superior 
processing capabilities and speed. 

Complementing the GPU in our system was a 13th 
Generation Intel(R) Core(TM) i9-13900K processor with a 
base clock speed of 3.00 GHz. This high-performance 
processor, coupled with a substantial 64 GB of RAM, allowed 
for seamless data processing and efficient model training 
despite using a large dataset. 

Python was our preferred programming language for 
software development due to its adaptability and abundance 
of libraries for data science and machine learning tasks. We 
utilized the Anaconda environment, a popular platform among 
researchers that provides a comprehensive suite of scientific 
computing-specific tools and packages. Several important 
libraries were utilized within this environment: Keras for 
constructing and training deep learning models, Matplotlib for 
data visualization, and Scikit-learn for various machine 
learning utilities. The hardware specifications and versions of 
these libraries are detailed in Table I. 

TABLE I.  HARDWARE AND SOFTWARE SPECIFICATIONS 

Component Description 

CPU NVidia GeForce RTX 4080 16GB 

GPU i9-13900K 3.00 GHz 

RAM 64 GB DDR5 

Python 3.10.9 

Keras 2.12.0 

Matplotlib 3.7.1 

Scikit-learn 3.71 

 

B. Dataset Preprocessing 

The dataset is initially loaded employing the specialized 
'PVODataset' class from the 'pvodataset' module. In addition 
to facilitating the loading of the dataset, this class also prints a 
message to confirm the successful retrieval of data. Once 
loaded, the 'info()' method provides an overview of the 
dataset, including metadata, the number of PV station data 
files, and the number of station records. 

This metadata includes station ID, capacity, panel size, 
and geographical coordinates. The station's original data are 
then accessed, revealing global irradiance, temperature, 
humidity, and power output parameters. In addition, a 
particular feature slice, specifically the "power," is extracted 
for a specified range of indices. Visualization techniques 
enhance this investigation. The data is plotted using the 
'matplotlib' library to illustrate the relationship between global 
and total irradiance for selected indices. 

Essential to the preprocessing is also the manipulation of 
the dataset. Specific station information is retrieved, and the 
date overlap between the two PV stations is determined. 
Notably, the dataset is split into training and test sets with a 
ratio of 80:20. This separation prepares the data for 
subsequent modeling tasks. In addition, a custom function 
calculates the area of a station based on the size and number 
of its panels. 

The code concludes by emphasizing quality control. A 
new dataset object is created with the quality control 
parameter set to true to ensure that only quality-controlled data 
is retrieved. This step is essential for preserving the validity of 
the analysis. Although not explicitly coded, the potential 
creation of a heatmap suggests the possibility of visualizing 
feature correlations, thereby enhancing the understanding of 
the dataset, as shown in Fig. 2. 
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Fig. 2. Heatmap of PVOD Features 

 

Fig. 3. Sample of predicted power output from power stations 0 and 4 

 

C. Model Training 

The MLP and CNN-LSTM models were trained using 
thirteen distinct features extracted from the PVODataset. 
These characteristics are outlined in Table II. Specifically, for 
Station ID "Station 0," the features included NWP (Numerical 
Weather Prediction) and LMD (Local Meteorological Data) 
parameters (Local Meteorological Data). The NWP source 
provided global irradiance, direct irradiance, temperature, 
relative humidity, wind speed, wind direction, and 
atmospheric pressure. The LMD source, on the other hand, 
provided total irradiance, diffuse irradiance, temperature, 
pressure, wind direction, and wind speed. In addition, the PV 
power output was considered as a training factor. 

For the training of the CNN-LSTM model, the 
hyperparameters specified in Table III were used. The model 
used the Adam optimizer, renowned for its efficiency and low 
memory requirements. It was determined that a kernel size of 
3 would determine the size of the convolutional window 
applied to the input data. The model was constructed with 64 
filters that capture spatial hierarchies and patterns in the data. 
Around 50 epochs were allotted for the training process to 
ensure the model had ample time to learn and adjust its 
weights based on the training data. In addition, a batch size of 
64 was chosen, which determines the number of training 
samples utilized in one forward and backward pass, thereby 
optimizing the training procedure. 
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TABLE II.  PVOD USED PARAMETERS 

Station ID Parameter 

Station 0 

nwp_globalirrad 
nwp_directirrad 
nwp_temperature 
nwp_humidity 
nwp_windspeed 
nwp_winddirection 
nwp_pressure 
lmd_totalirrad 
lmd_diffuseirrad 
lmd_temperature 
lmd_pressure 
lmd_winddirection 
lmd_windspeed 
PV power 

 

TABLE III.  HYPERPARAMETERS FOR CNN-LSTM TRAINING 

Hyperparameter Description 

Optimizer Adam 
Kernel size 3 
Filters 64 
Epoch 50 
Batch size 64 

 

The sklearn defines the Multi-Layer Perceptron 
(MLP).neural network module's 'MLPRegressor' class. This 
MLP has two hidden layers, the first containing 200 neurons 
and the second containing 100 neurons. The model employs 
early stopping to prevent overfitting, with the initial learning 
rate set at 0.003 for optimization purposes. The MLP is trained 
on a dataset, and its performance is then evaluated using a 
variety of metrics, such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and R square score. 

The photovoltaic power generation time series data is 
subjected to preprocessing, which includes feature 
engineering to extract temporal patterns. Multiple CNN-
LSTM models are constructed, each with different 
hyperparameters. The architecture generally begins with a 1D 
convolutional layer to identify local patterns, followed by 
max-pooling for downsampling. Subsequent LSTM layers 
capture the data's long-term dependencies. The model is 
trained using the mean squared error loss and the Adam 
optimizer. After training, predictions are made on the test set, 
and several metrics, such as Mean Absolute Error, Mean 
Squared Error, Root Mean Squared Error, and R2 score, are 
computed to evaluate the model's performance. To optimize 
the model's accuracy, various scenarios examine the impact of 
varying the number of filters, kernel size, activation functions, 
LSTM units, and training epochs. 

D. Performance Comparison 

In the study under review, both the Multi-Layer 
Perceptron (MLP) and the Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) models were 
trained and subsequently compared using the same dataset. 
This approach ensures a level playing field, eliminating any 
biases that might arise from using different datasets for each 
model. The results, as presented in Table IV, provide a clear 
indication of the comparative performance of the two models 
across three critical performance metrics: Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and Root Mean 
Squared Error (RMSE). 

Upon examining the results, it is evident that the CNN-
LSTM model significantly outperforms the MLP model 

across all three metrics. Specifically, the MAE for CNN-
LSTM is 0.088, considerably lower than the 0.260 recorded 
for MLP. This result suggests that, on average, the CNN-
LSTM model's predictions are closer to the actual values than 
the MLP's. Similarly, the MSE values further reinforce this 
observation, with CNN-LSTM achieving a value of 0.051 
compared to MLP's 0.156. MSE gives more weight to more 
significant errors, implying that the CNN-LSTM model is 
more robust in handling substantial deviations. 

TABLE IV.  PERFORMANCE COMPARISON 

Metric MLP CNN-LSTM 

MAE 0.260 0.088 
MSE 0.156 0.051 
RMSE 0.395 0.227 

 

The RMSE, which is a direct measure of the average 
magnitude of the error, further cements the superiority of the 
CNN-LSTM model. With an RMSE value of 0.227, it is 
evident that the CNN-LSTM model's errors are, on average, 
smaller in magnitude compared to the MLP's 0.395. It is a 
crucial metric, especially in applications where large 
prediction errors can have significant consequences. 

However, while the numerical results favor the CNN-
LSTM model, it's essential to delve deeper into the reasons 
behind such a disparity. One could argue that the inherent 
architecture of CNN-LSTM, which combines the spatial 
feature extraction capabilities of CNNs with the temporal 
sequence modeling of LSTMs, provides it with a distinct 
advantage, especially when dealing with time-series data or 
datasets with spatial-temporal characteristics. On the other 
hand, MLP, being a simpler feedforward neural network, 
might lack the depth and complexity required to capture 
intricate patterns in such datasets. Figure 3 showcases the 
forecasted photovoltaic (PV) power generation for Station 0 
and Station 4. 

V. CONCLUSIONS AND FUTURE WORKS 

 In this exhaustive study, the predictive abilities of two 
distinct neural network models, Multi-Layer Perceptron 
(MLP) and Convolutional Neural Network-Long Short-Term 
Memory (CNN-LSTM), were rigorously evaluated for their 
ability to predict photovoltaic (PV) power generation. Both 
models were trained on the PVODataset, which included 
thirteen salient features and parameters from Numerical 
Weather Prediction (NWP) and Local Meteorological Data 
(LMD). The CNN-LSTM model, distinguished by its unique 
architecture, utilized a kernel size of 3, 64 filters, and was 
trained for 50 iterations using the Adam optimizer. In contrast, 
the MLP model, as defined by the 'MLPRegressor' class, 
consisted of two hidden layers containing 200 and 100 
neurons, respectively, and an initial learning rate of 0.003. 
When compared to performance metrics, including Mean 
Absolute Error (MAE), Mean Squared Error (MSE), and Root 
Mean Squared Error (RMSE), the CNN-LSTM model 
exhibited superior predictive accuracy, outperforming the 
MLP model across all metrics. The CNN-LSTM model 
achieved MAE values of 0.088, MSE values of 0.051, and 
RMSE values of 0.227, whereas the MLP model recorded 
values of 0.260, 0.156, and 0.395 respectively. The results 
highlight the inherent advantage of the CNN-LSTM 
architecture, which is capable of capturing both spatial and 
temporal patterns, making it ideally suited for time-series 
datasets such as PV power generation. However, fewer 
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features input data impacted the performance of the models. 
Dataset input parameters should be subject to analysis in terms 
of quantity in the future. Future studies should focus on 
refining the CNN-LSTM architecture and investigating its 
potential applications in other domains with spatial-temporal 
data characteristics. 
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