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Abstract — In the domain of livestock management, the 

precise detection of estrus in cows is crucial for reproductive 

efficiency and enhanced livestock production. Traditional 

methods, primarily based on human observation, are labor-

intensive and can be error-prone. This study leverages 

YOLOv8, a cutting-edge computer vision technology, for cow 

estrus detection. Our evaluation reveals that YOLOv8 achieved 

a remarkable accuracy rate, outperforming conventional 

methods in speed and reliability. Specifically, the model 

demonstrated a precision of 96%, a recall of 96.1%, and a mean 

average precision (mAP) of 98.35% for the 50% intersection 

over union (IoU) threshold. By integrating YOLOv8, we 

highlight the potential for substantial improvements in 

reproductive efficiency, labor cost savings, and increased 

profitability in the cattle sector. This work emphasizes the 

transformative impact of advanced technology in agriculture 

and paves the way for future innovations in livestock 

management. 

Keywords—Livestock management, cow estrus detection, 

computer vision, deep learning, YOLOv8. 

I. INTRODUCTION 

The production of livestock, particularly cows, has 
increased significantly in recent years. As the primary source 
of milk and meat, cows significantly contribute to the global 
food supply. According to [1], the global cattle population has 
been steadily increasing, highlighting the significance of 
efficient livestock management. 

The accurate detection of estrus in cows is a crucial 
component of livestock management. Estrus, the period 
during which a female bovine is fertile, is characterized by a 
variety of behaviors and physical signs. It is crucial to 
recognize these symptoms, as the estrus phase lasts only 8 to 
30 hours. If this window is missed, the next estrus cycle will 
occur between 17 and 24 days later. This delay not only 
lengthens the calving interval but also reduces the 
reproductive efficiency of livestock, resulting in potential 
productivity and profit losses [2, 3]. 

Historically, estrus detection techniques have been 
classified as invasive or non-invasive. Invasive methods 
frequently involve internal examinations or procedures that 
may cause the animal discomfort, such as electronic noses [4], 
accelerometers [5], pedometers, and pressure sensors [6]. In 
contrast, non-invasive methods, such as herders' visual 
observations, rely on external signs and behaviors, such as 
infrared thermography [7], surveillance cameras [8], and 

audio [9]. However, these conventional methods are prone to 
human error and require continuous monitoring, making them 
laborious and less reliable. 

Computer vision has emerged as a promising tool for 
automating the estrus detection process as a result of 
technological advancements [3, 10]. YOLOv8 (You Only 
Look Once version 8) stands out among computer vision 
technologies due to its rapid and accurate object detection 
capabilities. In the context of cattle management, YOLOv8 
offers a revolutionary method for identifying the distinct 
behavioral patterns associated with cows' estrus. By utilizing 
computer vision techniques, we can not only reduce the labor-
intensive nature of estrus detection but also improve its 
precision and timeliness. This transition to automated 
detection ensures that no estrus cycle is missed, thereby 
optimizing the breeding process and ensuring greater 
reproductive efficiency. 

As the livestock industry continues to expand, the demand 
for effective and precise estrus detection methods grows. 
Computer vision, in particular YOLOv8, offers a viable 
solution to the difficulties inherent in traditional estrus 
detection methods, paving the way for a more sustainable and 
profitable cattle industry. 

II. COW ESTRUS DETECTION 

Estrus detection is crucial for the reproductive efficiency 
of dairy cattle, especially when using artificial insemination, 
as it influences the calving-to-conception interval, which has 
a direct effect on milk yield and profitability. While the 
primary indicator of estrus is a cow's willingness to be 
mounted, this behavior has diminished, making secondary 
signs, such as mounting other cows, more telling. This 
detection is complicated by factors such as increased milk 
production, management practices, housing conditions, floor 
types, and temperature, which are all governed by endocrine 
hormone regulation. 

As shown in Figure 1, the timing of ovulation and the age 
of the egg during sperm penetration are crucial for conception. 
Ovarian steroid hormones and the maturation of the Graafian 
follicle affect estrus behavior, specifically the cow's standing 
still for mounting. Ovulation typically occurs 20 to 30 hours 
after the onset of this behavior, but hormonal levels and 
follicle development can cause variations [11]. It is important 
to note that optimal time to inseminate occurs between 6 to 12 
hours after the onset of estrus, with sperm having a 24- to 34-
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hour lifespan in the reproductive tract and the ova’s viability 
is limited to a mere 6 to 12 hours following its release 
(ovulation). 

 

Fig. 1. Timing of onset estrus detection and artificial insemination 

Estrus detection is crucial to reproductive performance, 
prompting the agricultural sector to develop and implement 
cutting-edge technologies. These developments are intended 
to enhance the detection of estrus by observing animal 
behavior, either in place of or in addition to conventional 
visual observations. Fig. 2 depicts an assortment of these 
cutting-edge technologies. They include a variety of tools and 
techniques, such as camera and infrared camera systems that 
employ computer vision to capture behavioral nuances and 
accelerometers that monitor movement patterns. In addition, 
microphones that pick up specific vocalizations, pressure 
sensors that detect mounting activity, and tail chalk that 
indicates estrus visually are utilized. More sophisticated 
methods include monitoring vaginal and body temperatures, 
analyzing specific substances in milk that indicate estrus, and 
using pedometers and accelerometers to measure activity. 
These technologies provide farmers with an extensive toolkit 
to improve the precision and efficacy of estrus detection in 
their herds. 

Computer vision offers a revolutionary method for 
detecting estrus in free-stall barns, overcoming the difficulties 

of manual monitoring in large spaces with numerous cattle. In 
such environments, cows exhibit behavioral changes 
indicative of estrus, which can be captured and analyzed by 
computer vision. This technology not only detects subtle 
movements and interactions that are frequently missed by 
human observers, but it also ensures consistent, round-the-
clock monitoring, thereby eliminating human errors, fatigue, 
and biases. 

 

Fig. 2. Various methods for cow estrus detection 

In addition, computer vision offers a data-driven strategy 
for herd management. Continuously collected data can be 
stored and analyzed for long-term trends, shedding light on 
breeding decisions, nutritional adjustments, and herd health as 
a whole. Computer vision transcends its status as a mere 
technological tool by positioning itself as a strategic asset for 
efficient and informed cattle management in free-stall barns. 

 

 

Fig. 3. Various YOLOv8 Models 
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III. YOLOV8 ARCHITECTURES 

YOLO (You Only Look Once) is a well-known object 
detection and image segmentation model developed in 2015 
by Joseph Redmon and Ali Farhadi at the University of 
Washington. In 2016, YOLOv2 introduced batch 
normalization and anchor boxes, and in 2018, YOLOv3 was 
released with an enhanced backbone network and spatial 
pyramid pooling. The redesigned detection head and Mosaic 
data enhancement were introduced with YOLOv4 in 2020. 
After Meituan adopted YOLOv6 for their autonomous 
delivery robots, YOLOv5 featured hyperparameter 
optimization and export adaptability. YOLOv7 initiated pose 
evaluation. YOLOv8 by Ultralytics is a state-of-the-art model 
that includes detection, segmentation, pose estimation, 
tracking, and classification, demonstrating its adaptability for 
a vast array of vision AI applications [12]. Various YOLOv8 
models is shown in Fig. 3. 

The most recent cutting-edge model from Ultralytics, 
YOLOv8, was created for object detection, image 
classification, and instance segmentation. As successors to the 
influential YOLOv5, YOLOv8 introduces several 
architectural enhancements and developer-centric 
improvements. Although it is currently undergoing active 
development, with Ultralytics continuously refining and 
enhancing its features in response to community feedback, its 
credentials are already impressive. In particular, as indicated 
by COCO metrics, YOLOv8 is more accurate than YOLOv5 
in Roboflow 100 dataset evaluations. Notable features of the 
model include a user-friendly command-line interface and a 
Python package designed to simplify the developer 
experience. Its extensive and expanding community ensures 
that developers can quickly find guidance and support for their 
computer vision projects. 

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP 

To ensure the robustness and efficacy of the experiment, 
the software implementation made use of a variety of tools and 
libraries. Python version 3.9.16 forms the basis of our 
codebase. OpenCV version 4.6.0 was utilized for image 
processing and computer vision tasks. PyTorch, version 2.0.1, 
was the primary deep-learning framework used for this 
project. We utilized version 11.8 of the PyTorch-CUDA 
package for GPU acceleration and improved computational 
performance. In addition, we integrated torchvision version 
0.15.2 for a variety of vision-related utilities and pretrained 
models. For the software stack to work effectively with the 
YOLO architecture and its variants, version 8.0.180 of the 
Ultralytics package was essential. 

We utilized a high-performance hardware configuration 
for YOLOv8 experiments to ensure optimal analysis and 
execution. The processor was an Intel i9-13900K with 64 GB 
of DDR5 memory, allowing for efficient multitasking and 
data management. To meet storage requirements, a 1 TB 
NVME drive was utilized, enabling rapid data read and write 
operations. We used the NVIDIA GeForce RTX 4080 GPU 
with 16 GB of VRAM to ensure accelerated model training 
and inference processes for our deep learning tasks requiring 
high computational power. It is important to note that the 
training time mentioned in our results is relative to this 
particular hardware specification, and variations in hardware 
may result in different training durations. 

Chokchai Farm in Khao Yai, Thailand, one of the largest 
dairy farms in Asia, collected the data [3]. Based on their 

behaviors, it was determined that three Holstein Friesian 
cows, each weighing approximately 450 kg and aged four 
years, were in estrus. These cows were then isolated in a 
designated pen for closer observation and examination for 
insemination readiness. A camera was installed within this 
enclosure to capture footage at a rate of 1.5 frames per second, 
producing 1280×960 pixel, 24-bit RGB images. Farm experts 
extracted and labeled 2,000 images from this footage to 
identify bounding boxes, body parts, and whether or not the 
cow was in estrus. Labelme and Label Studio were among the 
labeling tools used. The dataset generated by this procedure is 
available online at https://github.com/dsmlr/CowXNet [3]. Of 
the 2,000 images, 80% were allocated for training and the 
remaining 20% were used for validation. 

V. RESULTS AND DISCUSSION 

This section explores the dataset preparation, training 
outcomes with various YOLOv8 models and evaluates the 
testing performance of the optimal model. 

A. Dataset Preparation 

To convert a YOLOv4 image dataset with annotations 
stored in a pandas DataFrame to a YOLOv8 compatible 
format and partition it into training and validation sets, we 
begin by loading the annotations DataFrame from the 
'annotations.pkl' file using pandas. Once loaded, we can 
inspect the DataFrame's columns and unique class labels. 
Next, we split the dataset into an 80% training set and a 20% 
validation set using the `train_test_split` function from 
`sklearn.model_selection`. We ensured that the split is 
stratified based on the class labels to maintain a consistent 
distribution of classes in both subsets. 

After splitting, we converted the bounding box format to 
the YOLO format. For each image in the training and 
validation sets, we calculate the center coordinates, width, and 
height of the bounding box. We saved these annotations in 
separate text files corresponding to each image in the 'train/' 
and 'val/' directories respectively. Lastly, we organize the 
image files by moving them to their respective 'train/' and 'val/' 
directories. We ensure that the image filenames in the 
DataFrame match the actual image filenames in our directory, 
adjusting the file extension if necessary. By following these 
steps, we have a YOLOv8-compatible dataset ready for 
training and validation. 

B. Training of Various YOLOv8 Models 

Fig. 4 illustrates an example of Python code for YOLOv8 
experiments with a fixed batch size, epoch, and initial learning 
rate. The complex relationship between model complexity, 
training time, and accuracy across YOLOv8 variants is 
examined in Table I.  

1 
2 
3 
4 
5 

from ultralytics import YOLO 
# Load a pretrained model 
model = YOLO('yolov8n.pt') 
# Train the model 
results = model.train(data='cow8.yaml', 
epochs=100, lr0=0.01, batch=16) 

Fig. 4. Code Snippet of Training Phase 

Observing the progression of the number of parameters 
from YOLOv8n to YOLOv8x reveals a discernible pattern. 
This progression in model complexity correlates with the 
observed training durations; as expected, more complex 
models require longer training periods. However, it appears 
that this investment of time was worthwhile, as models with 
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enhanced parameters, such as YOLOv8l and YOLOv8x, also 
demonstrate superior precision. While this suggests a direct 
relationship between model complexity and accuracy, it is 
important to weigh the benefits of this increased accuracy 
against the practical constraints of longer training times, 
especially in real-world applications where time and 
computational resources are frequently limited. 

TABLE I.  TRAINING RESULTS  

Model 
Parameters 

(millions) 

Training 

Time (hours) 
mAP50 mAP50-95 

YOLOv8n 3.2 0.274 0.979 0.914 
YOLOv8s 11.2 0.304 0.974 0.922 
YOLOv8m 25.9 0.497 0.978 0.928 
YOLOv8l 43.7 0.718 0.970 0.918 
YOLOv8x 68.2 1.146 0.979 0.925 

 

Table I details the training outcomes of various YOLOv8 
models, including their parameters, durations of training, and 
mean average precision scores. Training time increases as the 
number of parameters (a measure of model complexity) 
increases. This trend illustrates the increased computational 
burden associated with the training of increasingly complex 
models. The mAP50, which represents the overlap precision, 
remains above 0.97 across all models. This suggests that all 
models detect objects that overlap the ground truth by at least 
50 percent with near-perfect precision. Compared to the 
mAP50-95, the mAP average at various overlap thresholds 
reveals a greater degree of variation. Despite the increased 
complexity of YOLOv8l and YOLOv8x, YOLOv8m has the 
highest mAP50-95 value with a value of 0.928, which is 
marginally better than YOLOv8s but still superior to 
YOLOv8l and YOLOv8x. 

YOLOv8m is a well-balanced option in terms of both 
performance and computational efficiency. It strikes a balance 
between model complexity and training time, with slightly 
superior mAP50-95 performance. Although YOLOv8l and 
YOLOv8x have more parameters and longer training times, 
their performance does not increase proportionally, making 
YOLOv8m the superior option. In light of these findings, 
YOLOv8m emerges as the best model for further testing, 
achieving the best balance between accuracy and 
computational resources. 

C. Testing the Optimum Model 

As shown in Fig. 5, the code snippet utilizes the ultralytics 
library to manage and validate a YOLO model. It then loads a 
model that has been pretrained using weights from a specific 
path after importing the YOLO class. It generates 
performance metrics by validating this model with the val() 
method, which internally references a dataset and training 
configurations that have been previously set. These metrics 
include mean average precision (mAP) values at different 
Intersections Over Union (IOU) thresholds (such as 0.50 and 
0.75) and a list of mAP values for each dataset category. This 
code provides an overview of the object detection capabilities 
of the model across a variety of IOU thresholds and per 
category. 

1 
2 
3 
4 
5 

from ultralytics import YOLO 
# Load the optimum model 
model = YOLO('runs/detect/train3/weights/best.pt') 
# Validate the model 
metrics = model.val() 

Fig. 5. Code Snippet of Testing Phase 

 

Fig. 6. Normalized confusion matrix for various classes 

As depicted in Fig. 6, the confusion matrix provides a 
thorough evaluation of a model trained to differentiate 
between two classes: "Normal" and "Estrus." The precision of 
0.96 indicates that 96 percent of all instances predicted by the 
model as belonging to a particular category were correctly 
classified. This level of accuracy suggests that the model 
generates few false positives. The recall of 0.9611 means that 
out of all the actual instances of a class in the dataset, the 
model correctly identified 96.11 percent of them, indicating a 
low rate of false negatives. The excellent mAP50 (mean 
average precision at 50 percent IoU) score of 0.9835 indicates 
that the model has a high overlap between the predicted and 
actual bounding boxes for both classes. The mAP50-95 is 
0.9302, indicating consistent performance across multiple 
overlap criteria. The fitness score of 0.9355 reflects the 
model's overall performance by combining precision, recall, 
and mAP. In addition, the processing speed metrics reveal that 
preprocessing requires approximately 0.2545 seconds, 
inference requires approximately 3.7902 seconds, and post-
processing requires approximately 0.6375 seconds, shedding 
light on the model's efficacy and optimization opportunities. 

Fig. 7 is a comprehensive visualization of the training and 
validation processes' associated metrics and loss values. 
Specifically, it depicts the "train/box_loss" parameter, which 
represents the discrepancy between the predicted and actual 
bounding boxes during training. In addition, "train/cls_loss" 
indicates the classification error during the training phase, 
shedding light on the model's ability to distinguish between 
classes. The "train/dfl_loss" provides insight into the detection 
feature learning performance of the model. In addition, the 
figure displays "metrics/precision(B)" and 
"metrics/recall(B)," which represent the proportion of 
accurate positive predictions and the proportion of actual 
positives that were correctly predicted. Displaying 
"val/box_loss," "val/cls_loss," and "val/dfl_loss" for the 
validation set provides a comparative view of the model's 
performance on unseen data in terms of bounding box 
prediction, classification, and detection feature learning. The 
figure concludes with an explanation of the 
"metrics/mAP50(B)" and "metrics/mAP50-95(B)" metrics, 
which are mean average precision metrics at different 
Intersections over Union (IoU) thresholds and provide a 
holistic view of the model's accuracy across different overlap 
criteria.  
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Fig. 7. Training and validation for YOLOv8m 

 

Fig. 8. Samples of cow estrus detection in the free stall barn 
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In Fig. 8, we are presented with illustrative examples of 
the detection and classification outcomes for cows, 
highlighting their categorization into either "normal" or 
"estrus" conditions. This visualization offers a clear 
representation of how the model discerns and classifies cows 
based on their physiological states, providing a tangible 
understanding of its performance in real-world scenarios. 
Finally, YOLOv8m boasts advanced detection suitable for 
real-time applications. Easily convertible to TensorRT or 
ONNX, it ensures rapid performance across platforms. This 
adaptability, coupled with reduced latency and increased 
throughput, positions YOLOv8m as essential for varied real-
time tasks. 

VI. CONCLUSIONS AND FUTURE WORKS 

In our exhaustive study, we investigated the potential of 
advanced object detection, with a particular emphasis on the 
YOLOv8m model. Our methodological approach was 
supported by exhaustive testing and validation, which ensured 
the model's adaptability to a wide variety of real-time 
applications. We observed a significant decrease in latency 
and a marked improvement in throughput, which were 
compelling results. Moreover, the model's precision in 
detecting and classifying conditions, as evidenced by metrics 
such as a 96 % precision rate and a 98.35 % mAP50 for cow 
detection, highlights its robustness and accuracy. In essence, 
our research demonstrates that the YOLOv8m model is a 
game-changer in real-time object detection by fusing technical 
excellence with tangible, consequential outcomes. Future 
endeavors will concentrate on the real-time implementation 
and validation of the model, particularly in the context of tie-
stall barn environments. 
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