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A B S T R A C T   

Stochastic models have been used to predict dynamic intra-patient respiratory system elastance (Ers) in me
chanically ventilated (MV) patients. However, existing Ers stochastic models were developed using small cohorts, 
potentially showing bias and overestimation during prediction. Thus, there is a need to improve the stochastic 
model’s performance. This research investigates the effect of the kernel density estimator (KDE) parameter tuned 
with a constant, c on the performance of a 30-min interval Ers stochastic model. Thirteen variations of a stochastic 
model were developed using varying KDE parameters. Model bias and overestimation were evaluated by the 
percentage of actual data captured within the 25th – 75th and 5th – 95th percentile lines (Pass50 and Pass90). 
The optimum range of c was chosen to tune the KDE parameter and minimise the temporal variations of model- 
predicted 25th – 75th and 5th – 95th percentile values of Ers (ΔRange50 and ΔRange90) in an independent 
retrospective clinical cohort of 14 patients. In this cohort, the values of ΔRange50 and ΔRange90 exhibit a 
converging behaviour, resulting in a cohort-optimised value of c = 0.4. Compared to c = 1.0 (benchmark study 
model), c = 0.4 significantly reduces model overestimation by up to 25.08% in the 25th – 75th percentile values 
of Ers. Overall, c = 0.3–1.0 presents as a generalised range of optimum c values, considering the trade-off between 
data overfitting and model overestimation. Optimisation of the KDE parameter enables more accurate and robust 
Ers stochastic models in cases of limited training data availability.   

1. Introduction 

Respiratory system elastance (Ers) describes the elastic properties of 
the respiratory system during mechanical ventilation (MV) treatment 
[1–4]. Studies show that Ers can guide MV settings [5–8]. However, Ers 
shows significant intra-patient temporal variability, along with 
patient-specific disease state and response to MV care [9,10]. This dy
namic evolution of patient-specific condition makes it challenging to 
ensure consistent optimal care. Thus, the ability to capture and predict 
the temporal dynamics of patient-specific Ers could pave the way for 
individualised MV treatment [11]. 

Several methods have been devised for predictive applications in 
various fields of research, particularly the use of statistical and machine 
learning models [12–15]. In healthcare, predictive data mining models 
have been employed for prediction applications related to Covid-19 

[16]. Stochastic modelling presents as a statistical method that has 
been used in clinical settings where it has been used in glycaemic control 
protocols in critical care [17–22]. The use of stochastic forecasting in the 
protocol led to more precise glycaemic control in ~90% of ICU patients, 
leading to significant reductions in hypoglycaemia and clinical work
load [22,23]. Thus, stochastic models have the capability to facilitate 
personalized medicine in environments such as the ICU, where hetero
geneity may impact the performance of conventional deterministic 
modelling methods. 

Stochastic models have also been used to describe the probabilistic 
behaviour of Ers dynamics, where it can predict future values of patient 
specific Ers in MV patients [24]. A stochastic model was developed and 
validated using retrospective Ers obtained using model-based methods 
[25–27] and sorted into 10-min intervals to capture short-term intra-
patient variation. Ang et al. extend the stochastic model using 54 
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patients from 2 cohorts with a 30-min prediction interval [28]. This 
model provides significantly improved Ers prediction ranges and added 
clinical practicality, thus making it feasible for synchronising to help 
guide clinical interventions. Despite significant improvements, the 
extended stochastic model still demonstrates model bias and over
estimation. Similar limitation was also raised for the stochastic model of 
Lee et al. [24]. 

In a study by Dias et al. applies a non-parametric stochastic model 
based on kernel density estimator (KDE) for the analysis of hydrological 
time series [29]. The study states the importance of the selection of the 
kernel bandwidths as a large bandwidth may lead to overly smooth 
distributions while too small a bandwidth will result in noisy distribu
tions. Optimisation of the kernel bandwidths have been investigated 
where methods such as the minimisation of the mean integrated squared 
error (MISE) have been devised [30]. However, this presents a complex 
mathematical optimisation problem where the computational 
complexity [31] may not be best suited for real-time bedside applica
tions in clinical settings. 

This manuscript presents a tighter, more accurate probability dis
tribution for the respiratory elastance stochastic model via optimisation 
of the KDE parameter. While shown to be feasible for glycaemic control 
stochastic models [19], the optimised KDE parameter is only specific to 
the patient cohort and application of blood glucose data used in that 
study. Therefore, further investigation of the KDE parameter in respi
ratory elastance stochastic models is warranted, where this research is 
the first of its kind for respiratory elastance stochastic models. Tuning of 
the KDE parameter would result in much tighter Ers prediction intervals, 
and hence increased prediction confidence, further adding to the clinical 
utility of the stochastic models with potential application in 
stochastic-integrated MV setting guidance protocols. In addition, this 
significant improvement in prediction performance can be achieved 
using existing data sets, thus alleviating the need for additional patient 
recruitment via resource intensive clinical trials, presenting a cost- and 
resource-effective approach towards personalising MV patient care. 

2. Methodology 

2.1. Patient cohorts 

The respiratory system elastance, Ers from 68 retrospective patients 
across clinical data from 3 cohorts receiving invasive MV for respiratory 
failure are used in this study [28,32,33]. The three cohorts (ethics 
approval) are denoted: 1) CARE01 (Ref: IIUM/504/14/11/2/IREC 666); 
2) CARESG (DSRB Ref:2018/00042); and 3) CARE02 (Ref: IIU
M/504/14/11/2/IREC 2020–100). The details are shown in Table 1 
[28]. The respiratory elastance, Ers and respiratory resistance, Rrs of the 
3 patient cohorts are found to be significantly different from one another 
(P < 0.05). 

2.2. Stochastic model development 

The 30-min transition of Ers can be described using a stochastic 
model based on a two-dimensional kernel density estimation method. 

The kernel density estimation method results in a bi-variate probability 
density function (PDF) of the Ers dataset by combining the PDFs of each 
datapoint [19]. The distribution of Ers,N+1 varies with Ers,N, and cannot 
be described using a single standard statistical distribution, where Ers,N 
and Ers,N+1 are two consecutive mean Ers values over the current (N) and 
subsequent (N + 1) 30-min interval [18,24]. As the conditional PDFs of 
future Ers,N values depend only on the current Ers,N value, the variations 
in Ers,N can be treated as a Markov process. The conditional probability 
density of Ers,N+1 = y given the value of Ers,N = x is described as: 

P
(
Ers,N+1 = y

⃒
⃒Ers,N = x

)
=

P
(
Ers,N+1 = y,Ers,N = x

)

P
(
Ers,N = x

) =
P(x, y)

β
(1)  

where β represents the term P(Ers,N = x). A 2-dimensional kernel density 
estimated joint probability density function across the x-y plane P(x, y) is 
defined by the fitted values of Ers data pairs with coordinates xi and yi 
[31]: 
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The terms ∅(x; xi, σ2
xi
) and ∅(y; yi, σ2

yi
) represent the normal PDFs 

centred at individual data points of xi and yi, with σ2
xi 

and σ2
yi 

being the 
variances. The variance describes the local data density within a centred 
and orthonormalised space of x and y [19]. The normalised summation 
of terms ∅(x; xi, σ2

xi
) and ∅(y; yi, σ2

yi
) in (3) and (4), effectively results in 

probability distributions that are normalised in the positive domain, and 
enforces physiological validity with positive-only Ers values. This is 
necessary as physiologically, a patient’s breath-specific Ers must be a 
positive-only value [26]. β can be calculated by integrating (2) with 
respect to y: 
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Thus, (1) can be expressed: 
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(6)  

where (6) defines the two-dimensional kernel density estimation for the 
conditional variation of Ers, where Ers depends on its prior state. 

Knowing Ers,N = x at the time point N, this approach allows the 
probability of Ers,N+1 = y at the time point N + 1 to be calculated. The 
result is a 2-dimensional stochastic model capturing the variability of 
Ers. The probability interval of future Ers,N+1 values is described by the 
model’s percentile lines. Each stochastic model is trained with data from 
the CARE01, and CARE02 patient cohorts, consisting of 54 patients with 
7,146 Ers pairs. 

2.3. Kernel density estimator (KDE) parameter 

To optimise the KDE parameter of the stochastic model, the KDE 
parameter is tuned by modifying the variance estimators (σ2

xi 
and σ2

yi
) 

with a constant c in (7). 

Table 1 
Patient cohorts and the respiratory mechanics of each cohort. Ers and Rrs values 
are presented as median [interquartile range, IQR].  

Patient 
cohort 

No. of 
patients 

Days 
of 
data 

No. of 
breaths 

Ers (cmH2O/L) Rrs (cmH2O.s/ 
L) 

CARE01 24 127 2,120,834 36.95 
[27.51–47.40] 

7.93 
[5.55–12.51] 

CARE02 30 200 4,783,264 36.51 
[26.31–48.66] 

8.82 
[6.29–11.68] 

CARESG 14 35 742,493 33.11 
[23.59–50.21] 

10.70 
[9.55–12.34]  
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where (cσ)2 is the modified KDE parameter. The added constant c allows 
the adjustments of the kernel bandwidth and the degree of data 
smoothness of the stochastic model [19]. In this study, the effect of c 
ranging from 0.05 to 2.0 is investigated (c = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0, 1.5 and 2.0). Specifically, one stochastic model is 
developed for each value of c. 

2.4. Model validation and analysis 

2.4.1. Model self- and cross-validation 
Over the range of Ers,N values, each of the developed stochastic 

models is used to generate the 25th – 75th and 5th – 95th percentile 
intervals of predicted Ers values (Ers,N+1). These predicted intervals are 
then compared to the actual Ers,N+1 measurements and are quantified by.  

• Pass50 (%): The percentage of actual data falling within the 25th – 
75th percentile intervals of predicted Ers values.  

• Pass90 (%): The percentage of actual data falling within the 5th – 
95th percentile intervals of predicted Ers values. 

This set of definitions is illustrated in Fig. 1. The ideal values for 
Pass50 and Pass90 are 50% and 90%, respectively. Thus, these metrics 
provide a form of model self-validation, where the same data is used for 
training and testing, and thus to assess model fitness. 

Further, a 5-fold cross-validation is also performed on each of the 
developed stochastic models in a training-validation dataset split ratio of 
80:20. In each validation-fold, unique and non-repeating Ers from the 
test dataset is used to predict the 25th – 75th and 5th – 95th percentile 
intervals of Ers,N+1, where the Pass50 and Pass90 are evaluated. Good 
model prediction performance is indicated by a smaller deviation of the 
results from the ideal 50% and 90% values. Minimal discrepancy be
tween self- and cross-validation results would suggest a robust model 
and sufficient training data [21,24]. 

2.4.2. Clinical validation of stochastic model 
Each stochastic model is also used to analyse retrospective patient 

data from the CARESG cohort, ensuring clinical validity of the models. 
Model validation was performed using similar methods from previous 
studies [19,21]. The stochastic models are used to predict the future 

25th – 75th and 5th – 95th percentile intervals of Ers,N+1, which are then 
compared to the actual patient Ers,N+1 values. Patient data are processed 
and sorted into 30-min time intervals. The first 12 h of data are analysed 
to ensure intra-cohort consistency of the analysed metrics (Δ Range50 
and Δ Range90) as the amount of available MV data varies between 
patients. 

Using different values of c ultimately affects the smoothness and 
tightness of the stochastic model percentile lines. Selection of the opti
mum value of c is based on Δ Range50 and Δ Range90: 

ΔRange50=
1
N

∑N

i=1
|Range50i − Range50i+1| (10)  

ΔRange90=
1
N

∑N

i=1
|Range90i − Range90i+1| (11)  

where Range50 =
Ers,75 − Ers,25

Ers,patient 
(12) 

Range90=
Ers,95 − Ers,5

Ers,patient
(13)  

where the subscripts i and i + 1 denote two subsequent 30-min intervals. 
Ers,5, Ers,25, Ers,75, and Ers,95 are the stochastic model-predicted 5th, 25th, 
75th, and 95th percentile values of Ers, respectively. Ers,patient is the 
retrospective patient mean Ers value of that time interval. This is illus
trated in Fig. 2. Δ Range50 and Δ Range90 effectively describe the 
temporal variations of the model-predicted 25th – 75th and 5th – 95th 
percentile values of Ers, respectively. A smaller value of Δ Range50 and 
Δ Range90 indicates a more consistent width of Range50 and Range90 
over time, suggesting a more consistent stochastic model. This would be 
beneficial in terms of patient care as it ensures that the risk and con
sistency of MV treatment do not fluctuate. Thus, the c value resulting in 
the minimum Δ Range50 and Δ Range90 (Δ Range50min and Δ Ran
ge90min) is defined as the cohort-optimised value of c. 

For each increment of c, the absolute percentage difference of the 
median ΔRange50 (δΔRange50) and ΔRange90 (δΔRange90) with respect to 
its previous value is also calculated: 

δΔRange50(%)=

⃒
⃒
⃒
⃒
ΔRange50c,i+1 − ΔRange50c,i

ΔRange50c,i

⃒
⃒
⃒
⃒× 100% (14)  

δΔRange90(%)=

⃒
⃒
⃒
⃒
ΔRange90c,i+1 − ΔRange90c,i

ΔRange90c,i

⃒
⃒
⃒
⃒× 100% (15)  

where i ranges from 1 to 13. Therefore, c1 to c13 is 0.05, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5 and 2.0 respectively. A lower value of 
δΔRange50 and δΔRange90 indicates smaller differences between the median 
ΔRange50 and ΔRange90 values. A maximum threshold of 20% of 
δΔRange50 and δΔRange90 values is used to define a general range of opti
mum c values, allowing generalisation to other patient cohorts. 

Subsequently, we also perform testing of the whole CARESG data 
cohort of 29,520 min (492 h). The stochastic model developed with the 
optimised c value is used to predict future elastance values, Ers,N+1 which 
are then compared to the retrospective patient data. The number of 
retrospective patient Ers,N+1 falling into the model predicted 25th – 75th 
(Pass50) and 5th – 95th (Pass90) percentile ranges are also determined. 

3. Results 

3.1. Stochastic models 

Four variations of the developed stochastic model and their 
percentile lines are presented graphically in Fig. 3. Self-validation re
sults of the stochastic models are shown in Table 2, where the Pass50 
and Pass90 values of each model are presented. The maximum absolute 
percentage difference of Pass50 and Pass90 with their ideal values are 

Fig. 1. Pass50 and Pass90 of the stochastic model for c = 1.0. The 0.9 proba
bility interval represents the 5th – 95th percentiles and hence includes the 0.5 
probability interval (25th – 75th percentiles). 
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61.29% and 7.18% respectively, when c = 2.0. The minimum absolute 
difference occurs at c = 0.05, where the difference between Pass50 and 
Pass90 with their ideal values are 0.81% and 0.25%. Results of the 5-fold 
cross-validation are also presented in Table 2, where the self- and cross- 

validation results differ only by a maximum of ~5%. 

Fig. 2. (a) The retrospective patient Ers values are shown as horizontal green lines. (b) shows the stochastic model-predicted 5th, 25th, 75th, and 95th percentile 
values of Ers (bottom to top). (c) Ers,75 - Ers,25 (vertical blue arrows) and Ers,95 - Ers,5 (vertical red arrows) of the first two model-predicted Ers intervals are shown. These 
values are normalised by Ers,patient to yield Range50 and Range90 respectively. 

Fig. 3. Developed stochastic models and their percentile lines for c = 0.05 (top left), c = 0.4 (top right), c = 1.0 (bottom left) and c = 2.0 (bottom right).  
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3.2. Independent CARESG patient cohort analysis 

Stochastic models developed with different values of c are used to 
predict future Ers values based on retrospective patient Ers data. The Δ 
Range50 and Δ Range90 are calculated for all patients of the CARESG 
cohort while varying the value of c. The median values are presented in 
Table 3 and illustrated in Fig. 4. It is shown that the median Δ Range50 
and Δ Range90 values of the patient cohort are the lowest when c = 0.4, 
with a Δ Range50min of 11.26 × 10− 3 [6.64 × 10− 3 - 13.17 × 10− 3] and 
Δ Range90min of 31.54 × 10− 3 [24.70 × 10− 3 - 45.94 × 10− 3]. There
fore, using a c value of 0.4 is shown to be the optimum for this patient 
cohort. All further retrospective clinical studies are performed using this 
model. In addition, based on a threshold of 20% of δΔRange50 and δΔRange90 

values, a generalised range c values between 0.3 and 1.0 is defined for 
the 30-min respiratory elastance stochastic model. Analysis of the 
CARESG patient cohort using the cohort-optimised model (c = 0.4) 
shows >90% of actual patient Ers falling within the model-predicted 5th 
– 95th Ers range (Table 4). 

Fig. 5 illustrates this analysis for Patients 1, 4 and 6 of the CARESG 

cohort to showcase model prediction performance on different trends 
and ranges of patient Ers. Patient 1 exhibits relative stable and small Ers 
values (<12 cmH2O/L), whereas Patient 4 and 6 exhibits more varying 
Ers trends at relatively higher values (>15 cmH2O/L). Long term Ers 
prediction of up to 492 h of retrospective patient Ers data was performed 
with the optimised stochastic model (c = 0.4), where patient Ers trends 
for Patient 5, 6, 7 and 9 are presented in Fig. 6. 

Table 2 
Self- and cross-validation results for stochastic models developed with different 
values of c.   

Self-validation 5-fold cross-validation 

Pass50, 
% (% 
Diff) 

Pass90, 
% (% 
Diff) 

Pass50, 
% 

Pass90, 
% 

% Diff SV 
(Pass50) 

% Diff SV 
(Pass90) 

0.05 50.41 
(0.81) 

89.77 
(0.25) 

49.59 
[48.50 - 
50.88] 

86.75 
[86.50 - 
88.79] 

2.96 
[1.62 - 
3.79] 

3.36 
[1.10 - 
3.65] 

0.1 50.41 
(0.81) 

89.43 
(0.63) 

49.52 
[49.30 - 
50.95] 

88.46 
[87.64 - 
88.80] 

2.19 
[1.77 - 
4.35] 

1.31 
[1.09 – 
2.00] 

0.2 51.23 
(2.46) 

88.97 
(1.14) 

52.37 
[50.76 - 
52.48] 

88.87 
[88.83 - 
89.11] 

2.22 
[2.00 - 
2.43] 

0.16 
[0.16 - 
2.08] 

0.3 52.84 
(5.68) 

89.22 
(0.86) 

53.98 
[52.46 - 
54.60] 

89.29 
[89.23 - 
89.65] 

2.15 
[0.93 - 
3.32] 

0.48 
[0.08 - 
2.18] 

0.4 54.73 
(9.46) 

89.66 
(0.38) 

54.61 
[54.02 - 
55.96] 

90.24 
[90.08 - 
91.26] 

2.24 
[1.31 - 
3.04] 

0.65 
[0.47 - 
1.78] 

0.5 57.00 
(13.99) 

89.81 
(0.21) 

58.31 
[57.58 - 
59.51] 

90.48 
[89.97 - 
90.84] 

2.30 
[1.03 - 
4.41] 

1.14 
[0.75 - 
1.88] 

0.6 59.17 
(18.33) 

90.26 
(0.29) 

60.74 
[60.10 - 
61.63] 

91.00 
[90.60 - 
91.67] 

2.66 
[1.58 - 
4.17] 

1.56 
[0.82 - 
1.76] 

0.7 61.10 
(22.19) 

90.72 
(0.80) 

63.89 
[62.16 - 
64.08] 

91.40 
[90.93 - 
92.15] 

4.57 
[1.73 - 
4.88] 

1.45 
[0.75 - 
1.57] 

0.8 63.03 
(26.06) 

91.23 
(1.36) 

66.27 
[64.58 - 
67.02] 

91.69 
[91.61 - 
92.86] 

5.14 
[2.46 - 
6.33] 

1.27 
[0.51 - 
1.79] 

0.9 65.32 
(30.65) 

91.87 
(2.08) 

68.47 
[66.70 - 
68.82] 

92.43 
[92.24 - 
93.58] 

4.82 
[2.11 - 
5.36] 

1.23 
[0.61 - 
1.86] 

1.0 67.27 
(34.54) 

92.44 
(2.71) 

70.38 
[68.45 - 
70.73] 

92.88 
[92.81 - 
94.11] 

4.63 
[1.75 - 
5.15] 

1.29 
[0.47 - 
1.80] 

1.5 75.23 
(50.46) 

94.85 
(5.39) 

78.00 
[76.92 - 
78.52] 

95.36 
[95.20 - 
96.19] 

3.68 
[2.24 - 
4.38] 

0.67 
[0.54 - 
1.42] 

2.0 80.65 
(61.29) 

96.46 
(7.18) 

82.33 
[81.85 - 
83.28] 

96.95 
[96.75 - 
97.20] 

2.09 
[1.49 - 
3.27] 

0.51 
[0.31 - 
0.77] 

* % Diff is the absolute percentage difference of the Pass50 and Pass90 values 
with the ideal values of 50% and 90%. 
* % Diff SV is the absolute percentage difference of the cross- and self-validation 
values of Pass50 and Pass90. Results are presented in terms of median [IQR]. 
*Pass50 and Pass90 of the cross-validation refer to the median [IQR] values of 
all 5 validation folds. 

Table 3 
Δ Range50 and Δ Range90 values of the patient cohort for different values 
of c.  

c Median ΔRange50 
(10− 3) 

Median ΔRange90 
(10− 3) 

δΔRange50 

(%) 
δΔRange90 

(%) 

0.05 22.15 [17.03–33.43] 83.18 [68.83–99.53] – – 
0.1 16.52 [11.23–21.62] 58.69 [46.22–68.31] 29.44 25.43 
0.2 13.04 [7.76–14.64] 40.78 [32.20–52.26] 30.52 21.04 
0.3 11.30 [7.01–12.64] 33.12 [27.45–48.21] 18.77 13.33 
0.4 11.26 [6.64–13.17] 31.54 [24.70–45.94] 4.77 0.37 
0.5 11.30 [6.33–13.71] 32.66 [22.97–43.92] 3.54 0.36 
0.6 11.79 [7.12–13.73] 34.19 [22.07–43.72] 4.71 4.34 
0.7 13.04 [7.14–14.22] 35.58 [21.31–43.55] 4.06 10.56 
0.8 13.19 [7.35–15.97] 37.01 [20.57–44.94] 4.00 1.14 
0.9 13.67 [7.55–16.22] 38.92 [21.23–46.16] 5.17 3.64 
1.0 14.80 [7.77–16.88] 41.02 [21.85–48.76] 5.40 8.30 
1.5 19.06 [9.63–20.93] 49.08 [26.22–57.46] 19.64 28.76 
2.0 23.10 [11.89–25.96] 58.43 [31.67–68.32] 19.06 21.20  

Fig. 4. Box and whisker plots presenting the cohort values of Δ Range50 (top) 
and Δ Range90 (bottom) with varying c. 
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4. Discussion 

In this study, the effects of c on a respiratory elastance stochastic 
model is investigated. While respiratory resistance, Rrs is part of a pa
tient’s respiratory mechanics, it remains largely unchanged during MV 
with only small variations which are mainly influenced by the ventilator 
circuit [1,34,35]. Significant changes to Rrs is normally a result of 
changes to the positive end-expiratory pressure (PEEP) which is not 
considered in the developed stochastic models [36]. The stochastic 
models in Fig. 3 show that for increasing values of c, there is an increase 
in percentile line width, particularly in the ranges of Ers,N > 60 
cmH2O/L. There is also an increase in percentile line smoothness with 
increasing value of c. This outcome is expected, as a larger KDE 
parameter results in a wider kernel bandwidth, and thus, a greater de
gree of data smoothness of the stochastic model [19]. The ‘jaggedness’ of 
the model percentile lines for Ers,N > 60 cmH2O/L with small values of c 
suggests overfitting of the data, reducing the generalisation ability of the 
model. 

Wider model percentile lines also capture a larger distribution of 
patients Ers as seen in Table 2, where Pass50 and Pass90 values increase 
with c. The self- and cross-validation of Pass50 and Pass90 differ only by 
a maximum of ~5%, suggesting there is sufficient data for model 
training to account for Ers heterogeneity within the patient cohorts. The 
Pass50 and Pass90 self-validation values for c = 0.05 are closest to the 
ideal values with an absolute percentage difference of 0.81% and 0.25%, 
respectively. However, the optimal selection of c also needs to be based 
on the trade-off between data overfitting and model overestimation. 

In the calculations of Range50 and Range90, the model-predicted 
25th – 75th and 5th – 95th Ers intervals are normalised by the patient 
Ers. Stochastic model percentile ranges increase in width with increasing 
Ers due to data scarcity at these higher ranges of Ers (Fig. 3). As patient- 
specific Ers profiles exhibit large intra- and inter-patient heterogeneity, 
normalisation by patient Ers allows for fair comparisons between 
patients. 

Cohort values of Δ Range50 and Δ Range90 (Table 3) exhibit a 
converging behaviour, as seen in Fig. 4, with minimum median values of 
11.26 × 10− 3 [6.64–13.17] × 10− 3 and 31.54 × 10− 3 [24.70–45.94] ×
10− 3 respectively at c = 0.4. This value of c = 0.4 presents a cohort- 
optimised value of the KDE parameter. The δΔRange50 and δΔRange90 

values are also presented in Table 3. These metrics are based on the 
median values of ΔRange50 and ΔRange90 of the entire patient cohort 
(Table 3). The δΔRange50 and δΔRange90 values are highly dependent on the 
ΔRange50 and ΔRange90 of the previous value of c, respectively 

(ΔRange50c,i and ΔRange90c,i respectively). This is important as the 
δΔRange50 and δΔRange90 values effectively describe the relative differences 
of model behaviour between consecutive values of c, where too large of a 
percentage difference could indicate deviation of model behaviour from 
an optimal range. On the other hand, a relatively small δΔRange50 and 
δΔRange90 suggests that the two consecutive c values in comparison result 
will yield stochastic models with relatively small differences in terms of 
their prediction behaviour which could then be used to define a general 
range of optimum c values. It is observed that c = 0.4 is the first value of 
c where there is a relatively small change in δΔRange50 and δΔRange90, while 
also being the inflection point of c (Fig. 4). Thus, this further justifies the 
selection of c = 0.4 as the cohort-optimised value of c. The values of c =
0.3–1.0 result in δΔRange50 and δΔRange90 values that fall within the defined 
20% threshold, suggesting relatively small differences in model behav
iour and is thus defined as a general range of optimum c values, allowing 
generalisation to other patient cohorts. 

Furthermore, Pass50 and Pass90 values (self-validation) of c = 0.4 
are 54.73% and 89.66%, respectively (Table 2), which are close to the 
ideal values of 50% and 90%. Compared to c = 1.0, this set of results 
provides a reduction in % Diff (absolute percentage difference with 
respect to ideal values) of 25.08% and 2.33% for Pass50 and Pass90 
respectively. This results in a significant reduction in model over
estimation for the 25th – 75th percentile range, whereas this improve
ment is not significant for the 5th – 95th percentile range. The change of 
c values may not observe a big difference in % Diff in the 5th – 95th 
percentile range, as this range covers a wider data range which is more 
consistent. 

Analysis of the independent CARESG patient cohort using the opti
mised model (c = 0.4) shows that the model can accurately predict 
>90% (median) of actual patient Ers values within the model-predicted 
5–95th percentile range, demonstrating the clinical practicality of the 
model. The use of the 5–95th percentile ranges offers a more conser
vative prediction confidence interval as it takes into account the more 
extreme ranges of patient conditions. This prediction range has also 
been used for stochastic predictions in tight glycaemic control for ICU 
patients [18,19,22,23]. The relatively poor Ers prediction performance 
of Patient 10 is due to sudden and large fluctuations Ers values. 

The Ers prediction profiles of three different stochastic models are 
shown in Fig. 5. With c = 0.05, the Ers prediction profiles show incon
sistent widths of the predicted 5th – 95th percentile of Ers (Range90), 
further demonstrating model prediction behaviour under conditions of 
data-overfitting. Overfitting of the model is also demonstrated by the 
overly jagged percentile lines of the stochastic model developed with c 
= 0.05 (Fig. 3). and the relatively large median ΔRange50 and 
ΔRange90 values of 22.15 × 10− 3 [17.03–33.43] × 10− 3 and 83.18 ×
10− 3 [68.83–99.53] × 10− 3 respectively (Table 3). This also results in a 
large absolute percentage difference with ΔRange50min and 
ΔRange90min of ~97% and ~164% respectively. Patients with high Ers 
have a more severe lung condition, warranting a more conservative 
prediction and potential treatment. Therefore, a more robust and 
consistent stochastic model is required, where the Ers prediction 
percentile ranges (Range50 and Range90) should be consistent in size. A 
relatively more consistent Range90 width is achieved with c = 1.0. 
However, model-overestimation as a result of overly wide model 
percentile lines (Fig. 3) as well as δΔRange50 and δΔRange90 values (Table 3) 
greater than the defined 20% threshold results in overly conservative 
5th – 95th percentile ranges of predicted Ers. 

The clinical Ers prediction results of the stochastic model developed 
with c = 0.4 shown in Table 4. Results show a median [IQR] Pass50 and 
Pass90 of 57.96% [53.38–65.37]% and 92.49% [89.14–95.50]%, 
respectively. These values are expected and show relatively little devi
ation from the self-validation results, with a percentage difference in 
Pass50 and Pass90 of only 5.9% and 3.2%, respectively. A long term 
longitudinal study was also performed using the model with the opti
mised KDE parameter (c = 0.4) where a total of 492 h of retrospective 

Table 4 
The percentage of actual patient Ers values predicted by stochastic model 
percentile lines for c = 0.4. A total of 29,520 min (492 h) of MV data were 
analysed.  

Patient Minutes (Hours) of 
MV data 

Within 
25–75% 

Within 5–95% Outside 
5–95% 

1 1140 (19.0) 29.73 86.49 13.51 
2 2640 (44.0) 52.87 85.06 14.94 
3 1350 (22.5) 47.73 93.18 6.82 
4 1650 (27.5) 61.11 96.30 3.70 
5 3690 (61.5) 54.92 91.80 8.20 
6 4260 (72.0) 65.73 99.30 0.70 
7 2700 (45.0) 56.18 89.89 10.11 
8 930 (15.5) 56.67 90.00 10.00 
9 2550 (42.5) 64.29 95.24 4.76 
10 1350 (22.5) 31.82 68.18 31.82 
11 840 (14.0) 59.26 88.89 11.11 
12 1140 (19.0) 86.49 100.00 0.00 
13 3090 (51.5) 73.53 94.12 5.88 
14 2070 (34.5) 67.65 95.59 4.41 

Median 1860 
[1192.5–2685.0] 

57.96 92.49 7.51 

[IQR] (31.0 [19.9–44.8]) [53.38–65.37] [89.14–95.50] [4.50–10.86]  
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patient Ers data were analysed. The Ers plots in Fig. 6 demonstrate the 
ability of the stochastic model to adapt the abrupt changes in patient Ers 
and produce accurate Ers,N+1 predictions at elevated levels of Ers in a 
clinical setting, while alleviating the issue of model overestimation as 
observed with models developed with larger values of c. 

Optimisation of stochastic model performance and behaviour have 
been investigated where methods such as the minimisation of the mean 
integrated squared error (MISE) have been devised [30]. Other methods 
include using different univariate kernel types, using different classes of 
bandwidth selectors (such as Rule-of-thumb selector, least squares cross 
validation selector and smoothed cross validation selector) and even 
Fast Fourier Transform (FFT) based algorithms for bandwidth selection 
[31]. However, the proposed method of optimising the KDE parameter 
using c presents a simple, computationally efficient method for adjusting 
the effective kernel bandwidth and the degree of data smoothness of the 
stochastic model while facilitating direct comparisons of model behav
iour and performance. 

Overall, a c value optimised based on a cohort-wide dataset of c = 0.4 

would produce a robust and consistent stochastic model, providing a 
balance between overfitting and overestimation. Using the value of c =
1.0 demonstrates model overestimation and hence would not be optimal 
for clinical use. Therefore, any value of c greater than 1.0 would also be 
unsuitable for the same reasons as the resulting model percentile lines 
will be even wider as seen in Fig. 3. In this study, the results of c = 1.5 
and 2.0 are presented to demonstrate two examples of more extreme 
cases of overestimation. The optimised KDE parameters result in tighter 
stochastic model prediction percentiles, thus increasing prediction 
confidence and accuracy. This further adds to the clinical utility of the 
models where cohort-specific prediction performance can be improved 
in cases where only a limited amount of training data is available, where 
this data may be difficult to obtain in a high-cost clinical setting. 

A more general range of c between 0.3 and 1.0 could allow gener
alisation for application in other patient cohorts. An optimum c value of 
0.5 was suggested in the works of Le Compte et al., thus falling into the 
above range of c = 0.3–1.0 [19]. However, the values of c from the two 
analyses should be treated independently due to the inherent difference 

Fig. 5. Stochastic models developed with c = 0.05 (red star), c = 0.4 (blue triangle) and c = 1.0 (green circle) are used to predict the 5th – 95th percentile range of 
future Ers values based on the retrospective patient Ers data (black solid circle). The figure shows predictions made for Patients 1, 4 and 6 (top to bottom). 
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Fig. 6. Retrospective patient Ers data for Patients 5, 6, 7, and 9 (black solid circles) were analysed using the stochastic model (c = 0.4). The 5th and 95th percentiles 
of the model-predicted Ers interval are plotted as blue triangles. The first 36 h of patient data are presented in the plots above. 
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in distributions between blood glucose and Ers data. While the range of c 
= 0.3–1.0 is that of a general patient cohort, with clinical utility in mind, 
it is also important to conduct these analyses to obtain a cohort-specific 
value of c. Therefore, this study not only establishes a generalisable 
range of c values, but also introduces a method to obtain the 
cohort-optimised value of c via the ΔRange50, ΔRange90, δΔRange50 and 
δΔRange90 metrics. 

It is also important to note that the optimisation of the parameter c is 
performed on a per cohort-basis, similar to the works of Le Compte et al. 
[19]. The model predicted Ers probability ranges based on the optimised 
value of c = 0.4 would usually be more conservative than necessary for 
patients with less dynamic Ers. This choice accounts for patients exhib
iting more dynamic Ers profiles within the patient population. While 
individualised stochastic models can be developed, a significant amount 
of patient-specific data will be required to achieve sufficient model 
prediction accuracy, and this level of data may not be feasible or clini
cally practical to obtain for this use. 

5. Conclusion 

In this study, several variations of a 30-min respiratory elastance 
stochastic model were developed using KDE parameters modified with a 
constant, c ranging from 0.05 to 2.0. A generalised range of optimum 
values of c is found to be between c = 0.3–1.0 based on δΔRange50 and 
δΔRange90 analyses on a separate independent patient cohort. This range 
of c values could allow generalisation for further application in other 
patient cohorts. Compared to a model from a benchmark study (c = 1.0), 
a cohort-specific value of c = 0.4 enabled tighter and more consistent Ers 
percentile lines. The c = 0.4 model also demonstrates robust, long-term 
prediction ability, where the model can accurately predict >90% (me
dian) of actual patient Ers. Optimisation of the KDE parameter provides 
an optimum balance between data overfitting and model over
estimation, enabling more accurate and robust Ers stochastic models. 
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