

Aerofracturelastic: A study on the Interaction of Crack and Aeroelastic Instability of Aircraft and Lifting Surfaces

Lt Ts. Dr. Nur Azam bin Abdullah CEng MIMechE PSSTUDM

Assistant Professor

Department of Mechanical and Aerospace Engineering International Islamic University Malaysia (IIUM) Kuala Lumpur, Malaysia

6 July 2023

Research Motivation

Research significance

North American P-51D Mustang at National Championship Air Races in Reno/Stead Airport, Nevada, USA

Sources of the photos:

- 1. <u>https://www.washingtontimes.co</u> <u>m/news/2011/sep/17/3-dead-</u> <u>more-50-hurt-nev-air-race-crash/</u>
- 2. <u>https://www.timesunion.com/new</u> <u>s/article/P-51-studied-in-horrific-</u> <u>crash-2176216.php</u>

- Pilot and other 10 people dead
- 64 people faced serious injury

NTSB Forensic Report

- Existing fatigue crack in one screw.
- Caused elevator trim tab stiffness been reduced.
- Has triggered aerodynamics flutter to be happened at racing speeds.

-National Transportation Safety Board (NTSB) (2012)

12/20/2023

Research Motivation

1

Research significance

Research Motivation

1

Research significance

Fracture numerical approach? - XFEM

1st objective:

To model transversal crack and delamination of laminates using XFEM.

Fracture study

*study the sample of carbon fiber laminates by Hallet et al. (2008)

Experimental results of crack and delamination

Symmetrical model of present composite structure

XFEM Enrichment function

Abdullah, N.A et al. , Vol. 173, pp. 78–85 Composite Structures (2017)

Fracture study

The expected strength (analytical), experimental by Wisnom et al. (2008) & failure stress - present work (XFEM) **Expected strength** Experimental Failure stress -Case (MPa) (MPa) present work Lay-up (Mpa) 842 1076.36 1 1074 $(45 / 90 / -45 / 0)_s$ (452/902/-452/02) 692.47 2 642 660 3 $(45_4/90_4/-45_4/0_4)$ 454 541 546.59

Strain contour of transversal crack and delamination – bottom view

12/20/2023

Size effect

Fracture study

Abdullah, N.A et al. , Vol. 173, pp. 78–85 Composite Structures (2017)

12/20/2023

Research highlights

- This is the first time that transversal crack and delamination of laminates successfully modelled by using XFEM.
- The first time that the size effect on the addition of same ply orientation blocked together using XFEM successfully assessed.

Publication:

Abdullah NA, Curiel-Sosa JL, Taylor ZA, Tafazzolimoghaddam B, Vicente JLM, Zhang C. *Transversal crack and delamination of laminates using XFEM*. Vol. 173, pp. 78-85. Composite Structures (2018)

Revision of the problem

Research significance

North American P-51D Mustang at National Championship Air Races in Reno/Stead Airport, Nevada, USA

- 1. <u>https://www.washingtontimes.co</u> <u>m/news/2011/sep/17/3-dead-</u> <u>more-50-hurt-nev-air-race-crash/</u>
- 2. <u>https://www.timesunion.com/new</u> <u>s/article/P-51-studied-in-horrific-</u> <u>crash-2176216.php</u>

- Pilot and other 10 people dead
- 64 people faced serious injury

NTSB Forensic Report

- *Existing fatigue crack in one screw.*
- Caused elevator trim tab stiffness been reduced.
- Has triggered *aerodynamics flutter* to be happened at racing speeds.

-National Transportation Safety Board (NTSB) (2012)

Based on the research motivation \rightarrow How Could Fracture Affect Flutter?

2nd objective:

To develop and validate the flutter solution, and at the same time investigate the flutter effect on cracked composite plates with different fiber orientation.

Definition of flutter

What is flutter?

- Flutter can deform an aircraft due to dynamics instability (Potkafiski, 1986).
- Flutter as the state or a phenomenon of flight instability which can cause structural failure due to the loss interaction of aerodynamics, elastic and inertia forces (Kehoe, 1995).

Flutter assessment

pk-method of flutter solution

Structural Modelling

Aerodynamics modelling of for coupling FE-DLM

Figure 4.16: Comparison of aerodynamic modelling technique between Doublet Lattice Method and Strip theory for without crack and with crack specimen

12/20/2023

V-g plot: Flutter speed determination for $\theta = 0^{\circ}$

Abdullah, N.A et al., Composite Structures (2018)

 $1.29 \times 10^4 - 1.57 \times 10^3 i$

Normalized flutter speeds with respect to the crack ratio (DLM) for case $\theta = 0^{\circ}$, $\theta = 90^{\circ}$ and $\theta = 135^{\circ}$

 Q_{22}

12/20/2023

Research highlights

- This is the first time that the flutter of cracked composite plate was assessed via FE-DLM.
- Successfully explained the scientific reason of the flutter increment subjected to the existence of small crack ratio → increment of the stiffness system

Research question

Is the crack propagates before it reaches the flutter speed?

If Yes, means that the previous analysis procedure is correct, but it needs some revisions. If No, means previous analysis is correct and needs no revision.

Why?

Because the crack is assumed to be static (based on Wang et al. 2008), while in reality its propagates with the increment of speed

Supportive argument

Aeroelastic response for cantileved composite laminate plate

• Strganac, T. W., Kim, Y.I., "Aeroelastic Behavior of Composite Plates Subject to Damage Growth," AIAA Journal, Vol. 33, No. 1, 1996, pp. 68-73

- The stress level is larger for the flow conditions associated with the higher dynamics pressure
- Damage will occur at a faster rate as the dynamic pressure is increased

Based on that doubt:

3rd objective:

To investigate the crack propagation subjected to aerodynamic loads at several specific flight regions before flutter is expected to occur.

12/20/2023

Stress tensor plots on cracked composite 0° at 71.89 m/s [unit: kPa]

1.04-007

8.55-008 6.67-008

4.80-008

2.92-008

Stress tensor plots on cracked composite 135° at 61.51 m/s [unit: kPa]

7.56-010

4.84-010

3.48-010

2.12-010

7.60-011

(e) t = 5.0 s

12/20/2023

(d) t = 3.75 s

a) Bottom view: before interaction with aerodynamic loads

b) Bottom view: After interaction with aerodynamic loads

Research highlights

- Establishment of a novel scheme in developing a fracture mechanism on a cracked composite plate under aerodynamic loads by means of XFEM.
- 0° cracked composite plate has partially failed due to crack propagation first instead of the flutter failure.
- However, a contradict observation was found for the 135^o composite plate where it failed due to the flutter.

- Could the novel scheme applied to the real wing box?
- How about the crack on the wing box subjected to gust loads?

4th objective:

To develop a fracture mechanism on wing box subjected to aeroelastic gust loads.

71

Solid element: wing skin Lump mass: engine & control surfaces

Wing box model of N219

Flutter speed validations: Experimental and modelling

Indonesian N219 commuter aircraft *photo retrieved from https://www.ndhi-bumn.id/product/n219

	Flutter results (M	laximum take-off weight	configuration)
Parameter	Experimental	Stick model	Shell plate
	(wind tunnel test)	(FE-Strip)	(FE-DLM)
Vibration Mode	Torsion	Mode 4 Wing torsion	Mode 4 Wing torsion
Flutter speed	40 m/s (1:10 true scale)	767 KTAS (395 m/s)	400 m/s

12/20/2023

Flutter speed validation: Exp. & Sim.

1.25-002 6.27-003

Front view: Wing torsion mode at flutter speed demonstrated in wind tunnel as the right wing CASR23, \CASR Part 23 Amdt. 2, Part 23. Airworthiness Standards: Normal, Utility, Acrobatic, and the Commuter Category Airplanes," tech. rep., Ministry of Transportation, Republic of Indonesia, 09 2014.

	Flutter results (Maximum take-off weight configuration)		
Parameter	Experimental	Stick model	Shell plate
	(wind tunnel test)	(FE-Strip)	(FE-DLM)
Vibration Mode	Torsion	Mode 4 Wing torsion	Mode 4 Wing torsion
Flutter speed	40 m/s (1:10 true scale)	767 KTAS (395 m/s)	400 m/s

Plot Velocity vs Frequency

V-f plot of the commuter aircraft wing

Front view: Flutter response on torsional mode modelled as the left wing

V-g plot of the commuter aircraft wing

Stress analysis and FSF

Focus view: stress tensor under gust loads for V_B = 140 KEAS [unit: kPa]

Wing tip periodic motions represent via Fourier Series Function at V_B = 140 KEAS

Fracture assessment – stress contour

Final state: near wing root (lower-front skin) results on fracture behavior via XFEM [unit:kPa]

Stress plot: near wing root (lower-front skin) results on fracture behavior via XFEM [unit:kPa]

Research highlights

- The fracture study was applied to the modelled wing box, which is quite complicated.
- This is the first time that the crack propagations successfully demonstrated under the influence of gust loads via XFEM.

THANKYOU for your ATTENTION

APPENDIX

Structural Modelling – Mean Field Homogenization

Mean field homogenization by Mori-Tanaka Method

Current progress

% difference of expected strength & experimental results by M. R Wisnom et al. (2008)

Case	Lay-up	Expected	Experimental	Difference
		strength	(MPa)	%
		(MPa)		
1	$(45/90/-45/0)_s$	1074	842	21.6
2	$(45_2/90_2/-45_2/0_2)_s$	642	660	2.8
3	$(45_4/90_4/-45_4/0_4)_s$	454	541	19.2

%difference the expected strength by M.R Wisnom et al. (2008) & failure stress - present work

Case	Lay-up	Expected	Failure	Difference
		$\operatorname{strength}$	stress-	%
		(MPa)	present	
			work	
			(MPa)	
1	$(45/90/-45/0)_s$	1074	1076.36	0.2
2	$(45_2/90_2/-45_2/0_2)_s$	642	692.47	7.86
3	$(45_4/90_4/-45_4/0_4)_s$	454	546.59	20.39

% difference of experimental by M.R Wisnom et al. (2008) & failure stress-present work

Case	Lay-up	Experimen	ntFailure stress-	Difference
		(MPa)	present	%
			work(MPa)	
1	$(45/90/-45/0)_s$	842	1076.36	27.83
2	$(45_2/90_2/-45_2/0_2)_s$	660	692.47	4.92
3	$(45_4/90_4/-45_4/0_4)_s$	541	546.59	1.03

Fracture study

Experimental results of crack and delamination

Symmetrical model of present composite structure

Carbon fiber composite elastic properties used in the XFEM analysis

Parameter	Value
$\mathbf{E_1}$	161 GPa
$\mathbf{E}_2 = E_3$	$11.38 \mathrm{~GPa}$
$\mathbf{G}_{12}=G_{13}$	$5.17 \mathrm{~GPa}$
G ₂₃	$3.98 \mathrm{~GPa}$
$v_{12} = v_{13}$	0.32
v_{23}	0.436

Yield stress used in XFEM analysis taken from Corum et al. (2000) and Ibtihal-Al-Namie et al. (2011)

Material	Angle	Maximum principal stress (MPa)
ICMF	0	476
ICMF	45	149
ICMF	90	476
ICMF	-45	149
Epoxy	NIL	50.2

Fracture toughness value of carbon fiber composite laminate by Pinho et al. (2006) and Ibtihal-Al-Namie et al. (2011)

Layer	$G_{lc} ({\rm J/m^2})$
Carbon fiber	91.6
Epoxy matrix	1.7

12/20/2023

APPENDIX

Structural Modelling

APPENDIX

Structural Modelling

Vibrational analysis

Abdullah, N.A et al., Composite Structures (2018)

Material properties of graphite- fiber reinforced polyimide
composite

Modulus of elasticity	$E_m = 2.76 \text{ GPa}$	$E_f = 275.6$ GPa
Poisson's ratio	$\nu_m = 0.33$	$\nu_f = 0.2$
Shear modulus	$G_m = 1.036$ GPa	$G_f = 114.8 \text{ GPa}$
Mass density	$\rho_m = 1600 \ kg/m^3$	$\rho_f = 1900 \ kg/m^3$
Fiber volume fraction	V = 0.5	

First eight frequencies from modal analysis by Wang et al. (2005) for $\theta = 0^{\circ}$

Mode	1st (Hz)	2nd (Hz)	3rd (Hz)	4th (Hz)
Bending	6.94	43.47	121.71	238.49
Torsion	62.81	197.45	329.08	460.71

Fir	First eight frequencies from modal analysis by present wor for $\theta = 0^{\circ}$				
	Mode	1st (Hz)	2nd (Hz)	3rd (Hz)	4th (Hz)
	Bending	5.87	36.59	102.87	203.02
	Torsion	60.54	184.23	315.74	460.00
(a) 1s	t mode: 5.87 Hz	(b) 2nd mode: 36	5.59 Hz (c) 3rd	d mode: 60.54 Hz	(d) 4th mode: 102.87 Hz
~			>		
(e) 5th	mode: 184.23 Hz	(f) 6th mode: 203	3.02 Hz (f) 7th	1 mode : 315.74 Hz	(g) 8th mode: 460.00 H;

First 8 vibration modes for $\theta = 0^{\circ}$

Flutter speed plot – crack location analysis

Abdullah, N.A et al., Composite Structures (2018)

Normalized flutter speeds with respect to the crack location ($\eta = 0.2$) for case $\theta = 0^{\circ}, \theta = 90^{\circ}$ and $\theta = 135^{\circ}$

Comparison of DLM and Strip theory ($\eta = 0.2$) for normalized flutter speeds with respect to the crack location for case $\theta = 0^{\circ}$, $\theta = 90^{\circ}$ and $\theta = 135^{\circ}$

Flutter response modes – crack ratio analysis

Abdullah, N.A et al., Composite Structures (2018)

Flutter response modes for case $\theta = 0^{\circ}$ with variation of crack ratio

Flutter speed plot – crack location analysis

Abdullah, N.A et al., Composite Structures (2018)

Comparison of DLM and Strip theory ($\eta = 0.6$) for normalized flutter speeds with respect to the crack location for case $\theta = 0^{\circ}$, $\theta = 90^{\circ}$ and $\theta = 135^{\circ}$

APPENDIX

Spline Method- Coupled FE & DLM

$$C = \begin{bmatrix} 6.8503 & 3.1437 & 0 \\ 3.1437 & 6.805 & 0 \\ 0 & 0 & 2.646 \end{bmatrix} X \ \mathbf{10^3} \text{ MPa}$$

Designed flight envelope diagram based on FAR 23

Unidirectional cracked composite plate 0°

Unidirectional cracked composite plate 135°

12/20/2023

Fracture assessment for 0^o composite plate

Crack modelling by means of XFEM at 71.89 m/s [magnitude unit:mm]

Crack modelling by means of XFEM at 107.84 m/s [magnitude unit:mm]

Fracture assessment for 135^o composite plate

Crack modelling by means of XFEM at 61.51 m/s [magnitude unit:mm]

Crack modelling by means of XFEM at 92.27 m/s [magnitude unit:mm]

. Max. Princip

E, Max, Principa

(Avg: 75%)

8.064e-0

(Avg: 75%)

Lower surface

Lower surface