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Abstract 

Epilepsy is a condition that disrupts normal brain function and sometimes leads to seizures, unusual 

sensations, and temporary loss of awareness. Electroencephalograph (EEG) records are commonly 

used for diagnosing epilepsy, but traditional analysis is subjective and prone to misclassification. 

Previous studies applied Deep Learning (DL) techniques to improve EEG classification, but their 

performance has been limited due to dynamic and non-stationary nature of EEG structure. In this 

paper, we propose a multi-channel EEG classification model called LConvNet, which combines 

Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term Memory 

(LSTM) for capturing temporal dependencies. The model is trained using open source secondary EEG 

data from Temple University Hospital (TUH) to distinguish between epileptic and healthy EEG signals. 

Our model achieved an impressive accuracy of 97%, surpassing existing EEG classification models used 

in similar tasks such as EEGNet, DeepConvNet and ShallowConvNet that had 86%, 96% and 78% 

respectively. Furthermore, our model demonstrated impressive performance in terms of trainability, 

scalability and parameter efficiency during additional evaluations. 
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I INTRODUCTION 

Epilepsy is a temporary disturbance in the normal functioning of the brain that often results 

in seizures or unusual sensation and occasionally, loss of awareness. The condition is 

diagnosed using an Electroencephalography (EEG) test, which involves placing metal 

electrodes on or inside the skull to detect electrical pulses representing brain activities.  EEG 

test records brain’s rhythm as continuous electrical wave frequencies over time, measured in 

seconds (Hertz) vs amplitude measured in microvolts. The presence of distinctive rhythmic 

waves with specific morphologies in the EEG, known as epileptiform activity, may indicate 

epilepsy [1]. 
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          Traditional interpretation of EEG relies on Human Expert Judgement, which is prone to 

bias and can lead to misdiagnosis. About 30% of patients seen at specialized epilepsy clinics in 

America are misdiagnosed [2]. In addition, due to time-limited nature of EEG, subsequent tests 

cannot cancel the previous ones exacerbating the consequences of misdiagnosis. This has led 

to increased interest in epilepsy monitoring, detection and prediction using Deep Learning 

(DL) techniques. 

         DL Sequence models such as RNN’s, LSTM, GRUs and Transformer Networks gained 

popularity for language modelling due to their ability to analyze time series data. These 

models represent each word in a sequence as token and performs mapping to a low level 

fixed-length vector space, learning context information and place similar tokens closer to one 

another. Representing Continuous time series data like EEG proves challenging due to 

ambiguity in determining tokens. Researchers have attempted to resolve this issue using 

segmented windows, scalograms sequence, spectrograms and motifs in time series mining to 

learn relevant temporal features for EEG representation, but still, this fails when interesting 

pattern lies hidden within common patterns in the sequence [3]-[5]. Moreover, Sequence 

models lacks the capability for good generalization for spatial information inherit within EEG 

data. 

        Originally, Convolution Neural Network (CNN) was designed for computer vision due to 

its ability to learn spatial information, however, recent research have enable to apply CNN for 

classification of various data formats. In EEG signal processing, CNN have been used to learn 

spatial features that are characteristics of different EEG signals in classification tasks. 

       This study suggests a method to enhance the classification of EEG signals by combining an 

RNN-based sequence modelling technique such as LSTM with a CNN model. The aim is to 

enhance the classification performance of EEG tasks while taking advantage of LSTM’s 

capacity to identify temporal dynamics and CNN’s capability to extract spatial patterns. 

A. CONTRIBUTION OF THE STUDY 

This study makes contribution to the fields of Brain Computer Interactions (BCI) and Signals 

processing by proposing LConvNet Model, a novel approach that combines the strengths of 

recurrent neural network (RNN) based sequence modeling techniques, such as Long Short-

Term Memory (LSTM), and convolution operation. By leveraging LSTM's ability to capture 

temporal dynamics and Convolutional Neural Network (CNN) capability to detect spatial 

patterns.  The proposed method   proved successful in enhancing EEG classification by 

outperforming existing models developed for similar EEG classification task. 

II RELATED WORK 

A. EEG BRAIN RHYTHMS AND EPILEPTIFORM 

An epileptic seizure, is a temporary occurrence of abnormal excessive brain activity, causing 
an imbalance of excitatory and inhibitory forces [6]. It can either be focal or generalized, with 
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symptoms such as loss of consciousness, uncontrolled movement and unusual sensations. 
Focal seizures are caused by abnormal activities in a specific part of the brain and is further 
classified as simple or complex partial seizure, whereas, Generalized seizures affect the entire 
brain and can be categorized into Tonic, Atonic, Clonic, Myoclonic and Tonic-Clonic 
(Convulsive) seizures [7],[8].  
          The primary test for detecting epilepsy is the Electroencephalography (EEG). EEG 
records electrical activities in the brain using metal electrode discs and presents the data as 
signals [9]. In a normal brain, EEG readings show four different patterns; Alpha waves (8 to 12 
Hz) are seen in inattentive brain, drowsiness; Beta waves(15 to 60 Hz) depicts an alert brain; 
Delta waves (1 to 5 Hz) are common in childhood during waking up and in adults mostly in 
sleep. Theta waves (4-8 Hz) are witnessed in children below the age of five years [8]. Several 
EEG morphologies may suggest non-epileptic brain rhythms which may suggest abnormal 
cerebral functions without specific etiology, yet others are noise commonly known as 
artifacts. 
              Epileptiform activities are brain rhythm abnormalities that could be associated with 
seizures but usually require clinical correlation [10]. Misdiagnosis of epilepsy can have severe 
consequences since EEG test is time bound, subsequent test cannot rule out previous one. 
 
B. SIGNALS PREPROCESSING AND REPRESENTATION 
Analyzing bio signals such as EEG is complex due to its nonstationary and nondeterministic 

nature [11], [12]. To improve the performance of DL models in subsequent stages of data 

analysis, thorough signal preprocessing is crucial. Various preprocessing techniques have 

been proposed including the use of; Hybrid feature extraction algorithms [13], Independent 

Component Analysis [14], Fast Fourier Transform [15], Discrete Wavelet Transform [16], 

Eigenvector [17] and Autoregressive Techniques [18] depending on subsequent analysis task 

and expected outcome. 

            Enhancement of approaches in DL have seen several studies applying different models 

in studying EEG data for purposes of understanding brain temporal and state dynamics [19]-

[21]. DL algorithms are incapable of high-level language processing, hence, rely on numerical 

operations for purposes of representation. In Language modelling, tokenization techniques 

such as word embedding improved generalization of Sequence to Sequence models for 

Natural Language Processing applications [22]. Representation for non-obvious sequence 

data still presents challenges due to ambiguity in tokenization [23]. Attempts to resolve this 

include converting raw signals to meaning representation that can be used for downstream 

tasks [24], [25]. CNN have emerged as credible competitors in one dimensional tasks such as 

audio, text and time series analysis [17]. Some CNN-based models have proved successful in 

deriving good feature representation based on distinct characteristics of input signals in Brain-

Computer Interface challenges [26], [27].  

C. CLASSIFICATION OF EEG SIGNALS 

Earlier techniques used for EEG signal classification relied on raw time-domain EEG data 

manipulation with traditional statistical methods such as mean, standard deviation, 
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probability and normal distribution [28], [29]. Frequency Domain techniques such as power 

spectral density and spectral entropy improved classification tasks by leveraging on spatially 

mapping EEG features from different frequency bands [30], [31].  Frequency Domain Features 

yields richer representation of EEG signals by extracting more relevant latent features from 

its spatial space, however fails in representation of temporal information. With the 

advancement of Deep Learning (DL), various architectures such as CNN and RNN have been 

proposed for EEG classification. These have demonstrated high accuracy in classifying EEG 

signals for various applications [32].  

For further improvement, some studies proposed hybrid approaches that combine 

multiple techniques and algorithms such as combination of time-domain and frequency-

domain features, hybrid and even ensemble algorithms to achieve better performance [33]. 

However, despite many examples of impressive progress, there’s still much room for 

improvement and research in this field to develop more accurate and efficient EEG 

classification methods. 

Shallow Convolution Networks (ShallowConvNets) are a type of CNN architecture that 

performs image classification tasks using fewer layers and small filters making them 

computational efficient and deployable on mobile and embedded devices [34].  

ShallowConvNets have also been applied to other applications including EEG decoding and 

classification tasks [35], [36]. Deep Convolution Neural Networks (DeepConvNets) 

architecture, on the other hand, have been highly successful in computer vision tasks, 

including image classification, object detection and segmentation. Notable DeepConvNets 

include Unet [37] and Inceptionet [38]. Unlike ShallowConvNets which has smaller number of 

layers, DeepConvNets are characterized by a large number of convolution layers which enable 

them to learn hierarchical representation of the input data with much finer detail. 

Majority of CNN architectures have typical structure consisting of inputs, kernels, 

pooling layers, and output (feature maps) for analyzing image data. In the case of time series 

signals such as EEG, CNN performance is limited due to: 

i. Specific characteristics of EEG data: EEG signals are time series whereas images are 

spatial in structure, rendering it difficult for extraction of useful features. 

ii. High noise to signal ratio: EEG data are often contaminated with various types of noise 

and artifacts making it difficult for CNN to distinguish. 

iii. Temporal Dynamics: EEG signals are dynamic in nature and the patterns of neural 

activity can change rapidly over time which make it difficult for static nature of CNN 

operations to capture temporal dynamics of EEG signals 

   To mitigate against the following limitations, a number of researchers resolved in 

application of CNN to EEG data by spatial mapping using spectrograms or images. However, 

such representations discards temporal information which is useful for classification 

purposes. Recent publications in Brain Computer Interface (BCI) field demonstrated that 

different types of convolutions operations can enable extraction of various important EEG 



5 
 

features. EEGNet [39] investigated the roles of Separable Convolution network for spatial 

mapping of EEG features using several BCI tasks and achieved impressive results. 

  Researchers such as [40], investigated the impact of design architectural choices and 

training strategies in shallow and deep convolution networks, along with the use of machine 

learning techniques like batch-normalization and exponential linear units, on the decoding 

accuracies of EEG signals. Their study demonstrated improved performance surpassing widely 

used spectral power modulation EEG algorithms. 

In this paper we propose a multi-channel EEG classification model, called LConvNet 

that combines functionalities of CNN and LSTM algorithms for classification of EEG data. 

Whereas CNN learns spatial features; LSTM in conjunction with the time distributed flatten 

and dense layers, captures and processes long term dependencies from the temporal EEG 

data. Subsequently, global average pooling layer is applied to summarize the learned features 

from the input tensor into fixed length vector which are concatenated with outputs from 

CNN-LSTM for deeper spatial and temporal features’ representation. We have demonstrated 

that, our hybrid model improve EEG classification by outperforming existing EEG classification 

models such as EEGNet [39], ShallowConvNet and DeepConvNet [40] in performance and 

efficiency. To the best of the author’s knowledge, this is the first implementation of LSTM-

CNN in binary classification of EEG data. 

III. MATERIALS AND TOOLS 

A. EXPERIMENTAL SETUP 

Data access from TUH database was done through MobaXterm toolbox for remote 

computing. Data was saved in .EDF format. Visualization, preprocessing, feature extraction 

and classification was implemented through Python programming, MNE version 1.2.2 

environment, with Tensorflow and Keras platforms. The machine components consisted of 

Paperspace Gradient IDE, NVIDIA A4000 Graphics, 45 GB storage space and 8CPU/16GPU 

RAM. 

B. DATASET AND PREPROCESSING 

This study uses open source TUH EEG Epilepsy Corpus (TUEP) v2.0.0, all procedure conducted 

pertaining to the dataset is in accordance with the Declaration of Helsinki and conforms to 

the HIPAA Privacy rule [41]. EEG data was arranged in two classes of 49 epileptic and 49 non-

epileptic sessions with varied durations, sampling frequencies and number of channels all 

saved in .EDF format.  

During preprocessing, all EEG channels were first set to average reference to enable 

ease in approximation by obtaining the difference between the electric potential of signal in 

its location and the average of all channels using the following equation: 

𝑌(𝑡) =  𝑥𝑖(𝑡) −  𝑚𝑒𝑎𝑛(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) 



6 
 

This was followed by resampling at the rate of 128Hz for the purpose of improving quality and 
reliability using:  
 𝑦[𝑖] =  𝑥[𝑟𝑜𝑢𝑛𝑑(𝑖 ∗ 𝑟)] 
 
Where x is the original data, i is the index of the sample, y is the output resampled data, r is 
the ratio of new sampling rate to the original sampling rate, and round() is the nearest integer 
function. 

We then apply band-pass filtering between 1 and 45Hz respectively for noise reduction 
and artifact correction using MNE’s Finite Impulse Response [42] to selectively pass 
frequencies within a certain band , application of Independent Component Analysis (ICA) to 
achieve the same especially in removal of eye movement artifacts yielded no further 
improvement in the context of this study. Further, all data was cropped between 1 to 200 
seconds for uniformity. None-EEG signals used for triggering seizure and measuring pulses 
such as Photic and Electrocardiogram (ECG) were removed. The data was then segmented 
into fixed equal duration windows of 2 seconds each referred to as epochs to improve 
interpretability of the data through detection of specific events or stimuli within the signals 
using:   

𝑦𝑖[𝑛] =  𝑥[𝑖 ∗ 𝑁 +  𝑛] 

 
Where x represents continuous EEG data, i represents the index of the epoch or window, N 
represents the length or duration of each epoch or window and n represents the index of the 
sample within each epoch or window. Principal Component Analysis (PCA) was applied for 
dimensionality reduction at a standard 25 signals components using: 

 
𝑋 =  𝑈𝑆𝑉𝑇 

 
Where X is the signal’s matrix, U is matrix of principal components, S is the diagonal matrix 
and VT is the matrix of loadings. 

Finally, the output from preprocessing stage is converted into a 3D array for 

subsequent analyzing steps. FIGURE 1 shows a sample of raw EEG data (A) and its output (B) 

after preprocessing operations from an epileptic class. 
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 FIGURE 1 EEG Record.  (A) Raw Data,  (B) Preprocessed Data 

 

C. ARCHITECTURE OF LCONVNET MODEL 

Our LConvNet model constitute CNN and LSTM components for extraction of spatial features 

and temporal dependencies respectively from preprocessed EEG data for the purpose of 

performing binary classification of epilepsy and healthy classes. 

1) CNN Component 

The CNN component takes EEG epochs converted to 3D input tensor X of shape (nsamples, 

ntimesteps, nchannels) where nsamples refers to number of EEG samples,  ntimesteps refers 

to number of EEG time steps and nchannels is the number of EEG channels derived from 

previous preprocessing step where X = {x1, x2. . . ., xn}. From this, we derive spatial rich feature 

maps using three convolution layers with incrementing filter sizes (16, 32, 64) and kernels (3x3, 

5x5, 7x7) denoted using the following convolution equation, where x is the input sample, i is 

an instance of the samples, w and b are convolution weights and bias respectively, Relu 

activation function f is used:  
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𝑓 ( ∑ ∗

{𝑁}

{𝑖=1}

 (𝑤, 𝑥) +  𝑏) 

We increment convolution filters by a factor of 2 as explained to allow capturing 

features from high temporal resolution inherited in sampling frequency of 128 used during 

preprocessing, this proved effective in past similar tasks [39], and in addition, this enables the 

model to capture patterns at different scales from the input data. Smaller filters such as 16, 

capture finer frequency details and edges, whereas larger filters such as 64 capture more 

global patterns and structures. The choice of the kernel sizes determine the receptive field, 

which is the area of the input that it considers when computing the output. The choice of 

kernel sizes is based on the tradeoff between capturing fine details and edges versus 

capturing larger patterns and structures of the input data. This, choice of filters and kernels is 

designed not only to capture data at different scales but, subsequently, allowing the model 

to learn representations that are robust to variation in the input. Relu activation function (f) 

is applied to convolution layers to reduce nonlinearity, dropout operation to reduce 

overfitting while same padding and max pooling to maintains spatial dimension. 

The output from the CNN layer is then passed to a Time Distributed Flatten Layer (T) 

that flattens the output of the CNN component across time-steps to produce a 2D feature 

map then send the same to a Time Distributed Dense Layer that applies a dense neural layer 

with 64 units to each time step of the flattened feature map (M), hence 

M = T(Y ) 

2) LSTM Component 

Application of LSTM in this study is to enhance subsequent classification task by 

complementing CNN spatial features with EEG temporal dependencies. The input M derived 

from previous convolution and time distribution operations is split into 64 LSTM time steps 

(t), we find 64 to produce best results. At each timestep t, the LSTM layer takes two inputs: 

the current input vector x(t) and the previous hidden state a(t-1). Using these inputs, it 

computes three gates – the forget gate, the update gate and the candidate memory. The 

following equation depicts computation of unidirectional LSTM layer as is applicable to our 

model. 

𝑓𝑟(𝑡) =  𝜎(𝑊𝑓[𝑎(𝑡 − 1), 𝑥(𝑡)] + 𝑏𝑓) 

𝑢𝑟(𝑡) =  𝜎(𝑊𝑢[𝑎(𝑡 − 1), 𝑥(𝑡)] +  𝑏𝑢) 

𝑐̃(𝑡) =  𝑡𝑎𝑛ℎ(𝑊𝑐[𝑎(𝑡−1),𝑥(𝑡)] +  𝑏𝑐) 

𝑐(𝑡) =  𝑓𝑟(𝑡) ⊙ 𝑐(𝑡 − 1) +  𝑢𝑟(𝑡) ⊙ 𝑐̃(𝑡) 

𝑜𝑟(𝑡) =  𝜎(𝑊𝑜[𝑎(𝑡−1),𝑥(𝑡)] +  𝑏𝑜) 

𝑎(𝑡) =  𝑜𝑟(𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝑐(𝑡)) 
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Where: 𝑓𝑟(𝑡) is the forget gate, 𝑢𝑟(𝑡) is the update gate, 𝑐̃(𝑡) is the candidate memory,  𝑐(𝑡) is 

the new memory, 𝑜𝑟(𝑡) is the output gate, 𝑎(𝑡) is the hidden state, Wi and bi are corresponding 

weights and bias. 
 
3) Concatenation 
Subsequently, the input tensor X is passed to 1D Global Average Pooling Layer along the time 
axis to obtain an average of each feature across the time dimension using the following 
equation.  

Pi =  (
1

𝑇
) ∗ ( ∑ Xit

{𝑇}

{𝑡=1}

) 

The resulting vector Pi represents the ith feature of the tensor P. T is the sequence 

length in the input tensor X.  Xit denotes the value of the ith  feature at time step t in the input 

tensor X. P is of the same shape as the hidden state a(t) calculated previously by the LSTM 

operation. Besides producing informative information pertaining to input data, we discovered 

that, in addition, the global average pooling operation helped in inhibiting overfitting by 

reducing spatial dimensions of the input, hence introducing a form of regularization. The 

output tensor P is then concatenated with hidden state a(t) to produce tensor C using 

equation:          𝐶 =  ( 𝑎(𝑡)&  𝑃) 

This step allows the spatial features captured by the CNN component to be combined 

with the temporal dependencies captured by the LSTM component. 

4) Dense Neural Network 

The resulting concatenated Tensor is then passed through a final dense neural network with 

a sigmoid function for binary classification. The dense layer’s equation is:  

 𝑌 =  𝜎(𝑤 ∗ 𝐶 +  𝑏) 

Where Y is a 2 dimension matrix, σ is a sigmoid activation function, w is a 3 dimension weight 
matrix of shape = (nlstmunits, nchannels, nclasses), C is a 2 dimension concatenation results 
of   the CNN-LSTM components output and output from the global average pooling layer, 
while b is a 1 dimension  vector of shape = (nclasses). Multiplication operation (∗) between w 

and C is achieved through broadcasting. FIGURE 2 shows the architecture of our LConvNet 

model as described in this section. 
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FIGURE 2. Architecture of LConvNet Model 

The model is finally compiled using Adam optimizer of 0.0001 and binary cross entropy loss 

function as shown in the following equation.  

 −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) 

Where y is the actual classification for an observation and p the predicted observation. 

D. MODEL TRAINING 

For the classification task, we employed a stratified approach to divide the data into training 

and validation sets with a 20% split, ensuring a balanced representation of both classes. The 

data was then normalized to have a mean of 0 and a standard deviation of 1. During training, 

a batch size of 128 and 200 iterations/epochs were chosen. These parameters were selected 

based on their ability to maximize efficiency, effectiveness, and prevent overfitting, resulting 
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in optimal performance. TABLE 1, shows the components of our LConvNet model after 

training. 

TABLE 1. LConvNet Architecture Input and Output Components 

Layers Input  (nsamples 
ntimestep, 

n_channels) 

Operations Output Shape No. of 
Parameters 

 (1, 256, 25) Reshape (1, 25, 256, 1) 0 

1  
(1, 25, 256, 1) 

Conv2D, Filter @ (3*3), Kernels 
@ 16, MaxPooling2D @ (2,2), 
Padding =same, Activation = 
Relu 

 
 (1, 12, 128, 16)  

 
160 

2  
(1, 12, 128, 16) 

 

Conv2D_1,  Kernels @ 32, 
Filters @ 5*5, MaxPooling2D @ 
(2*2), Padding =same, 
Activation = Relu 

 
(1, 6, 64, 32) 

 

 
12832 

3  
(1, 6, 64, 32) 

 

Conv2D_2, Kernels @ 64Filters 
(7*7),MaxPooling2D @ (2*2), 
Padding =same, Activation = 
relu Dropout (rate = 0.5) 

 
(1, 3, 32, 68) 

 
106692 

4         (1, 3, 32, 68) TimeDistributed(Flatten)  (1, 3, 2176) 0 

5 (1, 3, 2176) TimeDistributed(Dense)(32)  (1, 3, 32) 69664 

6 (1, 3, 32) LSTM(32) (1,32) 8320 

7 (1,32) GlobalveragePooling1D (1,25) 0 

  Concatenate (1,57) 0 

8 (1,57) Kernel_Constraint=max_norm(
0.5) 

Dense (sigmoid) 

(None, 1) 58 

Total Parameters 197, 726 

 

E. EEG FEATURE EXTRACTION METHODS 

This section discusses three existing models that proved successful in extraction and 
classification of EEG data from previous literatures. The three models are used for comparison 
and benchmarking while evaluating our LConvNet model. 

1) Feature Extraction using EEGNet 
The inputs shape for EEGNet [39] model is taken as (C, T) where C is the number of EEG 
channels and T refers to EEG time steps. The architecture of the EEGNet consists of two main 
parts: EEGNet module and classification layer. EEGNet module is composed of three layers: 

i. Depthwise Convolution Layer with filter size (C, 1). The Kernel Length (K) is half the 
EEG Sampling Rate. This layer learns features that are specific to electrode channels, 
hence, this layer is capable of extraction of latent temporal features of the EEG even 
and up to low frequencies. 
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ii. Pointwise Convolution Layer with filter size (1, 1) that combines the output channels 
from previous layer. This reduces the dimensionality and allows for fewer training 
parameters making the model more efficient. 

iii. A Pooling layer that performs temporal aggregation across time dimension of the 
input data. This further reduces dimensionality while allowing extraction of relevant 
features. 
 

             For the purpose of our study, we substituted C with the number of preprocessed 

channels which equals to 25, T equals to 256 and K is half the sampling frequency we use which 

is 64. We substitute softmax with sigmoid for binary classification. 

2) Feature Extraction Using ShallowConvNet and DeepConvNet 

The ShallowConvNet proposed by [40] consists of a single convolutional layer, followed by 

average pooling layer and a fully connected layer. The convolution layer has 40 filters with 25 

time points, which allows the network to capture both spatial and temporal information from 

the EEG signals. Relu activation function is applied to prevent instability caused by vanishing 

gradient. After the convolution layer, the output is fed into a global average pooling layer, 

which averages the activation values across all of the temporal and spatial dimensions. This 

helps reducing the dimensionality of the data hence prevent overfitting. The output of the 

global average pooling layer is then passed to a fully connected layer with units which 

produces a probability distribution over the classes. 

The exact DeepConvNet architecture as proposed by [40] varies depending on specific 

EEG decoding but a common configuration consists of 4 to 5 convolution layers with 

increasing filter sizes, followed by batch normalization and dropout layers to prevent 

overfitting. The number of filters in each convolution layer increased from 25 to 100, allowing. 

DeepConvNet captures increasingly complex features. The filter sizes in the first two 

convolutional layers are set to 1 time points, while those of subsequent layers increased to 

capture large-scale features. The output is then passed to a global average pooling and fully 

connected layers for classification. 

IV. RESULTS 

A. PERFORMANCE EVALUATION 
To evaluate performance, we first tested models’ accuracies, precision, recall, f1 score and 
Macro-average F1, with a threshold of 0.7 on validation dataset using the following equations 
to derive subsequent analysis.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

𝑀𝐹1 = ∑ F1i𝐶

{𝐶}

{𝑖=1}

 

 
Where TP is True Positives, FP is False Positives, FN is False Negatives, TN is True Negatives, C 
is number of classes(2). TABLE 2 shows summary of the findings. 
 

TABLE 2. Performance Metric Values 

 LConvNet ShallowConvNet EEGNet DeepConvNet 

Accuracy 
 
 

0.97 0.78 0.86 0.96 
 

Class-wise Precision      0 
                                              1 

 
Macro-Avg Precision 

0.96 
0.99 
 
0.97 

0.69 
1.00 
 
0.85 

0.78 
0.99 
 
0.88 

0.93 
0.99 
 
0.96 

Class-wise Recall            0 
                                              1 

 
Macro-Avg Recall 

0.99 
0.95 
 
0.97 

1.00 
0.56 
 
0.78 

0.79 
0.98 
 
0.86 

0.99 
0.92 
 
0.96 

Class-wise F1-Score        0 
                                              1 

 
Macro-Avg Recall 

0.98 
0.97 
 
0.97 

0.82 
0.72 
 
0.77 

0.88 
0.84 
 
0.85 

0.96 
0.96 
 
0.96 

 
Accuracy measures the overall performance of the model in predicting both positive 

(1) and negative (0) classes. The higher the accuracy, the better the model’s performance. 
From the given metrics, we can see that our model LConvNet and DeepConvNet have the 
highest accuracies of 97% and 96%, respectively. EEGNet has an accuracy of 86% followed by 
the ShallowConvNet at 78% as depicted in TABLE 2. 

      Precision measures the proportion of true positives among all predicted instances. A 
higher precision means the model is good at identifying the positive classes. From the given 
metrics, we can see that LConvnet has the highest class-wise and macro-average precision for 
identification of both positive and negative classes of the validation dataset followed by 
DeepConvNet. ShallowConvnet and EEGNet has class-wise precisions and the smallest macro-
average precisions. Recall measures the proportion of true positives among all actual 
positives instances. The highest micro-average recall and proportional class-wise recalls are 
obtained by LConvNet and DeepConvNet. 

F1 score is the harmonic mean of precision and recall and a measure of the models’ 
overall performance. From the results shown in TABLE 2, the LConvNet has the macro-average 
F1 Scores, followed by DeepConvNet, EEGNet and ShallowConvNet. 
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The four models’ confusion matrices in FIGURE 3 shows the proportion of True 
Positives (second row, second column), True Negatives (first row, first column), False 
Positives (first row, second column) and False Negatives (second row, first column) for 
LConvNet (A), DeepConvNet (B), EEGNet (C) and ShallowConvNet (D).  

 
(A) 

 

(B) 

 
(C) 

 

(D) 

 

FIGURE 3 Confusion Matrices. (A) LConvNet, (B) DeepConvNet, (C) EEGNet and (D) 

ShallowConvNet 

     The Area Under a Curve (AUC) shows the overall performance of the model in 
distinguishing between positive and negative instances. AUC curve in FIGURE 4 shows 
comparison of the four models’ performance (models distinguished by graph color as shown 
in legend).  The higher the AUC value, indicates that the model has good discrimination ability 
and can separate the positive and negative samples well.  
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FIGURE 4 AUC for the four models for validation dataset 

      We further assess the level of agreement between the predicted and actual labels in 
each of the four models using Cohen’s Kappa (CK) and Mathew Correlation Coefficient (MCC) 
using the following equations. 

 

𝐶𝐾 =
𝑃𝑜 + 𝑃𝑒

1 − 𝑃𝑒
 

 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
Cohen’s Kappa measures the agreement between predicted and actual labels (𝑃𝑜) , adjusted 
for chance (𝑃𝑒), and ranges from -1(complete disagreement) and 1 (perfect agreement). 

LConvNet, with a CK value of 0.9639 indicates a very high level of agreement between 
the predicted and true labels, with a small margin of error. The MCC value of 0.9642 confirms 
this high level of performance, indicating a very strong correlation between the predicted and 
true labels as shown in TABLE 3. DeepConvNet model indicates a relatively high level of 
agreement with CK of 0.9520, the MCC value of 0.9523 confirms this level of performance. 
EEGNet and ShallowConvNet indicate good and moderate level of performance respectively 
when distinguishing between the predicted and true labels with good values of 0.7995 and 
0.7304 confirmed with MCC of 0.8058 and 0.7304 respectively. 

 
TABLE 3. Model’s agreement to actual and predicted labels 

 LConvNet ShallowConvNet EEGNet DeepConvNet 

Cohen Kappa 
 
MCC 

0.9639 
 
0.9642 

0.7304 
 
0.7527 

0.7995 
 
0.8058 

0.9520 
 
0.9523 
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      In addition, we compare the models’ robustness by assessing how well the models 
handle adversarial input samples. In this assessment, the adversarial samples are copies of the 
original input data manipulated by including perturbation generated using the Fast Gradient 
Sign Method (FGSM) attack with a perturbation epsilon (ϵ) of 0.01, for the purpose of causing 
intentional misclassification to the model. The equation for generating the adversarial 
validation data is as follows: 

y = x + ϵ ∗ sign (▽xJ (Θ, x, y)) 

 

Where y is the adversarial input, x is the input data, y is the ground truth label of the input 

data, ϵ denotes the degree for perturbation, a value of 0.01 is small enough to generate 

unnoticeable perturbation using human eye, which is desirable, sign() function ensures that 

the perturbation is aligned with the direction that maximizes the loss (i.e. the direction that 

makes the neural network most likely to make a mistake),▽ is the gradient of the loss 

function, Θ is our model, and J is the loss function.  

 
TABLE 4. Robustness Evaluation 

 LConvNet ShallowConvNet EEGNet DeepConvNet 

Original data Accuracy 
 
Adversarial d a t a  
Accuracy 
 
Accuracy Difference 

0.96 
 
0.53 

 
0.43 

0.48 
 
0.25 

 
0.23 

0.98 
 
0.48 

 
0.49 

0.90 
 
0.51 

 
0.39 

 ϵ = 0.01 

 

The models are evaluated based on their accuracy in correctly classifying the validation data. 

From TABLE 4, we can see that all four models have relatively higher accuracies on original 

validation dataset compared to adversarial validation dataset. This means that when the input 

data is not perturbed, the models can classify it with higher accuracy. However, on perturbed 

input data, the accuracy drops significantly, indicating lack of robustness against adversarial 

attacks. The degree of drops varies between models, with LConvNet and ShallowConvNet 

showing the least but significant drop in accuracy, while EEGNet and DeepConvNet 

performing relatively worst. 

In summary all four models performed well on the classification task, but LConvNet 

and DeepConvNet stand out with very high levels of performance, while EEGNet and 

ShallowConvNet have well to moderate levels of performance. 

 

B. TRAINABILITY EVALUATION 

When assessing trainability of the models, we calculated the bias and variance by computing 

the mean predictions from actual values, and computing mean of the squared differences 

between the predictions and the mean predictions of the validation datasets respectively. 

TABLE 5 shows LConvNet having the largest number of trainable parameters (197,726) 

among the four models. It has relatively low bias of 0.00130 which suggests that it is able to 
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fit the training data well, however, it has a relatively high variance (0.1812) which may indicate 

that it is overfitting the training data and may not generalize well to new data. 

ShallowConvNet has a relatively smaller number of trainable parameters (41,841) to LConvNet 

and a higher bias of 0.0777 which suggest it slightly underfitting the training data. However it 

has a relatively low variance of 0.0999, which suggest it may be more robust to generalize 

new data. EEGNet model has he smallest number of trainable parameters (753) among the 

models listed. It has relatively low bias (0.01741), which suggest that it is able to fit the training 

data well. However has a higher variance of 0.1619, which may indicate it is prone to 

overfitting. DeepConvNet has a larger number of trainable parameters (150,551) and a 

relatively low bias (0.0148), which suggests that it is able to fit the training data well, however, 

a higher variance of 0.20587 may indicate it is prone to overfitting. 
TABLE 5. Trainability Evaluation 

  
LConvNet 

 
ShallowConvNet 

 
EEGNet 

 
DeepConvNet 

 
Trainable Parameters 
 
Bias  
 
Variance 

 
197, 726 
 
0.00130 
 
0.18124 

 
41,841 
 
0.0777 
 
0.0999 

 
753 
 
0.01741 
 
0.1619 

 
150,551 
 
0.01487 
 
0.20587 

 

When evaluating the performance and generalization of the models,   we gain a local 

perspective by considering variance and bias.  Difference in outcomes can be attributed to 

factors like the number of trainable parameters, model architecture and complexity. To better 

understand the behavior of the models during training, we analyze Learning Curves (LC), 

which plot accuracy against training iterations (epochs) as shown in Figure 5.   By examining 

the models’ LC behaviors from FIGURE 5, we can observe that the training procedures for 

LConvNet (A) and EEGNet (C) models exhibit more stability and consistency in learning from 

the data compared to DeepConvNet and ShallowConvNet. This implies that LConvNet and 

EEGNet are likely to have better accuracy and generalization than DeepConvNet and 

ShallowConvNet. 
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(A) 

 
(B) 

 
(C) 

 
(D) 

FIGURE 5 : Learning Curves   LConvNet (A), DeepConvNet (B) , EEGNet (C) , ShallowConvNet 

(D) 

C. MODEL VISUALIZATION 

To access interpretability of the models, we performed feature visualization to understand 

the relevant features used for classification within layers of the models. All models except 

LConvNet  displays highly diffuse and distinct features with high activation within layers, 

whereas LConvNet CNN layers (without LSTM component)  displays more localized features 

with weak activation as shown in FIGURE 6. The colors in Figure 6 represents magnitude of 

activation, where, darker colors represent lower activation and lighter color represents higher 

activation as shown by the legend. 
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(D) 
 
 
 
 

 
 

 

FIGURE 6 Layer Activation Heat Maps. LConvNet (A), DeepConvNet (B), EEGNet (C), 

ShallowConvNet (D)  

 

D. SCALABILITY AND EFFICIENCY METRICS 

1) Training and Inference Times 

To evaluate scalability of the models, we start by measuring models’ efficiencies using the 

training and inference time. Training time refers to the amount of time taken to train machine 

learning model this includes learning the data and updating its parameters to minimize the 

loss function, inference time, on the other hand, refers to the amount of time it takes for the 

trained model to make predictions on new, unseen data. 
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 TABLE 6. Scalability Evaluation  

 LConvNet ShallowConvNet EEGNet DeepConvNet 
 

Trainable Parameters 
 
Training Time  
 
Inference Time 

197,726 
 
 
343.87 
 
0.49 

41,841 
 
 
370.15 
 
0.75 

753 
 
 
334.21 
 
0.75 

150,551 
 
 
323.71 
 
0.86 

 

TABLE 6 shows LConvNet as having the highest number of trainable parameters 

among the four models. However, it has the fastest training time per parameter with a 

cumulative total of 343.87 seconds and the fastest inference time of 0.4924 seconds per 

parameter. This suggest that LConvNet may be highly scalable as it can train quickly on large 

datasets and make predictions in real time. With only 41,841 trainable parameters, 

ShallowConvNet has fewer parameters than LConvNet, however, it has a relatively slow 

training time of 370.15 seconds and relatively slow inference time of 0.7472 per parameter. 

This may suggest that ShallowConvNet may not be as scalable as LConvNet as it may take 

longer to train and make predictions on larger datasets. EEGNet has fewer numbers of 

trainable parameters at 753, however relatively slowest training time of 334.215 seconds and 

relatively slow inference time of 0.7493 seconds, hence may not be as scalable as LConvNet 

and may take longer to train and make predictions on larger datasets compared to LConvNet. 

With 150,551 trainable parameters, DeepConvNet has a moderate number of parameters 

compared to LConvNet and ShallowConvNet. DeepConvNet has a relatively fast training time 

of 323.71 seconds, but a slower inference time of 0.86 seconds compared to the rest. This 

suggest that DeepConvNet may be moderately scalable, as it can train relatively quickly on 

large datasets, but may take longer to make predictions in real-time applications compared to 

the rest. 

In summary, LConvNet appear to be the most scalable of the four models, with the 

fastest training and inference times despite having the largest number of trainable 

parameters. ShallowConvNet and EEGNet have relatively fewer numbers of trainable 

parameters, but slower training and inference times compared LConvNet which may limit 

their scalability. DeepConvNet has a moderate number of trainable parameters and relatively 

fast training time, but its slower inference time may limit its scalability compared to LConvNet. 

 

2) Parameter Efficiency 
In this study, we assess Parameter Efficiency (PE) by measuring the average number of 
parameters processed by the models in a single training batch calculated using the following 
equation:  

 

𝑃𝐸 =
𝑁

𝐸 ∗ 𝐵
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For each input, where PE refers to parameter efficiency value, E is the number of training 

epochs and B is the training batch size. A higher efficiency value indicates that a model can 

handle a greater number of trainable units in a complex model in a single batch, which is 

desirable.  
TABLE 7. Parameter Efficiency Evaluation 

 LConvNet ShallowConvNet EEGNet DeepConvNet 

 
Trainable Parameters 
 
PE Value 

 
197,726 
 
7.7236 

 
41,841 
 
1.6375 

 
753 
 
0.0294 

 
150,551 
 
5.8880 

 
Epoch=200,   Batch Size = 128 

 

TABLE 7 shows, LConvNet and DeepConvNet as the most parameter-efficient models among 

the four, as they can give better performance with a moderate number of trainable 

parameters. ShallowConvNet is also relatively efficient, while EEGNet requires a large number 

of epochs/or batch size to achieve same level of performance as the other three despite 

having very few trainable parameters. 

 

E. ANALYSIS OF LCONVNET TEMPORAL DEPENDENCIES 

The preprocessing steps applied to raw data prior to classification, includes various activities 

that may have impact on the extraction of temporal dependencies by our model. In this 

section we highlight some possible temporal dependencies extracted by our LConvNet 

model. 

1) Frequency Specific Temporal Patterns 

The band pass filtering of raw EEG data between 1 to 45 Hz followed by subsequent 

segmentation of EEG data to a fixed duration epochs of 2 seconds with an overlap of 1 second, 

allows the model to capture relevant frequency specific temporal patterns. 

We convert the preprocessed EEG data into frequency domains using bands ranging 

between 0.5-4.5 Hz (Delta), 4.5- 8.5Hz (theta), 11.5-15.5Hz (sigma), 15.5-30Hz (beta), 30-45Hz 

(gamma) using welch method to derive power spectral density (PSD) spectrograms [43].   

Analysis of EEG data in these specific frequency waves is important since each frequency band 

is associated with different cognitive and neural processes in the brain as detailed in related 

literature section. We then deploy t-SNE (t-Distributed Stochastic Neighbor Embedding) with 

output space of 2 and perplexity of 5 to each of the spectrograms to enable visualization and 

gaining insight on our model’s ability to distinguish between output classes. We fitted the 

results of each frequency band spectrogram to LConvNet model before application of t-SNE. 

FIGURE 7 show that our LConvNet model distinguished clear separation between 

epileptic and non-epileptic classes with distinct properties given a specific timeframe epochs 

(2 seconds) with 1 seconds overlap. Gamma, Beta and Delta produced better classification 

results. 
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FIGURE 7   t-SNE Visualization of Frequency Specific Temporal Patterns. Delta Waves (a), Theta Waves (b), 

Alpha Waves (c), Sigma Waves (d), Beta waves (e), Gamma Waves (f).  Yellow = epileptic class, Purple = Non-

epileptic, CA=Classification Accuracy 

 

2) Temporal Dynamics of EEG Activities 

We initially sample EEG data at a rate of 128Hz, this means that for each second of EEG data, 

there are 128 data points,  with sampling resolution t = 1 (sec)/128  (∼ 8ms) that determines 

the level of temporal details to be captured within EEG signals. We assess our model using 

resolution of ∼4ms and ∼16ms. FIGURE 8, highlights the analysis of temporal dynamics of EEG 

data, a medium-high temporal resolutions of 8ms allows the model to capture fast brain 

processes that occur in milliseconds timescale, such as evoked potentials or transient 

oscillations, which are important in understanding cognitive processes and neurological 

disorders. 
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FIGURE 8 t-SNE Visualization of Temporal Dependencies at Varied Resolutions. (a) ∼ 8ms, 

(b) ∼ 16 ms, (c) ∼ 4ms 

 

F. TEMPORAL CORRELATIONS BETWEEN EEG CHANNELS 

The EEG dimensionality reduction is preprocessed using PCA, which subsequently captures 

correlations between EEG channels such as brain regions and/or functional connectivity 

network. PCA operation standardized the EEG channels to 25 prior to segmenting data into 

epochs. The sample preprocessed EEG data is a 3D array of shape (nepochs, nchannels, 

ntimepoints) where nepochs is the number of epochs, nchannels the number of EEG channels 

and ntimepoints is the number of time steps. 

 

r =
∑(xi − 𝑥−)(𝑦𝑖 − 𝑦−)

√∑(𝑥1 − 𝑥−)2∑(𝑦1 − 𝑦−)2
 

 

We assess the temporal correlations between EEG channels by calculating the Pearson 

Correlation Coefficient (r) between electrodes of EEG channels in an epoch as shown in the 

equation above where xi  and yi are the individual observations values of the EEG channel’s 

electrode, x-  and y-  are the means of EEG temporal dynamics for the respective EEG channels’ 

electrodes. The results are depicted in FIGURE 9. 
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FIGURE 9 Correlation Matrix of EEG Channels between EEG epochs 

 

The Mean Correlation Matrix heatmaps shown in FIGURE 9, shows much stronger 

positive correlation between electrodes from similar channels of a sample preprocessed EEG 

data at a particular time point. 

 

V. DISCUSSIONS 

 
A. COMPARISON OF THE MODELS’ BASED ON PERFORMANCE METRICS 

In this study, we proposed LConvNet, a shallow LSTMCNN model that can generalize well in 

Time Domain EEG classification tasks. We first compare the model’s performance against 

existing EEG classification models, highlighting strength and weaknesses using metrics such 

as accuracy, precision, recall, F1-Score, Mathew’s Correlation Coefficient and Cohen’s Kappa. 

We note that LConvnet has best overall performance followed by DeepConvNet, EEGNet and 

ShallowConvNet. Similarly, based on AUC shown in FIGURE 4, LConvNet has the best 

discriminating ability among the four models, which is consistent with its high accuracy and 

good balance between precision and recall. In summary, the AUC values support the 

performance metrics described earlier. 

Subsequently, the model robustness was assessed using adversarial data, of concern, 

the accuracy of all models dropped significantly. This indicate that models are not robust to 

handle such attacks. This is critical, since adversarial attacks are a growing concern in sensitive 

domains like healthcare where the consequences of misclassification can be severe. It is 

therefore, essential to evaluate such models performance before deployment. 

Another concern is that the level of perturbation used in this research study is 

relatively small and unnoticeable to the human eye, this raise possible concerns for malice and 

intentional sophisticated manipulation for purpose of misclassification. Researcher and 
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practitioners should focus on developing robust models to ensure their suitability for 

deployment in sensitive domain. 

 

B. TRAINABILITY OF THE MODELS 

Overall, the findings suggest that each of the models has its own strength and weaknesses in 

terms of ability to fit the training data and generalize to new data. The LConvNet and 

DeepConvNet appear to fit the training data well, but may be prone to overfitting due to 

higher variances. The ShallowConvNet on the other hand, may be slightly underfitting the 

training data, but may be more robust to generalization. The EEGNet model appears to fit the 

training data well, but also prone to overfitting. 

The comparison of the learning curves for the different models provides additional 

insights into their behavior during training. The more stable and consistent learning curves of 

LConvNet and EEGNet suggest that they may be more reliable models for predicting new data 

compared to the more erratic learning curves of DeepConvNet and ShallowConvNet. 

However, it is important to note that results may be influenced by the specific complexity of 

the models and further analysis and evaluation would be necessary to draw more definitive 

conclusions. 

 

C. SCALABILITY AND PARAMETER EFFICIENCY OF THE MODELS 

The models’ scalability is evaluated based on their training and inference times, which are 

important metrics in determining model’s ability to handle larger datasets and making 

predictions in real-time applications. Derived results revealed that LConvNet has the highest 

number of trainable parameters, but with the fastest training and inference time per 

parameter. This indicates highest scalability among the four models. 

Furthermore, we assess the models efficiency through the number parameters that 

can be processed by the models in a single training cycle. The results indicate that LConvNet 

and DeepConvNet are the most parameter efficient, meaning that they can handle more 

single units in a single training batch. These findings have practical implications. In particular, 

the results indicate that a moderate number of trainable parameters may be preferable to 

achieve performance with reasonable batch size and number of training epochs. 

Subsequently, the results suggest that even models with fewer trainable parameters may still 

require a large number of epochs or batch size to achieve optimal performance, highlighting 

the importance of careful model selection and hyperparameter tuning. 

 

D. LCONVNET TEMPORAL DEPENDENCIES 

Derived results demonstrate that LConvNet is capable of extracting frequency-specific 

temporal patterns critical for classification tasks. This suggest that frequency domain analysis 

is a powerful technique for identifying features relevant for classification. Subsequently, it 

highlights the importance of preprocessing steps like band pass filtering and EEG 

segmentation in capturing temporal dependencies in EEG. 
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Moreover, the findings suggest LConvNet is effective in analyzing EEG data in high 

temporal resolutions and the preprocessing used is capable of capturing temporal 

correlations between EEG channels. The use of PCA to reduce dimensionality further enables 

our LConvNet model to capture more complex correlations between channels’ electrodes. 

Overall, the findings demonstrate the ability of LConvNet model to capture temporal 

dependencies in EEG data, which is critical for accurate classification of EEG signals in clinical 

settings. The findings may have implications for development of more advanced EEG signal 

processing techniques that can be used to diagnose and treat neurological disorders. 
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