Applications of Hyaluronic Acid (HA) in Dental Implant Treatment: A Systematic Review

DOI: 10.47836/mjmhs.19.6.37

a Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Serdang, 43400, Malaysia
b Kulliyyah of Dentistry, International Islamic University Malaysia, Bandar Indera Mahkota, Pahang, Kuantan, 25200, Malaysia

Abstract
Introduction: Hyaluronic acid (HA) has a long history and is widely used in cosmetics, medicine, and dermatology. This molecule is still considered relatively new in the field of dentistry. This study aimed to assess the application of HA in dental implant treatment. Method: Search in the multiple indexed databases such as Pubmed, COCHRANE, and Scopus was conducted up until August 2022 using the keywords “hyaluronic acid”, “hyaluronan,” and “dental implant.” Results: The literature search identified 816 articles, and 17 were selected in this study. Three domains of use of HA in dental implant treatment were identified: surface modification of implant surface, treatment after insertion of a dental implant, and bone graft/membrane material. There are eight randomized control trials and nine non-randomized control trials included in this study. Only six studies showed statistically significant results with HA groups. Conclusion: Overall, there are positive findings on the application of HA in dental implant treatment, showing it can be used in dental implantology, with multiple categories of uses. © 2023 UPM Press. All rights reserved.

Author Keywords
Dental implant; Dentistry; Hyaluronan; Hyaluronic acid

Funding details
Ministry of Higher Education, MalaysiaMOHEFRGS/1/2019/STG05/UPM/02/30

The authors would like to acknowledge the Ministry of Education Malaysia for this project’s financial support through the Fundamental Research Grant Scheme: FRGS/1/2019/STG05/UPM/02/30.

References
- Clark, D, Levin, L.
 In the dental implant era, why do we still bother saving teeth?

- Kellesarian, SV, Malignaggi, VR, Kellesarian, TV, Bashir Ahmed, H, Javed, F.
 Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis

- Block, MS.
 Dental Implants: The Last 100 Years

- Buser, D, Sennerby, L, De Bruyn, H.
 Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions

- Griggs, JA.
 Dental Implants

- Al-Khateeb, R, Olszewska-Czyz, I.
 Biological molecules in dental applications: hyaluronic acid as a companion
Biomaterial for diverse dental applications

- Bukhari, SNA, Roswandi, NL, Waqas, M, Habib, H, Hussain, F, Khan, S
 Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects
 (Pt B)

- Abdullah Thaidi, NI, Mohamad, R, Wasoh, H, Kapri, MR, Ghazali, AB, Tan, JS
 Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus

- Zhai, P, Peng, X, Li, B, Liu, Y, Sun, H, Li, X.
 The application of hyaluronic acid in bone regeneration

- Shuborna, NS, Chaiyasamut, T, Sakdajeyont, W, Vorakulpipat, C, Rojvanakarn, M, Wongsirichat, N.
 Generation of novel hyaluronic acid biomaterials for study of pain in third molar intervention: a review

- Neuman, MG, Nanau, RM, Oruña-Sanchez, L, Coto, G.
 Hyaluronic acid and wound healing

- Casale, M, Moffa, A, Vella, P, Sabatinlo, L, Capuano, F, Salvinelli, B
 Hyaluronic acid: Perspectives in dentistry. A systematic review

- Yazan, M, Kocyigit, ID, Atı, F, Tekin, U, Gonen, ZB, Onder, ME.
 Effect of hyaluronic acid on the osseointegration of dental implants

- Boeriu, CG, Springer, J, Kooy, FK, van den Broek, LAM, Eggink, G.
 Production Methods for Hyaluronan

- Schanté, CE, Zuber, G, Herlin, C, Vandamme, TF.
 Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications

- Johansson, B, Smedberg, JL, Langley, M, Embery, G.
 Glycosaminoglycans in peri-implant sulcus fluid from implants placed in sinus-inlay bone grafts

- Smedberg, JL, Beck, CB, Embery, G.
 Glycosaminoglycans in peri-implant sulcus fluid from implants supporting fixed or removable prostheses

- Liberati, A, Altman, DG, Tetzlaff, J, Mulrow, C, Gøtzsche, PC, Ioannidis, JP
 The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions and elaboration
Mohamed Shaffril, HA, Samsuddin, SF, Abu Samah, A.
The ABC of systematic literature review: the basic methodological guidance for beginners

The Oxford Levels of Evidence 2,
Oxford Centre for Evidence-Based Medicine. [Available from

Higgins, JPT, Altman, DG, Gøtzsche, PC, Jüni, P, Moher, D, Oxman, AD
The Cochrane Collaboration's tool for assessing risk of bias in randomised trials

Ahmadian, E, Dizaj, SM, Eftekhari, A, Dalir, E, Vahedi, P, Hasanzadeh, A
The Potential Applications of Hyaluronic Acid Hydrogels in Biomedicine

Koray, M, Ofuoglu, D, Issever, H, Yaltirik, M.
The Efficacy of Hyaluronic Acid Gel in Pain Control of Recurrent Aphthous Stomatitis

Lupi, SM, Rodriguez, YBA, Cassinelli, C, Iviglia, G, Tallarico, M, Morra, M
Covalently-Linked Hyaluronan versus Acid Etched Titanium Dental Implants: A Crossover RCT in Humans

Boot, W, Gawlitta, D, Nikkels, PGJ, Pouran, B, van Rijen, MHP, Dhert, WJA
Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model

Pan, H, Han, JJ, Park, YD, Cho, TH, Hwang, SJ.
Effect of sustained release of rhBMP-2 from dried and wet hyaluronic acid hydrogel carriers compared with direct dip coating of rhBMP-2 on peri-implant osteogenesis of dental implants in canine mandibles

Capodiferro, S, Tempesta, A, Bucci, S, Maiorano, E, Favia, G, Limongelli, L.
Aminogam® Gel Allows Faster Wound Healing after Oral Surgery by Formation of Mature Connective Tissue with Low Vascular Density and Reducing Inflammatory Infiltration. A Retrospective Study on 580 Cases with Histological and Confocal Laser Investigation

de Araújo Nobre, M, Cintra, N, Maló, P.
Peri-implant maintenance of immediate function implants: a pilot study comparing hyaluronic acid and chlorhexidine

Sánchez-Fernández, E, Magán-Fernández, A, O'Valle, F, Bravo, M, Mesa, F.
Hyaluronic acid reduces inflammation and crevicular fluid IL-1β concentrations in peri-implantitis: a randomized controlled clinical trial

Soriano-Lerma, A, Magán-Fernández, A, Gijón, J, Sánchez-Fernández, E, Soriano, M,
García-Salcedo, JA
Short-term effects of hyaluronic acid on the subgingival microbiome in peri-implantitis: A randomized controlled clinical trial
- Genovesi, A, Barone, A, Toti, P, Covani, U.
The efficacy of 0.12% chlorhexidine versus 0.12% chlorhexidine plus hyaluronic acid mouthwash on healing of submerged single implant insertion areas: a short-term randomized controlled clinical trial

- Kaya, OA, Muglali, M, Torul, D, Kaya, I.
Peri-implant bone defects: A 1-year follow-up comparative study of use of hyaluronic acid and xenografts

- Lopez, MA, Manzulli, N, D’Angelo, A, Candotto, V, Casale, M, Lauritano, D.
The use of hyaluronic acid as an adjuvant in the management of mucositis
(Suppl 2)

- Lopez, MA, Manzulli, N, D’Angelo, A, Lauritano, D, Papalia, R, Candotto, V.
The use of hyaluronic acid as an adjuvant in the management of peri-implantitis
(Suppl 2)

- Butz, F, Bächle, M, Ofer, M, Marquardt, K, Kohal, RJ.
Sinus augmentation with bovine hydroxyapatite/synthetic peptide in a sodium hyaluronate carrier (PepGen P-15 Putty): a clinical investigation of different healing times

- Knabe, C, Adel-Khattab, D, Kluk, E, Struck, R, Stiller, M.
Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans
(2017) J Funct Biomater, 8 (3).

- Schwartz, Z, Goldstein, M, Raviv, E, Hirsch, A, Ranly, DM, Boyan, BD.
Clinical evaluation of demineralized bone allograft in a hyaluronic acid carrier for sinus lift augmentation in humans: a computed tomography and histomorphometric study

- Velasco-Ortega, E, Valente, NA, Iezzi, G, Petrini, M, Derchi, G, Barone, A.
Maxillary sinus augmentation with three different biomaterials: Histological, histomorphometric, clinical, and patient-reported outcomes from a randomized controlled trial

- Dogan, E, Dursun, E, Tosun, E, Bilgic, E, Akman, AC, Orhan, K
Evaluation of hyaluronic matrix efficacy in sinus augmentation: a randomized-controlled histomorphometric and micro-computed tomography analysis

- Emam, HA, Behiri, G, El-Alaily, M, Sharawy, M.
The efficacy of a tissue-engineered xenograft in conjunction with sodium hyaluronate carrier in maxillary sinus augmentation: a clinical study

- Göçmen, G, Atali, O, Aktop, S, Sipahi, A, Gönlü, O.
Hyaluronic Acid Versus Ultrasonic Resorbable Pin Fixation for Space Maintenance in Non-Grafted Sinus Lifting

Correspondence Address
Ghazali A.B.; Kulliyyah of Dentistry, Pahang, Malaysia; email: badruddinghazali@iium.edu.my