

INVESTIGATING THE EFFICIENCY OF INTEGRATING MICROBIAL ELECTROLYSIS CELL TO ANAEROBIC DIGESTER FOR BIOMETHANE PRODUCTION

- Author: Aseel Al-Da'as, Prof.Md Zahangir Alam, Assc.Prof. Azlin Suhaida
- Guide author: Aseel Al-Da'as.

Background of Study

Anaerobic digestion is a process for biomethane production Biomethane only accounts for 50-60% only

Microbial electrolysis cell : Is to produce hydrogen

MEC-AD: for the $CO_2 H_2$ upgrade within the system

ELECTRODE'S MODIFICATION

Anode Carbon felt Modification with Multi-wall carbon nanotube

SYSTEM SET-UP

OPERATING CONDITIONS AND SUBSTRATE

SUBSTRATE: FOOD-WASTE

APPLIED POTENTIAL: 0.9V

TEMPERATURE: 37°C

ANALYSIS

Hydrolysis efficiency: Monitor COD over 48h

Acidogenesis pathway: HPLC of VFA

MEC-AD Hybrid system set-up

BIOMETHANE PRODUCTION KINETIC: GOMPERTZ MODIFIED MODEL

$$M(t) = fd \cdot \exp\{-\exp\left[\frac{Rm.e}{fd} (\lambda - t) + 1\right] t > 0\}$$

where M(t) - the accumulative CH₄ yield at the time of t (mL/g COD); fd the maximum CH₄ potential (mL); λ - the lag-phase (d); Rm - the maximum CH₄ production rate t - the digestion time (d); and e - the exponential e (2.71828).

RESULTS AND DISCUSSION: HYDROLYSIS

Hydrolysis efficiency of conventional digester, modified electrode system, and unmodified electrode system

RESULTS AND DISCUSSION: ACIDOGENESIS

Different analytical data on acidogenesis										
performance										
Syste m	VFA Initial concentrati on (mM)	VFA final concentratio n (mM)	Acetic acid COD (g/L)	рН	Final COD (g/L)	Biometh ane (mL/g COD)				
AD	14.5	45	2.8809	4.3	7	8.5				
U- MEC	22.9	85.5	5.4417	4.5	7.4	13.8				
M- MEC	90	106	6.8288	4.8	8.25	26.4				

RESULTS AND DISCUSSION: MIXING INOCULUM

Dynamically fitted parameters according to Modified									
Gompertz model									
Inoculum	Fd ml/g [•] COD	Rm(m	λ (h)	R					
		L/h)		squared					
Original	29.1	0.875	11.42	0.992					
_		4		2					
Cow-manure	31.24	0.825	12.61	0.991					
Mixed	38.68	1.2	11.95	0.992					
inoculum				3					

Fd: Maximum CH_4 potential Rm: Maximum CH_4 rate Λ : lag-time

(PREVIOUSLY KNOWN AS ICEIOE) International Conference on Chemical Engineering & Sustainability 2023 CONCLUSION:

modified electrodes outperformed unmodified systems and conventional digesters regarding hydrolysis efficiency. Both hybrid systems were dominated by the acetic acid pathway, which is favourable for the upgrade of carbon dioxide to biomethane in the final digestion stage. Lastly, fitting the biomethane data from three different inoculations to the modified Gompertz model has shown that mixing the inoculum showed the best biomethane production rate and potential.

(PREVIOUSLY KNOWN AS CEIOE)

International Conference on Chemical Engineering & Sustainability 2023

Thank you