Web of Science[™]

Search

\varTheta Nur Ezzati M Taib 🗸

MENU

Biohydrogen production with utilisation of magnetite nanoparticles embedded in granular activated carbon from coconut shell

Results for BIOHYDROGEN ... > Biohydrogen production with utilisation of magnetite nanoparticles embed...

Ву	Jamaludin, NFM; Jamali, NS; Abdul, PM			
Source	INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Volume: 48 Issue: 31 Page: 11695-11708 DOI: 10.1016/j.ijhydene.2022.12.073			
Published	APR 12 2023			
Early Access	MAR 2023			
Document Type	Article			
Abstract	This study aims to utilize magnetite nanoparticles (MNP) embedded in granular activated carbon (GAC) originating from coconut shells as microbial support carriers in thermophilic biohydrogen production. MNP can facilitate intracellular electron transportation while providing essential nutrition for microbial growth. Response Surface Methodology (RSM) with a Central Composite Design was used to investigate the simultaneous effect of three variables; Ni:Fe (0.25-0.80), MNP:GAC (0.01-0.03) and type of GAC (GAC-O or GAC-C) on the hydrogen productivity rate (HPR). Biohydrogen content in the biogas to range from 22.25 to 64.71%. The quadratic model was well fitted (R-squared>0.80) with a confidence level higher than 90%. The optimum magnetite GAC was GAC-O as the preferred GAC at Ni:Fe (0.53) and MNP:GAC (0.02), with HPR of 20.33 +/- 0.32 ml H2/L.h. Magnetite GAC exhibited a better biohydrogen productivity rate by 63.99% compared to non-magnetite GAC. The developed magnetite GAC shown a high potential to improve biohydrogen production.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.			
Accession Number	WOS:000955319700001			
ISSN	0360-3199			

elSSN

- See fewer data fields

Citation Network

In Web of Science Core Collection

6 Citations

66 Cited References

How does this document's citation performance compare to peers?

← Open comparison metrics panel

Data is from InCites Benchmarking & Analytics

This record is from:

Web of Science Core Collection

• Science Citation Index Expanded (SCI-EXPANDED)

Suggest a correction

If you would like to improve the quality of the data in this record, please Suggest a correction

© 2024	Data	Copyright	Manage cookie	Follow
Clarivate	Correction	Notice	preferences	Us
Training	Privacy	Cookie		¥
Portal	Statement	Policy		
Product	Newsletter	Terms of		
Support		Use		